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Membrane shape remodeling by protein crowding
Susanne Liese1,* and Andreas Carlson1,*
1Department of Mathematics, Mechanics Division, University of Oslo, Oslo, Norway
ABSTRACT The steric repulsion between proteins on biological membranes is one of the most generic mechanisms that
cause membrane shape changes. We present a minimal model in which a spontaneous curvature is induced by asymmetric
protein crowding. Our results show that the interplay between the induced spontaneous curvature and the membrane tension
determines the energy-minimizing shapes, which describes the wide range of experimentally observed membrane shapes,
i.e., flat membranes, spherical vesicles, elongated tubular protrusions, and pearling structures. Moreover, the model gives pre-
cise predictions on how membrane shape changes by protein crowding can be tuned by controlling the protein size, the density
of proteins, and the size of the crowded domain.
SIGNIFICANCE Membranes are complex environments in which proteins are often densely packed. In a crowded
membrane domain, where proteins are asymmetrically bounded to the membrane, volume exclusion leads to steric
repulsion, which in turn drives membrane deformation. Experiments have revealed various different shapes: spherical
vesicles, pearls, and tubes. We present a theoretical model in which protein crowding induces a spontaneous curvature
that depends on the protein density. The interplay between induced spontaneous curvature and membrane tension
captures the wide variety of membrane shapes found in experiments. We predict the membrane shape transformation from
a flat patch to spherical buds and elongated pearl-like and tubular shapes as a function of the size of the crowded domain,
the membrane tension, and the protein density.
INTRODUCTION

Membrane nanotubes formed by lipid bilayers are ubiqui-
tous in cell biology (1,2), in which they play a key role in
various transport processes by facilitating the inter- and
intracellular transport of fluids and macromolecules (2,3).
The high surface/volume ratio inherent to tubular shapes en-
ables rapid exchange of biomaterial across the lipid bilayer
by transmembrane proteins or protein channels (4,5). As
membrane tubes can bridge distances of several microme-
ters, they can facilitate the transport of nutrients or even
entire organelles such as mitochondria and lysosomes be-
tween cells (6,7). A wide range of biophysical mechanisms
cause tube formation, such as the adsorption of intrinsically
curved proteins (8–11), internal and external protein scaf-
folds (12,13,14,15), local pulling forces (16), membrane
compression (17), osmotic deflation (18,19), protein phase
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separation (20), and protein crowding (21,22). In addition,
it was shown that pearling of cylindrical tubes can be
induced by an interplay of membrane bending and mem-
brane tension (23,24) and by curvature-inducing proteins
(25,26). Protein crowding, i.e., the accumulation of proteins
in a confined membrane domain is a phenomenon that is
ubiquitous in biological membranes, which typically
contain a multitude of domains with densely packed pro-
teins of different size and where an overexpression of spe-
cific proteins or biopolymers can be a disease marker.
Tumor cells, for example, exhibit both a higher concentra-
tion of glycosylated polymers and a higher tendency to
form tubular protrusions (27). Although tubulation in bio-
logical cells is complex and different mechanisms, such as
scaffolded tubulation by actin polymerization and crowding,
can act simultaneously, experiments of Shurer et al. (27)
indicate that crowding plays an important role in cellular tu-
bulation in cancer cells and may set apart healthy and malig-
nant cells.

Despite the fact that protein crowding plays an essential
role in many membrane remodeling phenomena, a theoret-
ical model encompassing the protein size and density that
accurately predicts the wide range of membrane shapes
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Membrane remodeling by crowding
observed experimentally is still lacking. Theoretical studies
have shown that the steric pressure between dense, unstruc-
tured proteins together with an asymmetry in the protein dis-
tribution across the lipid bilayer produces a spontaneous
membrane curvature (28–30) and thus induces changes in
the membrane shape. Stachowiak et al. (31) observed mem-
brane tubes protruding from synthetic giant unilaminar ves-
icles (GUVs) functionalized with green fluorescent proteins
(GFPs) (31). A schematic description of this experimentally
observed tubulation process is shown in Fig. 1 a (31). The
membrane tubes completely consume the GFP-coated mem-
brane region and extend over a length of several microme-
ters, which is of the same order of magnitude as the GUV
diameter (31). Other polymers containing a large unstruc-
tured region also generate a repulsive effect that leads to
tube formation (27,32). Moreover, Shurer et al. (27) recently
demonstrated that densely packed brush-like glycocalyx
polymers induce a variety of cell membrane shapes: flat
membranes, U-shaped membranes (referred to as blebs),
tubes, and pearls, induced by densely packed brush-like gly-
cocalyx polymers, as shown in Fig. 1 b. The wide range of
polymers causing membrane tubes, including folded, intrin-
sically disordered, and brush-like polymers (27,31,32), sug-
gests that the shape remodeling process does not depend on
the chemical structure of the individual protein but is based
on a generic mechanism that is potentially relevant for a va-
riety of proteins in densely packed membrane domains.
However, a biophysical model that reveals the minimal re-
quirements for the formation of the different and seemingly
incommensurable membrane shapes through a single mech-
anism has yet to be established. Inspired by these experi-
mental observations (27,31), we study theoretically the
biophysical origin leading to the zoology of different mem-
brane shapes. We derive a minimal mathematical model
describing the progressive shape transformation induced
by protein crowding, i.e., from a flat membrane to a fully
formed tube.
a c

b

MATERIALS AND METHODS

We start by formulating the membrane energy E, which takes into account

the Helfrich bending energy (33,34), the membrane tension s, and the

lateral pressure p between crowded proteins:

E ¼
Z
A

dA
�
2kH2 þ s

�þ
Z
Ac

dA�pðr�Þ; (1)

with A the total membrane area, the bending rigidity k, and the mean cur-

vature H. The Gaussian curvature is neglected in Eq. 1 because the mem-

brane does not change its topology (34). We refer to the area Ac, in

which proteins are bound to the membrane, as the crowded domain. The

crowded domain is modeled as a predefined patch on the membrane with

a fixed size, representing, e.g., a domain with a specific lipid composition.

Such a scenario was found in the tubulation experiments of Stachowiak

et al. (31), in which GFPs bind only to a patch of distearylglycero triethy-

leneglycyl iminodiacetic acid lipids. Distearylglycero triethyleneglycyl

iminodiacetic acid lipids form an insoluble gel phase domain within the

GUV. Because lipid membranes endure only a small areal expansion of

typically less than 2% (17) before rupture, we consider the area Ac to be

fixed. In contrast, we allow the outer domain to expand in response to shape

transformation. To justify this assumption, we note that the outer domain is

considered to be much larger than the crowded domain, which is also true in

experiments (27,31). Expansion of the outer domain thus leads to negligible

relative area dilation. Furthermore, experimental studies have shown that

thermal shape fluctuations allow effective area dilation of a few percent

on GUVs (35) and cells benefit from an even larger effective membrane

reservoir through membrane folding (17). The proteins are modeled as

spheres with radius rp and density r, which experience the dominant contri-

bution of steric repulsion along a virtual surface shifted by rp perpendicular

to the membrane (dashed line in Fig. 1 c). The variables related to the

shifted surface are indicated by an asterisk (*) in Eq. 1. The lateral pressure

p causes an increase of the membrane energy Ewith increasing protein den-

sity for a planar membrane, reflecting the steric repulsion between the pro-

teins. Outward bending causes an effective expansion of the shifted surface

and thus a reduction of the lateral pressure. In the model presented here, the

proteins adsorb to one side of the lipid bilayer, i.e., the proteins are bound

asymmetrically across the membrane. The same energy expression results

for asymmetric transmembrane proteins, for which the protein portion pro-

trudes from one side of the membrane with the size rp much more than the

protein portion on the other side of the membrane. We consider a crowded

domain much smaller than the total area, which means that also the volume
FIGURE 1 (a) Schematic illustration of the mem-

brane tube formation as observed experimentally on

GUVs (31). The protein-coated domain, for which

the proteins are shown as blue spheres, is completely

consumed by the protruding tube. The size of the

vesicle and the tube are drawn to scale to illustrate

a ratio between the protrusion height L and the

crowded domain Ac that is representative of the or-

der of magnitude found in experiments (31). (b)

Qualitative representation of membrane shapes

observed experimentally by Shurer et al. (27) on

cells with glycocalyx biopolymers with increasing

polymer density. (c) The membrane shape is param-

eterized by the arc length S and the azimuthal angle

j, where we treat the membrane as axially symmet-

rical around the z axis. The proteins that bind to the

membrane within an area Ac are modeled as spheres

with a radius rp.
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FIGURE 2 The induced spontaneous curvature Cind is shown as a func-

tion of the protein coverage r/rmax (Eq. 5), with rp ¼ 2.1 nm and k ¼ 10

kBT (36). The inset shows the inverse of Cind.
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of the protruding shape is small compared to the total volume of the vesicle.

Therefore, the associated transmembrane pressure will not influence the

membrane shape (see the Supporting materials and methods). Experimental

studies have shown the simultaneous formation of multiple protrusions

(27,36), which might result from a heterogeneous protein distribution. If

the individual crowded domains are spatially separated, we assume that

the tubulation process occurs independently in each domain but driven by

the same mechanism. Therefore, we restrict the model to the formation

of a single protrusion.

The membrane shape is parameterized by the arc length S and the

azimuthal angle j (Fig. 1 c), where we model the membrane as a thin

axially symmetric surface, which is valid as long as the radius of curvature

is large compared to the membrane thickness (34). The height Z and the

radial coordinate R are then obtained via dR/dS¼ cosj and dZ/dS¼�sinj,

and the principle curvatures are written as C1 ¼ dj/dS and C2 ¼ sinj/R,

with the mean curvature H ¼ (C1 þ C2)/2. If the protein radius rp is small

compared to the inverse of the two principle curvatures, the area element

and the density along the shifted protein surface can be expressed as

dA*¼ dA(1þ rpC1)(1þ rpC2) and r* ¼ r/[(1 þrpC1)(1þ rpC2)] (see Sup-

porting materials and methods). The pressure term in Eq. 1 can then be

approximated by dA*p(r*) z dA*

�
pþdp

dr ðr� �rÞ
�

z dAp(r) þ dA

�
p �

dp
dr r

�
rp(C1 þ C2) up to first order in C1 and C2. Integration over the first

term gives a constant, as we consider a homogeneous protein distribution

and a fixed area of the crowded domain. The second term quantifies the

release of steric pressure due to bending, where the term p � dp
drr is negative

if the pressure increases more than linearly with r. Hence, the effective

reduction of the lateral pressure due to bending can be written as an energy

term that scales with the mean curvature analogous with a spontaneous cur-

vature. In other words, we can write the membrane energy up to a constant

as the sum of two terms, i.e., the bending energy Ek and the tension energy

Es (see Supporting materials and methods for a detailed derivation):

Ez

Z
A

dA
�
2kðH � Cindðr;AÞÞ2

�þ As ¼ Ek þ Es; (2)

where the influence of the lateral pressure between the proteins is expressed

by an induced spontaneous curvature Cind. We consider a homogeneous

protein distribution (r ¼ constant) within the crowded domain Ac and

r ¼ 0 in the protein-free domain. In general, proteins can diffuse within

the membrane, which then can cause a spatial variation in the spontaneous

curvature. However, heterogeneity of the protein or lipid distribution is

counteracted by an energetic penalty�(Vr)2 that maintains a more uniform

density (22,37). To keep the model minimal, we consider only the limit of

small density gradients, assuming r ¼ constant and Cind ¼ constant. We

find the following expression for the induced spontaneous curvature:

Cind ¼ rp
2k

�
r
dp

dr
� p

�
: (3)

A detailed derivation of Eqs. 2 and 3 is presented in the Supporting ma-

terials and methods. We find that expanding the lateral pressure to quadratic

terms in C1 and C2 causes two additional energy terms that only act in the

crowded domain: an increase in bending stiffness Dk and a difference in the

Gaussian bending rigidity between the crowded and the outer domain kg
(see Eq. S23). The additional contributions to the bending rigidities Dk

and kg scale with �(r2p /Ac)
2 and are therefore negligible, as the crowded

domain is large compared to the size of the proteins.

To derive the relation between the induced spontaneous curvature and the

lateral pressure (Eq. 3), we take into account a spatially varying membrane

curvature. Equation 3 thus provides a more general version of the results

previously obtained by Derganc et al. (28) under the constraint of a uniform
2484 Biophysical Journal 120, 2482–2489, June 15, 2021
membrane curvature and by Stachowiak et al. (36) for a perfectly cylindri-

cal shape. Both studies find a linear relationship between the induced cur-

vature and the lateral pressure p, which coincides with Eq. 3 if p�(r/rmax)
2.

In general, however, the dependence between lateral pressure and protein

coverage is more complex. In analogy to Derganc et al. (28) and Stacho-

wiak et al. (36), we use the two-dimensional analog of the Carnahan-Star-

ling equation (38,39) to model the lateral pressure, which is a suitable

approximation if the steric repulsion of proteins is caused by volume exclu-

sion alone:

pzkBTr

0
B@1þ 2

r

rmax

1� 7
16

r

rmax�
1� r

rmax

�2

1
CA; (4)

where the maximal areal density is set by the protein radius with rmax ¼ 1/

ðpr2pÞ. Eq. 4 is a suitable approximation if the protein interaction is purely

repulsive and if the proteins behave like two-dimensional hard disks. It is

expected that attractive interactions between neighboring proteins, confor-

mational changes, or intersection of unstructured proteins will lead to devi-

ations from Eq. 4 and might even cause a negative spontaneous curvature,

i.e., inward budding of the membrane protrusion, in line with recent obser-

vations by Yuan et al. (20). The induced spontaneous curvature following

Eq. 4 reads

CindðrÞz kBT

2prpk

�
r

rmax

�2

2
4 2þ r

4rmax�
1� r

rmax

�3

3
5: (5)

For a fixed protein coverage r/rmax, the prefactor in Eq. 5 shows an inverse

scaling of the induced spontaneous curvature with respect to the size of the

proteins rp in accordance with previous theoretical studies (28,29). In addi-

tion, Eq. 5 provides an explicit relation betweenCind and the protein coverage

r/rmax. In Fig. 2, Cind is shown as a function of the protein coverage r/rmax

(Eq. 5), with rp¼ 2.1 nm and k¼ 10 kBT in accordancewith the experimental

study by Stachowiak et al. (36) on the tubulation propensity of GUVs covered

with densely packed proteins with ENTH domains. The inset shows the in-

verse of Cind as an approximation for the diameter of a protruding cylinder

that follows the induced curvature.

We set the scaled membrane tension to sAc/k¼ 25. To relate this value to

experimentally relevant parameters, we note that the typical membrane ten-

sion varies in the range s ¼ 10�6–10�3 N/m (40). For a membrane in a

liquid phase, which is a suitable approximation for most cellular mem-

branes, the bending rigidity is on the order of k z 10kBT (41). Thus,



Membrane remodeling by crowding
sAc/k ¼ 25 corresponds to a crowded domain size of (10�3–1) mm2, which

includes the submicrometer structures observed by Shurer et al. (27). Syn-

thetic membranes in the gel phase can exhibit much higher bending rigidity

on the order of kz 200 kBT (41). The corresponding crowded domain size

of (0.02–20) mm2 is closer to the micrometer-sized domains observed in

GUVs used by Stachowiak et al. (31). We note that the GUVs used in refer-

ence (31) have two domains. The crowded domain is in the gel phase,

whereas the outer domain is in the liquid phase. To keep the mathematical

description minimal, we consider here a constant bending stiffness for the

entire membrane.

When minimizing the energy (Eq. 2) the membrane can take two char-

acteristic shapes: a rather flat shape that minimizes Es or a cylindrical

shape that follows the induced spontaneous curvature and minimizes

Ek. Before we derive the shape equations, we discuss two analytical ap-

proximations in the limit of small and large Cind to gain an intuitive un-

derstanding of the scaling of the protrusion height L and the energy. For

small Cind, we describe the crowded domain as a spherical cap with a

radius Rs and an opening angle a, and the protein-free membrane region

is considered to be flat; see Fig. 3 a. The energy difference DE between a

flat and a deformed membrane according to Eq. 2 is DE ¼ 2kAc[(1/Rs �
Cind)

2 � C2
ind] þ s(Ac � pR2

s sin
2a). The radius Rs and the angle a are

related via the area as Ac ¼ 2pR2
s (1 � cosa). Minimizing DE with

respect to Rs for fixed Ac and Cind results in L ¼ AcCind/[2p þ sAc/

(4k)] (dashed line in Fig. 3 a). In the limit of large Cind, the membrane

energy is dominated by the bending energy, and we can approximate the
a

b

c

membrane shape by a cylinder with radius 1/(2Cind) and length L ¼ Ac-

Cind/p (dotted line in Fig. 3 a). The energy difference between the flat

and the cylindrical shape is given by DE/(2pk) ¼ �C2
indAc/p þ sAc/

(2pk) � s/ð8kC2
indÞ. The cylindrical shape becomes energetically advan-

tageous compared to the spherical cap if the induced spontaneous curva-

ture exceeds a value of Cind z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pþ sAc=ð2kÞ

p
=

ffiffiffiffiffi
Ac

p
(see Supporting

materials and methods). This simple approximation shows that, as the

protein density or equivalent of the induced spontaneous curvature in-

creases, the height of the protrusion increases linearly with Cind. We

notice that the membrane shape will transition from a spherical cap

shape to a cylindrical shape at the threshold of Cind z 5/
ffiffiffiffiffi
Ac

p
(green

marker in Fig. 3 a).

Wenow turn to the energy-minimizing shapes and scale all lengths by
ffiffiffiffiffi
Ac

p
,

i.e., s ¼ S/
ffiffiffiffiffi
Ac

p
, r ¼ R/

ffiffiffiffiffi
Ac

p
, z ¼ Z/

ffiffiffiffiffi
Ac

p
, cind ¼ Cind

ffiffiffiffiffi
Ac

p
Q(Ac � A), with the

Heaviside function Q, j(S) / j(s), a ¼ A/Ac, and h ¼ H
ffiffiffiffiffi
Ac

p � cind.

Applying the Euler-Lagrange formalism, we determine the stationary shapes

of the functional ~E:

~E ¼ pk

Z N

0

dsL; with (6)

��
sinj

�2
sA

�

L ¼ r j0 þ

r
� 2cind þ 2

c

k

FIGURE 3 (a) The scaled protrusion height L is

shown as a function of the induced spontaneous cur-

vature Cind. The results from the shape equations

(Eqs. 7) are shown by orange solid lines. The ana-

lytic approximations for a spherical cap (dashed),

a cylinder (dotted) and a string of beads (dash-

dotted) are shown as green lines. At the transition

point (Cind

ffiffiffiffiffi
Ac

p ¼ 5, green marker), the energy of

a spherical cap and a cylinder are equal. (b) The

minimal neck radius Rmin as a function of the

induced spontaneous curvature for tubular shapes

with Cind

ffiffiffiffiffi
Ac

p
> 7.5. (c) Seven membrane shapes

are shown, with the crowded region illustrated by

the solid blue line and the protein-free region shown

as a red dashed line. The scale bar indicates the

length
ffiffiffiffiffi
Ac

p
that is set by the area of the crowded

domain. The inset to the right of shape VII shows

an undulating tubular shape together with a cylinder

with radius 1/(2Cind) in gray. The inset to the left

shows the smallest membrane neck along the tubular

shape, with Rmin¼ 0.04
ffiffiffiffiffiffiffiffi
k=s

p
, which corresponds to

Rmin ¼ 40 nm for Ac ¼ 25 mm2. Hence, Rmin is still

much larger than the membrane thickness.
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þl1ðr0 � cosjÞ þ l22prQð1� aÞ;
where the derivative with respect to s is indicated by a prime, d()/ds¼ ()0. In
Eq. 6, the Lagrange multiplier function l1 constrains the geometric relation

between the azimuthal angle j and the radius r. The Lagrange multiplier l2
enforces a constant area at the crowded domain. The energy-minimizing

membrane shapes are then described by the following set of differential

equations (see Supporting materials and methods):

dr

ds
¼ cosj;

dz

ds
¼ �sinj;

dj

ds

¼ 2h� sinj

r
þ 2cind and (7)

dh u du 4h
�

sinj
�

da
ds
¼

2
sinj;

ds
¼

r
h�

r
þ cind ;

ds
¼ 2pr;

where u :¼ l1(2r) is an auxiliary function that becomes equal to the scaled

membrane tension at the outer boundary. The boundary conditions

rð0Þ ¼ 0; zðs/NÞ ¼ 0; jð0Þ ¼ jðs/NÞ ¼ 0 and

(8)

hð0Þ ¼ c0 � cind; uðs/NÞ ¼ sAc; að0Þ ¼ 0

k

describe a membrane that is flat in the far field, whereas the mean curvature

at the centerline (s¼ 0) is given by c0, where c0 is part of the solution of Eq.

7. To solve Eq. 7, we define the parameter u0 :¼ u(s ¼ 0) and treat the dif-

ferential equation as an initial value problem in which the parameters c0 and

u0 are systematically varied such that the boundary conditions (Eq. 8) at the

outer boundary are satisfied. The parameter u0 is related to the Langrange

multiplier l2 as u0 ¼ l2p þ s þ 2c2ind � 2c0cind. Further details about the

numerical implementation of Eq. 7 can be found in the Supporting materials

and methods.
RESULTS AND DISCUSSION

In Fig. 3 a, the protrusion height L is shown as a function of
Cind. L is defined as the height of the membrane in the Z-di-
rection above the center point Z ¼ 0, R ¼ 0 (Fig. 1 c).
Similar to the analytic approximation presented above, we
see a transition from flat shapes (shape I) for small Cind

ffiffiffiffiffi
Ac

p
to elongated shapes (shapes VI and VII) for large Cind

ffiffiffiffiffi
Ac

p
.

In the transition region around Cind

ffiffiffiffiffi
Ac

p
z 5, multiple stable

shapes coexist, including shapes II and III as well as IV and
V. Above Cind

ffiffiffiffiffi
Ac

p
> 5, the elongated protrusions become

more energetically favorable and are hence expected to be
predominant in experiments. As we see in Fig. 3 c, the shape
of the tubulating membrane does not follow a cylindrical
shape; instead, the radius undulates around a value of 1/
(2Cind) (gray area in shape VII), which is determined by
the spontaneous curvature. The neck size of shape VII is still
much larger than the typical thickness of a lipid bilayer,
highlighted by the inset. We note that even though the mem-
brane has a shape similar to a string of beads, the protrusion
height is significantly longer than if it were composed of
spherical beads with radius 1/Cind, with L ¼ AcCind/(2p)
2486 Biophysical Journal 120, 2482–2489, June 15, 2021
(dash-dotted line in Fig. 3 a). As the induced spontaneous
curvature increases, Fig. 3 a shows a series of branches.
The tube length increases in a discontinuous manner
(Fig. 3 a) between two consecutive branches. Each step
originates from an additional bead along the tube (see
shapes VI and VII). Toward the ends of each branch, the
minimal neck radius Rmin decreases as shown in Fig. 3 b.
As Rmin decreases, the neck is constricted and eventually
reaches a size that is smaller than the thickness of the mem-
brane. In this case, the description of the membrane as a thin
elastic sheet is no longer valid. We therefore limit the results
shown in Fig. 3 to shapes with a neck size that is at least
Rmin ¼ 0.01

ffiffiffiffiffiffiffiffi
k=s

p
, or equivalently Rmin ¼ 10 nm for sAc/

k ¼ 25 and Ac ¼ 25 mm2. Hence, in all shapes considered
here, the membrane neck is sufficiently wide to prevent
membrane fission.

The membrane tubes we find here differ significantly
from tubes caused by a point force, in which the tube radius
is determined by the ratio of the membrane tension and the
bending rigidity showed only slight deviations from a cylin-
drical shape (16). Pearl-like structures that have a qualita-
tively similar shape to the elongated protrusions we find
here are also observed for tubular membranes under tension
(18,23,24), for which the pearling instability is driven by an
interplay between the bending energy and the membrane
tension. In contrast, the pearl-like structures we see in
Fig. 3 (shapes VI and VII) are caused by the spontaneous
curvature. To minimize the bending energy, the membrane
shape must match the spontaneous curvature Cind. A cylin-
drical shape with a radius 1/(2Cind) has a vanishing bending
energy on the cylinder side, whereas the cylinder cap causes
a substantial contribution to the bending energy. If the cyl-
inder is capped by a half-sphere with radius 1/(2Cind), this
results in a bending energy of pk. An alternative shape
that minimizes the bending energy is a chain of spherical
pearls of radius 1/(Cind) connected by narrow necks.
Although the bending energy vanishes at the bulge of the
pearl, the curvature at the neck does not follow Cind and
thus raises the bending energy. To minimize the energy con-
tributions originating from the cap of the tube and the mem-
brane necks, the shapes VI and VII constitute an
intermediate shape between a cylindrical and a pearl-like
shape. We note that with an increasing number of pearls
along the tube, i.e., with an increasing tube length or a larger
induced spontaneous curvature, the energetic cost of the
pearl necks will increase. We thus hypothesize that longer
tubes approach a more cylindrical shape. Tubes induced
by crowding or by a change in the area/volume ratio by os-
motic deflation (18) have qualitatively similar shapes, for
which the tube radius is determined by either the induced
spontaneous curvature or the intrinsic membrane curvature.
Despite the similar membrane shapes, there are large differ-
ences between these tubes. In the case of osmotic deflation,
the area of a tube is not fixed and could, in principle,
consume the entire surface of the original vesicle. In
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FIGURE 4 The scaled protrusion height L is shown as a function of the

scaled membrane tension sAc/k for different induced spontaneous curva-

tures Cind. The inset in each subfigure shows the membrane neck radius

Rmin. The five shapes that are indicated by roman numbers are the same

shapes shown in Fig. 3. (a)
ffiffiffiffiffi
Ac

p
Cind ¼ 1, (b)

ffiffiffiffiffi
Ac

p
Cind ¼ 3, (c) andffiffiffiffiffi

Ac

p
Cind ¼ 10.5.

Membrane remodeling by crowding
contrast, the total area of a tube induced by protein crowding
is limited by the size of the crowded domain, and the spon-
taneous curvature is not fixed but is determined by the pro-
tein density.

As we follow the minimal energy shapes for increasing
spontaneous curvature or equivalently for increasing protein
density in Fig. 3, a and c, we find shapes that are qualita-
tively similar to those recently found experimentally by
Shurer et al. (27) on cells with glycocalyx polymers
(Fig. 1 b), including U-shapes/blebs (shape V), tubes (shape
VII), and pearls or beads (shape VI). Although several of
these shapes have been theoretically described before in
specific analytical limits (27), we here obtain the entire va-
riety of shapes by a single underlying physical principle,
i.e., the interplay of the induced spontaneous curvature
and the membrane tension, where all shapes are described
by the same set of shape equations (Eqs. 7).

So far, we have considered a fixed value for the scaled
membrane tension. We now discuss the continuous transi-
tion between different shape classes through the change in
membrane tension s for a fixed Cind. In Fig. 3, we show L
as a function of the scaled membrane tension sAc/k for three
different values of Cind

ffiffiffiffiffi
Ac

p
˛ [1, 3, 10.5]. The inset in each

panel shows the membrane neck radius Rmin. If the mem-
brane shape does not exhibit an indentation (e.g., shape I),
Rmin is defined as the radius at the outer edge of the crowded
domain. As in Fig. 3, we only show membrane shapes with a
neck radius of Rmin> 0.01

ffiffiffiffiffiffiffiffi
k=s

p
, i.e., the neck is larger than

the membrane thickness and the thin sheet description of the
membrane is valid. The five shapes that are indicated by ro-
man numbers are also shown in Fig. 3. For the lowest value,
Cind

ffiffiffiffiffi
Ac

p ¼ 1 (Fig. 4 a), a monotonic decrease of L with
increasing membrane tension is observed, i.e., the mem-
brane flattens (shape I).

Increasing the spontaneous curvature to Cind

ffiffiffiffiffi
Ac

p ¼ 3, we
find a more complex behavior with three different classes of
membrane equilibrium shapes (shown in Fig. 4 b as dashed,
dashed-dotted, and dotted lines, respectively) that can
coexist. The lower line (dashed-dotted line) corresponds
to flattened shapes that minimizes the tension energy. The
shapes in the upper dashed line show a narrower protrusion.
For sAc/k < 12, there is a third class of equilibrium shapes
that is associated with spherical membrane shapes. These
shapes do not lead to tubulation, and the neck becomes nar-
rower as sAc/k increases. We speculate that a further in-
crease of the membrane tension (sAc/k > 12) would lead
to an overlap of opposing sides of the neck and subsequent
membrane fission. Membrane scission by protein crowding
was observed experimentally by Snead et al. (42), in which
the presence of unstructured proteins (an epsin1 N-terminal
homology domain) on the membrane was sufficient to
induce vesicle formation even in the absence of specialized
proteins that facilitate membrane scission. For an even
larger spontaneous curvature, Cind

ffiffiffiffiffi
Ac

p ¼ 10.5, elongated
tubes are formed. Although we can observe a closed line
for shapes with 11 connected beads along the tube (shape
VII), shapes with only 10 beads (shape VI) are limited by
a constriction of the membrane neck for both low and
high membrane tensions.

The minimal theoretical model presented here shows that
steric repulsion between membrane-associated proteins and
membrane tension can explain a variety of membrane
shapes observed in experiments, providing a quantitative
framework for understanding membrane remodeling
induced by protein crowding. In Figs. 3 and 4, we have
shown that multiple equilibrium membrane shapes can
coexist: flat, spherical, and tubular shapes. Our results
Biophysical Journal 120, 2482–2489, June 15, 2021 2487
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highlight protein crowding as a versatile mechanism for
membrane shape regulation, which is a process vital to
cell functionality by compartmentalizing or connecting
cellular organelles.
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Membrane Shape - Analytic Approximation

For a spherical cap, where the entire crowded domain forms a single protrusion, the energy change going from a flat to
a budding membrane, is written as:

∆E = 2κAc

[(
1

Rs
− Cind

)2

− C2
ind

]
+ σ

(
Ac − πR2

s sin2 α
)
, (S1)

with

Ac = 2πR2
s (1− cosα) . (S2)

Inserting Eq. S2 into Eq. S1, the energy difference is expressed as

∆E = 2κAc

(
1

R2
s

− 2
Cind

Rs

)
+ σAc

Ac

4πR2
s

, (S3)

Minimizing Eq. S3 with respect to Rs, we find

Rs =
1 + σAc

8πκ

Cind
. (S4)

The height of the spherical cap is written as:

L = Rs (1− cosα) ,

=
AcCind

2π

1

1 + σAc

8πκ

. (S5)

Inserting Eq. S4 into Eq. S3 the energy of the minimal energy shape becomes:

∆E = −2κAcC
2
ind

1 + σAc

8πκ

. (S6)

If the membrane shape is described by a cylinder with radius 1/(2Cind), then the energy and the protrusion height are
obtained directly as

∆E = −2κAcC
2
ind + σAc − σπ

1

(2Cind)2
(S7)

and

L =
AcCind

π
. (S8)

S1



Based on Eqs. S6, S7 the Cind-range for which a cylindrical shape is energetically favorable compared to a spherical cap
shape, is given by

−2κAcC
2
ind + σAc − σπ

1

(2Cind)2
< −2κAcC

2
ind

1 + σAc

8πκ

, (S9)

which leads to

AcC
2
ind >

(
2π +

σAc

4κ

)
+

√(
2π +

σAc

4κ
− π

4

)2

− π2

16
. (S10)

Since 8π + σAc/κ > π, we approximate Eq. S10 as

AcC
2
ind > 2

(
2π +

σAc

4κ

)
. (S11)

The induced spontaneous curvature for which a cylindrical shape becomes energetically favorable is

Cind >

√
4π + σAc

2κ

Ac
. (S12)

To understand why the transition point between a flat and a tubular membrane shape depends on the size of the
crowded domain, we examine in more detail the size dependence of the two energy contributions, bending energy and
tension. We start with a completely flat membrane where the bending energy is given by Ebend = 2κAcC

2
ind. Thus

Ebend is extensive and proportional to Ac. If we now remodel the membrane into a cylinder with radius 1/(2Cind), the
bending energy approximately vanishes. The membrane energy is dominated by the tension, where the energy difference

between a flat and a cylindrical shape is written as σ
(
Ac − π

4C2
ind

)
. Hence, the tension term is not simply proportional

to Ac. In a hypothetical scenario where the membrane is transformed into a cylinder with vanishing radius, the tension
energy would be given by σAc. The transition from a flat to a cylindrical shape, in this case given by the condition
2κAcC

2
ind > σAc, would depend only on the ratio κC2

ind/σ. However, a cylinder with vanishing radius is impeded by
the divergent bending energy. In other words, while the bending energy of a flat membrane can be approximated as
being extensive in Ac, the tension term is not, since it contains an additional term proportional to C−2ind. Consequently,

the transition point between a flat and a cylindrical shape, determined by 2κAcC
2
ind > σ

(
Ac − π

4C2
ind

)
, depends on both

κC2
ind/σ and AcC

2
ind.

Energy Functional

The energy functional (Eq. 1 in the main text) in the arc length parameterization reads

E = 2π

∫ ∞
0

dSR

[
κ

2

(
dψ

dS
+

sinψ

R

)2

+ σ

]
+ 2π

∫ ∞
0

dS∗R∗p(ρ∗)Θ(Ac −A), (S13)

with the Heaviside function Θ. The coordinates along the protein surface, which are shifted by rp relative to the
membrane surface, are indicated with an asterisk. If the protein radius rp is small compared to the inverse of the
membrane curvature, the coordinates along the protein surface (dashed line in Fig. 1c in the main text) are given by

R∗ = R + rp sinψ and Z∗ = Z + rp cosψ. An arc length element dS∗ is then written as dS∗ =

√
(dR∗)

2
+ (dZ∗)

2
=

dS

√
(dR∗/dS)

2
+ (dZ∗/dS)

2
= dS

(
1 + rp

dψ
dS

)
and the area element along the protein surface is given by dA∗ = dS∗R∗ =

dSR
(

1 + rp
dψ
dS

)(
1 + rp

sinψ
R

)
. The protein density ρ along the membrane surface is equivalent to ρ = dNp/dA, with Np

the number of proteins. Since the number of proteins is conserved, we write the protein density along the shifted surface

as ρ∗ = dNp/dA
∗ = ρ

[(
1 + rp

dψ
dS

)(
1 + rp

sinψ
R

)]−1
.

Next, we rewrite the lateral pressure p, by first expressing p in a virial expansion p(ρ∗) =
∑∞
i=1 kBTνi(ρ

∗)i and then
performing a Taylor expansion around rpC1 = rpC2 = 0, with C1 = dψ/dS and C2 = sinψ/R, up to second order in C1
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and C2,

dS∗R∗p(ρ∗) = dSR

∞∑
i=1

kBTνiρ
i (1 + rpC1)

−i+1
(1 + rpC2)

−i+1
, (S14a)

≈ dSR
∞∑
i=1

kBTνiρ
i

[
1 + (1− i)rp(C1 + C2) +

i2 − i
2

r2p(C1 + C2)2 + (1− i)r2pC1C2

]
, (S14b)

≈ dSR
[
p(ρ) +

(
p(ρ)− ρdp

dρ

)
rp (C1 + C2) +

ρ2

2

d2p

dρ2
r2p (C1 + C2)

2
+

(
p(ρ)− ρdp

dρ

)
r2pC1C2

]
. (S14c)

Inserting Eq. S14 into Eq. S13 and introducing the non-dimensional variables c1 =
√
AcC1, c2 =

√
AcC2, p̃ = 2pAc/κ ·

Θ(Ac −A), and σ̃ = σAc/κ, we can now write the total membrane energy, Eq. S13, as

E

πκ
=

∫ ∞
0

dsr

[
(c1 + c2)2 + 2σ̃ + p̃−

(
ρ
dp̃

dρ
− p̃
)

rp√
Ac

(c1 + c2) +
ρ2

2

d2p̃

dρ2
r2p
Ac

(c1 + c2)2 −
(
ρ
dp̃

dρ
− p̃
)
r2p
Ac
c1c2

]
,

(S15)

where we also used the non-dimensional variables defined in the main text. For a fixed protein density the energy, Eq.S15,
can be expressed, in terms of an induced spontaneous curvature Cind, an effective increase of the bending rigidity ∆κ,
an effective Gaussian bending rigidity κg, and a constant γ as

E

πκ
=

∫ ∞
0

dsr

[(
1 +

∆κΘ(Ac −A)

κ

)
(c1 + c2 − 2

√
AcCindΘ(Ac −A))2 + 2σ̃ +

κgΘ(Ac −A)

κ
c1c2

]
+
γAc

πκ
, (S16)

with Cind =

rp
2κ

(
ρdpdρ − p

)
1 +

ρ2r2p
κ

d2p
dρ2

, ∆κ = ρ2r2p
d2p

dρ2
, κg = 2r2p

(
p− ρdp

dρ

)
, γ = 2p(ρ)− 4(κ+ ∆κ)C2

ind(ρ).

All four quantities Cind, ∆κ, κg, and γ are constant within the crowded domain. We note that γ has units of a surface
tension, where γ combined the lateral pressure and a term that compensates the C2

ind term in the Helfrich energy. A
crowding induced membrane tension was also described by Linden et al., who discussed the interplay between the induced
membrane tension and the opening and closing of protein channels [1]. The contribution from γ depends solely on the
protein density ρ, but not on the membrane shape. Hence, γAc/πκ does not influence the energy minimizing shape since
the size of the crowded domain, Ac, is fixed. In contrast, the overall membrane area A is not constrained, which means
that σ̃ cannot be neglected in the energy minimization.
If the protein size is much smaller than the size of the crowded domain, rp �

√
Ac, we can omit all terms of order r2p/Ac

in Eq. S15, which simplifies the energy to

E

πκ
=

∫ ∞
0

dsr
[
(c1 + c2 − 2

√
AcCindΘ(Ac −A))2 + 2σ̃

]
+
γAc

πκ
, (S17)

with Cind =
rp
2κ

(
ρ
dp

dρ
− p
)

and γ = 2p(ρ)− 4κC2
ind(ρ).

We note that Eq. S17 is equivalent to Eq. 2 in the main text.

Shape Equations

In the previous section, we have shown that the membrane energy in non-dimensional variables is written as:

E

πκ
=

∫ ∞
0

dsr

[
(ψ′ +

sinψ

r
− 2cind)2 + 2σ̃

]
+ const., (S18)

with cind =
√
AcCindΘ(Ac − A). The derivative with respect to s is indicated by a prime, d/ds = ()′. We use the

Euler-Lagrange formalism to derive the shape equations that minimize Eq. S18. L, a function similar to the Lagrangian
in the Euler-Lagrange formalism, is given by

L = r

[
(ψ′ +

sinψ

r
− 2cind)2 + 2σ̃

]
+ λ1(r′ − cosψ) + λ22πrΘ(1− a), (S19)
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with the Lagrange multiplier function λ1 enforcing the relation between r and ψ. The Lagrange multiplier λ2 maintains
a fixed area of the crowded domain.
Based on d

ds
∂L
∂ψ′ = ∂L

∂ψ , we find

h′ =
λ1
4r

sinψ, with h =
1

2

(
ψ′ +

sinψ

r

)
− cind. (S20)

And d
ds

∂L
∂r′ = ∂L

∂r leads to

λ′1 = (ψ′ − 2cind)
2 −

(
sinψ

r

)2

+ 2σ̃ + 2πλ2Θ(1− a). (S21)

We define H in analogy to a Hamiltonian, with

H = −L+ ψ′
∂L
∂ψ′

+ r′
∂L
∂r′

(S22a)

= r

(
(ψ′)

2 −
(

sinψ

r
− 2cind

)2
)
− 2σ̃r + λ1 cosψ − λ22πrΘ(1− a). (S22b)

We note that H is not an energy, but rather an auxiliary function that we use to derive the shape equations. The explicit
and implicit dependence of H and L on the scaled arc length s are related as dH/ds = −∂L/∂s. Since L does not depend
on s explicitly, H is constant. The upper integration boundary in Eq. S18 is not fixed. The functional variation of L
then leads to H = 0 [2, 3, 4, 5, 6]. Eq. S22 is now written as

2σ̃ + λ22πΘ(1− a) = (ψ′)
2 −

(
sinψ

r
− 2cind

)2

+ λ1
cosψ

r
. (S23)

Inserting Eq. S23 into Eq. S21 we find

λ′1 = 2

(
ψ′ +

sinψ

r
− 2cind

)(
ψ′ − sinψ

r

)
+
λ1
r

cosψ. (S24)

Next, we define the auxiliary function u := λ1/(2r), so that

u′ =
ψ′ + sinψ

r − 2cind

r

(
ψ′ − sinψ

r

)
=

4h

r

(
h− sinψ

r
+ cind

)
. (S25)

Eq. S20 and S25, together with the geometric relations between r, z, ψ, and a, lead to the shape equations (Eqs. 7 in
the main text):

dr

ds
= cosψ, (S26a)

dz

ds
= − sinψ, (S26b)

dψ

ds
= 2h− sinψ

r
+ 2cind, (S26c)

dh

ds
=
u

2
sinψ, (S26d)

du

ds
=

4h

r

[
h− sinψ

r
+ cind

]
, (S26e)

da

ds
= 2πr. (S26f)

Boundary Conditions and Numerical Implementation

The boundary conditions of the membrane shape at the center line (Eq. 8 in the main text) are given by r = 0, a = 0
and ψ = 0. At the outer boundary, in the protein-free region (cind = 0), the membrane transitions to a flat shape with
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ψ(s→∞) = 0 and a vanishing mean curvature (h(s→∞) = 0). Hence, H as given in Eq. S22, at the outer boundary
simplifies to

H(s→∞) = 2r(u− σ̃), (S27)

which leads to the boundary condition for u, with u(s→∞) = σ̃ = σAc/κ.
Since Eq. S26 has a singularity for r = 0, we have to shift the inner boundary from s = 0 to s = τ in the numerical

calculations, where we set τ = 0.0001. We denote the scaled mean curvature at the center line as 2c0. According to
ψ(τ) =

∫ τ
0
ψ′ds ≈

∫ τ
0
c0ds, we obtain the new boundary condition ψ(τ) ≈ c0τ . Analogously, from r′ = cosψ ≈ 1− ψ2/2

and a′ = 2πr we find the new boundary conditions r(τ) ≈ τ and a(τ) ≈ πτ2. In addition, we denote the value of u at
s = τ as u0. Evaluating H (Eq. S22) at s = τ , we find the following relation between u0 and the Langrange multiplier λ2:
u0 = λ2π+σ+2c2ind−2c0cind. In summary, we obtain the following boundary conditions for the numerical calculations:

r(τ) = τ, (S28a)

z(send) = 0, (S28b)

ψ(τ) = c0τ, ψ(send) = 0, (S28c)

h(τ) = c0 − cind, (S28d)

u(τ) = u0, u(send) =
σAc

κ
, (S28e)

a(τ) = πτ2, (S28f)

with send the total arc length, which we set to values between send = 2.0 and send = 6.0, while ensuring that a change
in send has no influence on the shape of the protein crowded domain.

In the numerical implementation, we set c0 to a fixed value and vary u0 such that the outer boundary condition
ψ(send) = 0 is satisfied. From u(send) = σAc/κ, we then obtain the scaled membrane tension that corresponds to c0.
Subsequently, from a systematic variation of c0 and u0 we determine the solution of the shape equation for any given
value of the scaled membrane tension.

Transmembrane Pressure

Above, we derived the shape equations for a protrusion budding from an infinite flat membrane. We now turn to a
protrusion budding from a spherical vesicle and discuss the limit where the two models are equivalent. In particular, the
following derivation shows that the transmembrane pressure does not influence the shape equations in the limit of large
vesicles.
The energy of a closed membrane shape reads:

E = 2π

∫ Send

0

dSR

[
κ

2

(
dψ

dS
+

sinψ

R

)2

+ σ −Π
R

2
sinψ

]
+ 2π

∫ Send

0

dS∗R∗p(ρ∗)Θ(Ac −A), (S29)

which is similar to Eq. S13, but we here consider the transmembrane pressure Π and the integration does not extend to
infinity. The upper integration limit Send (see Fig. S1) itself depends on the membrane shape. In dimensionless units
the energy becomes:

E

πκ
=

∫ send

0

dsr

[
(ψ′ +

sinψ

r
− 2cind)2 + 2σ̃ − Π̃r sinψ

]
+ const., (S30)

with Π̃ = ΠA
3/2
c /κ. The corresponding L and H then read:

L = r

[
(ψ′ +

sinψ

r
− 2cind)2 + 2σ̃ − Π̃r sinψ

]
+ λ1(r′ − cosψ) + λ22πrΘ(1− a), (S31)

H = −L+ ψ′
∂L
∂ψ′

+ r′
∂L
∂r′

(S32a)

= r

(
(ψ′)

2 −
(

sinψ

r
− 2cind

)2
)
− 2σ̃r + Π̃r2 sinψ + λ1 cosψ − λ22πrΘ(1− a). (S32b)
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Following the same arguments as in the derivation of Eq. S26, we find H(s) = 0. Based on the Euler-Lagrange equations(
d
ds

∂L
∂ψ′ = ∂L

∂ψ ,
d
ds

∂L
∂r′ = ∂L

∂r

)
we find the following shape equations:

dr

ds
= cosψ, (S33a)

dz

ds
= − sinψ, (S33b)

dψ

ds
= 2h− sinψ

r
+ 2cind, (S33c)

dh

ds
=
u

2
sinψ − Π̃

4
r cosψ, (S33d)

du

ds
=

4h

r

[
h− sinψ

r
+ cind

]
− Π̃

2
sinψ, (S33e)

da

ds
= 2πr. (S33f)

Far away from the budding region, the membrane shape transitions into a spherical shape with radius Rv (Fig. S1),

which implies ψ′ = sinψ/r = 1/rv, with rv = RvA
−1/2
c the scaled curvature radius of the vesicle. Hence, the mean

curvature h far away from the budding region is constant, which according to Eq. S33d means u = Π̃/2[sinψ/r]−1 cosψ.
Inserting these relations into Eq. S32, we find

Π̃ =
2σ̃

rv
. (S34)

If the protein crowded region is much smaller than the overall vesicle size (rv � 1), the scaled transmembrane pressure
(Eq. S34) becomes negligible and Eqs. S33 are equivalent to Eqs. S26.

Z

R

S

Send

RV

Figure S1: The protein crowded domain (blue) protrudes from an initially spherical vesicle (red). Far away from the crowded domain the
membrane shape transitions into a spherical shape with a curvature radius Rv.
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