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ABSTRACT Coronaviruses have caused multiple epidemics in the past two decades, in addition to the current COVID-19
pandemic that is severely damaging global health and the economy. Coronaviruses employ between 20 and 30 proteins to
carry out their viral replication cycle, including infection, immune evasion, and replication. Among these, nonstructural pro-
tein 16 (Nsp16), a 20-O-methyltransferase, plays an essential role in immune evasion. Nsp16 achieves this by mimicking its
human homolog, CMTr1, which methylates mRNA to enhance translation efficiency and distinguish self from other. Unlike
human CMTr1, Nsp16 requires a binding partner, Nsp10, to activate its enzymatic activity. The requirement of this binding
partner presents two questions that we investigate in this manuscript. First, how does Nsp10 activate Nsp16? Although
experimentally derived structures of the active Nsp16/Nsp10 complex exist, structures of inactive, monomeric Nsp16
have yet to be solved. Therefore, it is unclear how Nsp10 activates Nsp16. Using over 1 ms of molecular dynamics simu-
lations of both Nsp16 and its complex with Nsp10, we investigate how the presence of Nsp10 shifts Nsp16’s conformational
ensemble to activate it. Second, guided by this activation mechanism and Markov state models, we investigate whether
Nsp16 adopts inactive structures with cryptic pockets that, if targeted with a small molecule, could inhibit Nsp16 by stabiliz-
ing its inactive state. After identifying such a pocket in SARS-CoV2 Nsp16, we show that this cryptic pocket also opens in
SARS-CoV1 and MERS but not in human CMTr1. Therefore, it may be possible to develop pan-coronavirus antivirals that
target this cryptic pocket.
SIGNIFICANCE Coronaviruses are a major threat to human health. These viruses employ molecular machines, called
proteins, to infect host cells and replicate. Characterizing the structure and dynamics of these proteins could provide a
basis for designing small-molecule antivirals. In this work, we use computer simulations to understand the moving parts of
an essential SARS-CoV2 protein, understand how a binding partner turns it on and off, and identify a novel pocket that
antivirals could target to shut this protein off. The pocket is also present in other coronaviruses but not in the related human
protein, so it could be a valuable target for pan-coronavirus antivirals.
INTRODUCTION

With the coronavirus disease 2019 (COVID-19) pandemic
ravaging communities across the globe, there is a massive
ongoing effort to understand the molecular machinery of
coronaviruses, which may provide insight into therapeutic
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opportunities (1–3). The severe acute respiratory syndrome
coronavirus 2 (SARS-CoV2) virus responsible for COVID-
19 has infected over 60 million and killed over 1.5 million
people globally to date (4). Additionally, coronaviruses
have caused several past epidemics, including severe acute
respiratory syndrome (SARS) and Middle East respiratory
syndrome (MERS) which had fatality rates of �10 and
�34%, respectively (5,6). Therefore, there is likely to be
evolution and outbreaks of additional zoonotic coronavi-
ruses in the future (7). Although vaccine trials for
COVID-19 are successfully wrapping up, there are still no
approved antivirals that reduce mortality to coronavirus
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infections (8–10). Taken together, there is strong incentive
to understand the fundamental mechanisms of how these co-
ronaviruses operate in hopes of discovering effective thera-
peutics. Biophysical studies can provide these details, and a
tremendous amount of biophysical work has already been
done to understand the virus’ 29 proteins. So far, the spike
protein, positioned on the outside of the viral envelope,
has proven to be a good vaccine candidate (11). Beyond
the spike, the 16 ‘‘nonstructural’’ (i.e., accessory) proteins
carry out the majority of the virus’ essential processes, mak-
ing them good targets for antiviral therapeutics (12,13).

Among the nonstructural proteins (Nsps), Nsp16 is partic-
ularly important to the viral replication cycle because it is
essential to coronavirus’ immune evasion (14–16). Nsp16
is a 20-O-methyltransferase (20-O-MTase) that forms part of
the replication-transcription complex (17). It mimics the hu-
man proteinCap-specificmRNA (nucleoside-20-O-)-methyl-
transferase (CMTr1) to perform a crucial step in capping
transcribed mRNA (18). Specifically, Nsp16 facilitates the
transfer of a methyl group from its S-adenosylmethionine
(SAM) cofactor to the 20 hydroxyl of ribose sugar of viral
mRNA (18,19). This methylation both improves translation
efficiency and camouflages the mRNA so that it is not recog-
nized by intracellular pathogen recognition receptors such as
IFIT and RIG-I (15,20). Importantly, inhibiting or knocking
out 20-O-MTase activity severely attenuates viral replication
and infectivity of coronaviruses (13,20). Thus, developing
small-molecule inhibitors of Nsp16 is a promising therapeu-
tic strategy.

Interestingly, whereas all other 20-O-MTases (eukaryotic
and viral) are active as monomers, Nsp16 requires a binding
partner, Nsp10, to be active (16–18,21–23). In fact, Nsp16
FIGURE 1 Substrate-binding pockets and Nsp10 binding interface of Nsp16 o

(A) Surface representation of Nsp16 showing the SAM-binding pocket (cyan), RN

lay of Nsp16 structures from structures of the Nsp16/Nsp10 complex with RNA (

showing structural heterogeneity in the RNA binding site. Gate loop 1 and gate l

SAM-binding loop 2 (SAMBL2) lining the SAM-binding pocket are highlighte
does not even bind its ligands (SAM and RNA) in the
absence of Nsp10. In the experimentally derived structures
of the Nsp16/Nsp10 complex, Nsp10 does not form any
direct interaction with either ligand (Fig. 1 A), suggesting
that Nsp10 may allosterically regulate Nsp16 to enable sub-
strate binding (18,19,24–27). Given that there is significant
structural variation in the RNA-binding loops of different
crystal structures of Nsp16 (Fig. 1 B) and structures of
monomeric Nsp16 have not been solved, we hypothesized
that Nsp16 is highly dynamic in solution, and Nsp10 acts
by stabilizing the active state. In contrast, we anticipate
that human CMTr1 would be less dynamic because it does
not require a binding partner for substrate binding and has
been crystalized in its monomeric state. Often, dynamics
of proteins reveal allosteric pockets that remain hidden in
their crystal structures (i.e., cryptic pockets). If monomeric
Nsp16 is more dynamic than CMTr1, it may adopt inactive
configurations that reveal allosteric cryptic pockets that can
be targeted by small-molecule inhibitors for its selective
inhibition.

Here, we use computer simulations to understand the acti-
vation mechanism of Nsp16 and identify cryptic pockets
that may be valuable antiviral targets. Active site inhibitors,
such as sinefungin, have been shown to outcompete SAM
binding and render Nsp16 catalytically inactive (28,29).
However, there are more than 200 human proteins with
known or putative methyltransferase activity that use
SAM as a cofactor (30). Therefore, it may be difficult to
design antivirals that target the SAM (or RNA) binding sites
of Nsp16 without eliciting off-target effects by also binding
human methyltransferases. For example, sinefungin has
been shown to occupy the SAM-binding pocket of human
bserved in the crystal structure of the Nsp16/Nsp10 complex (PDB: 6wks).

A-binding pocket (yellow), and Nsp10-binding interface (green). (B) Over-

PDB: 6wks, shown in gray) and without RNA (PDB: 6w4h, shown in cyan),

oop 2 of the RNA-binding pocket, and SAM-binding loop 1 (SAMBL1) and

d. To see this figure in color, go online.
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N7 methyltransferase in a crystal structure (Protein Data
Bank, PDB: 3epp). Targeting the Nsp16/Nsp10 interface
could be an alternative means to selectively inhibit Nsp16
because CMTr1 lacks a homologous binding partner. To-
ward this, peptide-based inhibitors that mimic Nsp10 to
compete for interactions at the Nsp10/Nsp16 interface
have been shown to inhibit Nsp16 activity (31,32). Although
this approach seems promising, peptide-based inhibitors
face challenges, including limited stability and shelf-life,
the possibility of adverse immunogenic responses, and the
high cost of production (33). To expand the therapeutic op-
portunities, we search for other ways to inactivate Nsp16.
First, we compare the structure and dynamics of SARS-
CoV-2 Nsp16 in the presence and absence of Nsp10 to un-
derstand Nsp16’s activation. Specifically, we use over
1 ms of molecular dynamics simulation data (2) to charac-
terize how Nsp10 binding shifts Nsp16’s conformational
ensemble to activate Nsp16. After showing that the resulting
model is consistent with a variety of experimental observa-
tions, we use it to hunt for cryptic pockets that may provide
a means to inhibit Nsp16. Finally, we extend our simulations
to SARS-CoV-1, MERS, and human CMTr1 to determine
whether targeting such a pocket could provide an opportu-
nity to develop pan-coronavirus antivirals.
METHODS

System preparation

The systems were prepared starting from crystal structures for PDB: 6w4h,

3r24, 5ynf, and 4n49, for SARS-CoV-2, SARS-CoV-1, MERS, and CMTr1,

respectively. All ligands, solutes, and water molecules from the crystal

structures were removed. For monomeric Nsp16 simulations, Nsp10 was

also removed. In the coronavirus homologs, two zinc ions were retained,

and the coordinating residues were modified accordingly (CYS- > CYM

and HIS- > HID). Missing residues in the crystal structure of CMTr1

were modeled using the Modeler package (34). All systems were solvated

in TIP3P water (35) in a rhombic dodecahedral box with periodic boundary

conditions and Naþ and Cl� ions added to neutralize the system. Systems

were then energy minimized with a steepest descent algorithm until the

maximal force fell below 100 kJ/mol/nm using a step size of 0.01 nm

and a cutoff distance of 1.2 nm for the neighbor list, Coulomb interactions,

and van der Waals interactions.

Systems were equilibrated for 1.0 ns in NPT simulations, with all bonds

constrained using the LINCS algorithm (36), and virtual sites were used to

allow a 4 fs time step. Cutoffs of 1.1 nm were used for the neighbor list with

0.9 for Coulomb and van der Waals interactions. The particle-mesh Ewald

method (37) was employed for treatment of long-range interactions with a

Fourier spacing of 0.12 nm. The Verlet cutoff scheme was used for the

neighbor list. Berendsen barostat was used to control the pressure during

the equilibration (38). The stochastic velocity rescaling (v-rescale) thermo-

stat was used to control the temperature at 300 K (39).
Adaptive sampling simulations

The FASTalgorithm (40,41) was employed for all four homologs for a total

of five FAST simulations (SARS-CoV-2 FAST simulations were performed

on both monomeric Nsp16 and the Nsp10/Nsp16 complex). FASTwas used

here to generally enhance conformational sampling and also to quickly

explore cryptic pockets. The procedure for FAST simulations is as follows: 1)
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run initial simulations, 2) build a Markov state model (MSM), 3) rank states

based on FASTranking, 4) restart simulations from the top-ranked states, and

5) repeat steps 2–4 until ranking is optimized. For each system, MSMs were

generated after each round of sampling using a k-centers clustering algo-

rithm based on the root mean-squared deviation (RMSD) between select

atoms.Clustering continued until themaximal distance of a frame to a cluster

center fell within a predefined cutoff. In addition to the FAST ranking, a sim-

ilarity penalty was added to promote conformational diversity in starting

structures, as has been described previously (42).

For SARS-CoV-2 monomeric Nsp16 and Nsp16/Nsp10, the simulation

data were generated in a previous manuscript published by our group.

Briefly, FAST-pocket simulations were run at 300 K for six rounds, with

10 simulations per round, in which each simulation was 40 ns in length

(2.4 ms aggregate simulation for each system). The FAST-pocket ranking

function favored restarting simulations from states with large pocket open-

ings. Pocket volumes were calculated using the LIGSITE algorithm (43).

From these simulations, a conformationally diverse set of structures was

selected to be run on Folding@home, based on the k-centers clustering al-

gorithm mentioned above. A total of 283 and 770 ms of aggregate simula-

tion time was collected for the Nsp10/Nsp16 complex and monomeric

Nsp16, respectively.

FAST-distance simulations were used for SARS-CoV-1 Nsp16, MERS

Nsp16, and CMTr1 to sample the b3–b4 pocket identified from SARS-

CoV-2 simulations. FAST-distance simulations were run at 300 K for 15

rounds, with 10 simulations per round, in which each simulation was

40 ns in length (6.0 ms aggregate simulation for each system). The FAST-

distance ranking favored stated with greater distances between the a-car-

bons of b3 and b4.
DiffNets

We used DiffNets, a deep learning-based dimensionality reduction algo-

rithm developed by our group, to highlight biochemically relevant differ-

ences between data sets (44). We trained a DiffNet to compare and

contrast structure ensembles of monomeric Nsp16 and the Nsp16/Nsp10

complex to find features that discriminate them, highlighting the structural

determinants of Nsp16 activation. First, we subsampled the data by a factor

of 25 and 68 for the Nsp16/Nsp10 complex and monomeric Nsp16 data,

respectively, to have an equal amount of data. We then converted simulation

data to DiffNet input, following the data normalization procedure from the

original manuscript. Briefly, XYZ atom coordinates from simulations were

mean-shifted to zero and then multiplied by the inverse of the square root

of a covariance matrix that was calculated from simulations. For all DiffNet

training and analysis, we used a split architecture (as described previously),

in which the classification task was focused on all atoms within 1 nm of

SAM or RNA cap based on the 6wks crystal structure. This atom selection

was chosen to guide DiffNets to find differences in the active site region of

Nsp16, which is inherently linked to its activation. For training, simulation

frames are classified as ‘‘Nsp16 inactive’’ or ‘‘Nsp16 active,’’ based on

initial classification labels of 0 (i.e., Nsp16 inactive) for all monomeric

Nsp16 frames and labels of 1 (i.e., Nsp16 active) for all frames from the

Nsp10/Nsp16 complex. These labels were iteratively updated in a self-su-

pervised manner described in the original manuscript, in which we choose

expectation maximization bounds of [0.1–0.4] for monomeric Nsp16 and

[0.6–0.9] for the Nsp10/Nsp16 complex. This allows for more coherent

classification labels because monomeric Nsp16 may sometimes adopt struc-

tural poses associated with Nsp16 activation and vice versa for the Nsp10–

Nsp16 complex. Additionally, we used 30 latent variables, 10 training

epochs in which we subsampled the data by a factor of 10 in each epoch,

a batch size of 32, and a learning rate of 0.0001.

To analyze the DiffNet output, we calculated 10 representative structures

that span from ‘‘Nsp16 inactive’’ states to ‘‘Nsp16 active’’ states (i.e., struc-

tures with classification labels spanning 0–1). After training, the DiffNet

learns a low-dimensional representation of each simulation frame (i.e., a

latent vector) and outputs a classification label for every simulation frame.
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We binned the structures into 10 equally spaced bins based on their classi-

fication labels, which span from 0 to 1. We then calculated the mean latent

vector for each bin and used the DiffNet to reconstruct a structure based on

each latent vector. These structures were used as representative structures

for each bin. All training and analysis were performed using the open-

source package https://github.com/bowman-lab/diffnets.
Markov state models

An MSM is a statistical framework for analyzing molecular dynamics sim-

ulations that provides a network representation of a free-energy landscape

(45–47). To quantify cryptic pocket opening across the homologs and

changes between monomeric Nsp16 and the Nsp10/Nsp16 complex, we

performed several measurements that rely on MSMs that are built based

on the simulation data. We built a separate MSM for each system, using

all simulation data available for that system. All MSMs were constructed

with the Enspara python package (48). First, the solvent-accessible surface

area (SASA) of each residue side chain was calculated using the Shrake-

Rupley algorithm (49) implemented in MDTraj (50) using a drug-sized

probe (2.8 A sphere).

We then clustered the data using a hybrid clustering algorithm. First, we

used a k-centers algorithm (51,52) to cluster the data. Next, we applied

sweeps of k-medoids update steps (three for SARS-CoV-2 data, two for

other homologs) that refined the cluster centers to be in the densest regions

of conformational space (53). We clustered the simulation data based on the

residue-level SASA. For SARS-CoV-2 Nsp16 and Nsp10/Nsp16 complex

for which we had massive data sets from Folding@home (283 and 770

ms), we used 5000 cluster centers. For SARS-CoV-1 Nsp16, MERS

Nsp16, and human CMTr1 (6 ms of FAST-adaptive sampling data per sys-

tem), we used 1500 cluster centers. We validated that these produced

Markovian models by plotting the implied timescales, from which we chose

a lag time of 5 ns (see Fig. S1). To further ensure robustness of the MSMs,

we also built models based on alternative clusterings and confirmed that

they gave similar results. Specifically, for SARS-CoV-2 Nsp16 and

Nsp10/Nsp16 complex, we built MSMs using 1) 5.2 nm2 cluster-radius cut-

off and 2) 5.5 nm2 cluster radius. For SARS-CoV-1 Nsp16, MERS Nsp16,

and human CMTr1, we built MSMs using 1) 4.0 nm2 cluster radius and 2)

4.5 nm2 cluster radius. All MSMs were Markovian (see Fig. S1). Moreover,

we used these MSMs to recreate the distributions in Figs. 2, 3, and 4 and we

find that the results are robust across all MSMs (see Figs. S2–S4). A Mar-

kov time of 5 ns was selected based on the implied timescales to build an

MSM for each homolog. To build the MSMs, transition probability matrices

were produced by counting transitions between states (i.e., clusters), adding

a prior count of 1
Nstates

and row normalizing, as is described previously (54).

Equilibrium populations were calculated as the eigenvector of the transition

probability matrix with an eigenvalue of one. For all histograms shown, we

calculated the order parameter of distance (e.g., distance between b3 and

b4) using cluster centers (i.e., representative structure of the cluster) and

weighted the order parameter by the corresponding equilibrium population

calculated with the MSM. We also resampled the equilibrium populations

100 times by bootstrapping the MSM, which provided error bars for

computing the fraction of SAM- and RNA-compatible states adopted by

monomeric Nsp16 and the Nsp16/10 complex.
Distance and SASA calculations

Figs. 2, 3, and 4 include distance and SASA measurements that are ex-

plained in more detail here. In Fig. 2 we measure the distance between

gate loop 1 and gate loop 2 as the distance between Gln28 and Lys141

because these residues are known to undergo significant changes for

RNA binding. We measure the distance between SAM-binding loop 2

and gate loop 2 as the average distance between (Met131, Tyr132,

Asp133, Pro134) and (Asp99, Leu100, Asn101, Asp102) because these

are key residues that cradle SAM in the bound state. All SASA measure-
ments are performed using Ala79, Thr82, Ala83, Leu86, Thr93, Leu94,

Leu95, Val96, Asp97, Ala98, and Asp99 because these are the main com-

ponents that gets exposed during cryptic pocket opening.
Cryptic pocket detection

Cryptic pockets in SARS-CoV-2 Nsp16 were identified using our previ-

ously established approach, called Exposons analysis (55). This analysis

was performed using the cluster centers and the equilibrium probabilities

derived from the MSMs built on the residue-level SASA described above.

The center of each cluster was taken as an exemplar of that conformational

state, and residues were classified as exposed if their SASA exceeded 2.0 A2

and buried otherwise. The mutual information between the exposure/burial

of each residue-pair was calculated based on the MSM by treating the

SASA values in the cluster centers as samples and weighting them by the

equilibrium probability of the representative state. The mutual information

was computed using the following equation:

MIðX; YÞ ¼
X
x˛X

X
y˛Y

pðx; yÞlog
�

pðx; yÞ
pðxÞpðyÞ

�
:

Finally, cryptic pockets (Exposons) were identified as groups of residues

undergoing cooperative change in SASA by clustering the matrix of pair-

wise mutual information using affinity propagation.

The b3–b4 cryptic pocket identified in SARS-CoV-2 Nsp16 consists of

residues Ala79, Thr82, Ala83, Leu86, Thr93, Leu94, Leu95, Val96,

Asp97, Ala98, and Asp99. Total SASA of these residues/homologous res-

idues was measured for detecting cryptic pocket opening in all homologs

of Nsp16 (SARS-CoV-2, SARS-CoV-1, and MERS). For measuring equiv-

alent cryptic pocket in CMTR1, total SASA of structurally homologous res-

idues (Gly141, Ser144, Glu145, Val148, Ala155, Lys156, Gly157, His158,

Gly159, Met160, and Thr161) was calculated.
Sequence conservation

Protein sequences of Nsp16 from SARS-CoV-2 (YP_009725311.1), SARS-

CoV-1 (UniProt: P0C6X7), MERS (UniProt: K0BWD0), NL63 (GenBank:

AFD64750.1), HKU1 (NCBI Reference Sequence: YP_460023.1), Turkey

coronavirus (CoV) (NCBI Reference Sequence: YP_001941189.1), Bat

CoV (NCBI Reference Sequence: YP_008439226.1), and murine hepatitis

virus (NCBI Reference Sequence: YP_209243.1) were used for multiple

sequence alignment. Sequence alignment was performed on the Clustal

Omega server (56). Sequence alignment was visualized, and the sequence

conservation score was generated using Jalview 2 software (57).

For sequence comparison of SARS-CoV-2, SARS-CoV-1, MERS, and

human CMTr1, shown in Fig. 4, structure-based sequence alignment was

performed using UCSF Chimera package (58). For the structure-based

sequence alignment, we first aligned the structures of these homologs

PDB: 6wks (SARS-CoV-2), PDB: 3r24 (SARS-CoV-1), PDB: 5ynf

(MERS), and PDB: 4n49 (CMTr1). The sequences were then aligned based

on the structural alignment of the backbone atoms.
RESULTS AND DISCUSSION

Nsp10 promotes opening of Nsp16’s SAM- and
RNA-binding pockets

Although experimental studies have demonstrated that
Nsp16 requires Nsp10 to be functionally active, the struc-
tural determinants of Nsp16’s activation remain unknown
(17,18,23). Chen et al. proposed that Nsp10’s stimulatory
effects are rooted in its ability to assist Nsp16 in binding
Biophysical Journal 120, 2880–2889, July 20, 2021 2883
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FIGURE 2 Nsp10 binding shifts Nsp16’s conformational ensemble, increasing its propensity to adopt structural states that are ligand binding compatible.

(A) 10 structures of Nsp16 that represent the DiffNet prediction changing from inactive to active (white to purple). The DiffNet output label scales from 0 to 1

(white to purple) reflecting the extent the DiffNet predicts a structure to be associated with Nsp16 activation. (B) Comparison of the DiffNet-predicted active

and inactive states (purple plus white, respectively) to the starting simulation state (yellow), a known SAM- and RNA-bound structural state (orange), and a

known SAM- (but not RNA-) bound state (teal). All structures are aligned to 6wks (orange). (C) Probability-weighted distance distribution between RNA-

binding gate loops 1 and 2, comparing monomeric Nsp16 (black) to the Nsp10-Nsp16 complex (gray). (D) Probability-weighted distance distribution be-

tween SAM-binding loop 2 and gate loop 2, comparing monomeric Nsp16 (black) to the Nsp10-Nsp16 complex (gray). For (C) and (D), the distance for

a SAM- and RNA-bound crystal structure is also plotted (red dotted line). To see this figure in color, go online.
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SAM and RNA, which is supported by data showing that
Nsp16 alone cannot bind SAM or RNA (18). They also pro-
pose that Nsp10 manages this by stabilizing or changing the
conformation of the SAM-binding pocket based on the fact
that Nsp10 contacts SAM-binding loops in their crystal
structure (and numerous other structures). However, without
assessing the Nsp10-Nsp16 complex’s dynamics and
comparing it to monomeric Nsp16, this hypothesis is left
wanting. It has also been proposed that Nsp10 assists in
RNA binding by directly contacting RNA (59). However,
a recent crystal structure with RNA bound (PDB: 7jyy) con-
tains a stretch of nucleotides long enough to contact Nsp10,
but the RNA curls off into solution instead of interacting
with Nsp10. Another recent study compared an RNA- and
SAM-bound Nsp10/16 complex structure to one with only
SAM bound and found a major opening of RNA-binding
2884 Biophysical Journal 120, 2880–2889, July 20, 2021
gate loops, suggesting that the dynamics of these loops
might be important for Nsp16 activation (25). However, it
is not clear whether Nsp10 plays a role in those dynamics.
Altogether, there is strong evidence that Nsp10 modulates
Nsp16’s structure and dynamics to assist it in binding
SAM and RNA, but the mechanism of these structural
changes is unclear.

To explore how Nsp10 activates Nsp16, we analyzed sim-
ulations of Nsp16 in the presence and absence of Nsp10 us-
ing DiffNets. Recently, our group combined the sampling
powers of the FAST-pockets adaptive sampling algorithm
(40) and the computational resources of Folding@home to
accumulate more than 1 ms of simulation data between sim-
ulations of monomeric Nsp16 and the Nsp16/Nsp10 com-
plex (see Methods; (2)). Here, we compare these
simulations using a deep-learning-based dimensionality



FIGURE 3 Cryptic pocket opening in SARS-CoV-2 Nsp16. (A) Structural states with the cryptic pocket closed and open. The insets show surface views of

the closed and open pocket. Residues exposed upon pocket opening are shown in cyan, and the regions undergoing the opening motion are shown in blue.

Collapse of the SAM-binding pocket is measured as the distance between SAMBL2 and gate loop 2, shown in yellow. (B) Equilibrium probability-weighted

two-dimensional histograms of solvent-accessible surface area (SASA) of pocket residues (shown in cyan in (A)) and the distance between SAMBL2 and gate

loop 2 in Nsp16 for monomeric Nsp16 (upper panel) and the Nsp16/Nsp10 complex (lower panel). The black dotted line separates the pocket closed and open

states in Nsp16. The Equilibrium probability-weighted distribution scales from 0 to 0.11 (blue to red) for Nsp16 monomer, and from 0 to 0.26 (blue to red) for

Nsp16/Nsp10 complex. To see this figure in color, go online.

Nsp16 activation and cryptic pocket
reduction algorithm called DiffNets (44). DiffNets has been
shown to accurately capture the structural determinants of
biochemical differences between protein variants. Although
we are not considering protein variants, our problem is
similar because Nsp16 has different biochemical properties
when in the presence/absence of Nsp10 (i.e., active/inac-
tive). Therefore, we trained a DiffNet to learn the structural
determinants of Nsp16 activation by learning differences
between Nsp16’s ensemble when in the presence and
absence of Nsp10. For each simulation frame, the DiffNet
learns a low-dimensional projection of the protein structure
and classifies the structure with a label between 0 and 1 that
indicates the likelihood that the structure is associated with
Nsp16 being active.

Analysis of the DiffNet suggests that Nsp10 shifts
Nsp16’s conformational ensemble to stabilize more open
SAM- and RNA-binding pockets. Using the DiffNet classi-
fication labels, we identified 10 structures that are represen-
tative of the progression from Nsp16 inactive states to active
states (see Methods; Fig. 2). We noticed that RNA gate loop
2 moves away from RNA gate loop 1, making for a more
open RNA-binding pocket in active states compared with
inactive states (Fig. 2 A). Additionally, the SAM-binding
pocket also opens up in the active states relative to the inac-
tive states. RNA-binding gate loop 2 and SAM-binding loop
2 move away from each other in the active state, which
widens the pocket, creating space for SAM. (Fig. 2 A). Strik-
ingly, the structure associated with the highest label (i.e.,
most strongly associated with Nsp16 activation) matches
well to a recently solved crystal structure that is bound to
both RNA and SAM (Fig. 2 B; (25)). Specifically, when
we align the predicted active structure to 6wks, then mea-
sure the RMSD of gate loop 2, we find a deviation on par
with the typical resolution of crystal structures (1.40 Å).
When we perform this calculation for the predicted inactive
structure, the RMSD is much higher (3.24 Å). The predicted
inactive structure adopts a more collapsed gate loop 2,
similar to known structures with being SAM but not RNA
bound (i.e., PDB: 6w4h and 7c2i; see Fig. 2 B; (26)). This
result implies that the DiffNet learned that Nsp10 activates
Nsp16, in part, by rearranging the RNA gate loop into an
RNA-binding-competent pose. Though it is known that
this RNA gate loop needs to open to bind RNA, this is the
first evidence, to our knowledge, to suggest that Nsp10
Biophysical Journal 120, 2880–2889, July 20, 2021 2885



FIGURE 4 Comparison of cryptic pocket opening in Nsp16 homologs and human CMTr1. (A) Equilibrium probability-weighted distribution of the solvent

exposure of pocket-forming residues for SARS-CoV-2 (black), SARS-CoV-1 (blue), MERS (red), and CMTr1 (cyan). Structures representing the open pocket

are shown for each homolog, with b3 colored in cyan and other pocket-forming residues from a3 colored in green. Black dotted line depicts SASA of pocket

residues in the crystal structure of Nsp16/Nsp10 complex (PDB: 6wks). (B) Structure-based sequence alignment of Nsp16 homologs (SARS-CoV-2, SARS-

CoV-1, and MERS) and human CMTr1 is shown for the cryptic pocket-forming regions. Residues of b3 are marked inside the black-colored box, and other

pocket-forming residues from a3 are marked by green-colored stars. To see this figure in color, go online.
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may activate Nsp16 through increasing its propensity to
form a more open RNA-binding pocket. Altogether, these
results suggest that Nsp10’s presence increases the propen-
sity for both SAM- and RNA-binding pockets to be open.

To quantify the effect of Nsp10 on the SAM- and RNA-
binding pockets, we built MSMs for both the complex and
monomeric Nsp16. MSMs are a statistical framework for
analyzing molecular dynamics simulation data that provide
(among other things) a discrete map of structural configura-
tions, an equilibrium population value that corresponds to
the proportion of time a protein spends in any given configu-
ration, and the probability of transitioning between any pair
of configurations (45).We constructedMSMs forNsp16 sim-
ulations both in the presence and absence of Nsp10.

Our MSMs reveal that Nsp10 binding stabilizes open
structures of both the SAM- and RNA-binding pockets that
are competent to bind their respective substrates. We first
2886 Biophysical Journal 120, 2880–2889, July 20, 2021
found that the presence of Nsp10 results in a substantial
reduction of flexibility in important binding components,
including both SAM-binding loops and RNA gate loops
(see Fig. S5). This result is somewhat surprising because
gate loop 2, which contacts both SAM and RNA, is not in
direct contact with Nsp10, suggesting strong allosteric
communication. Next, we calculated the distribution of dis-
tances for opening and closing of the SAM- and RNA-bind-
ing pockets (Fig. 2, C and D). From these histograms, it is
clear that both of these binding pockets have an increased
propensity to open when Nsp10 is present. We considered
pockets as SAM/RNA-binding competent when the distance
between loops in a pocket is at least as open as in the crystal
structure that binds both ligands (PDB: 6wks). From this
analysis, Nsp16 adopts binding-competent states with higher
probability when Nsp10 is present versus when Nsp10 is ab-
sent for both SAM (0.70 5 0.04 vs. 0.465 0.04) and RNA
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(0.485 0.04 vs. 0.275 0.03). Altogether, our data suggest
that Nsp10 aids SAM and RNA binding by preventing the
collapse of SAM- and RNA-binding gate loops. Our analysis
also provides structural snapshots ofwhat inactive states look
like, which may be useful in targeting Nsp16 with
therapeutics.
A cryptic pocket in Nsp16 is a potential
therapeutic target

A traditional approach to drug development involves mole-
cules designed to target binding cavities observed in singu-
lar structural snapshots of a protein, but this approach often
misses ‘‘cryptic’’ pockets that can form in proteins because
of thermal fluctuations. Often times, the active site of an
enzyme is targeted for drug development to design an inhib-
itor that can outcompete substrate binding. However, active
sites are often conserved among functional homologs. In the
case of Nsp16, its human homolog (CMTr1) shares the same
overall fold and binds the same substrates. Although there
are significant sequence and structural differences in the
active site, specificity may be more easily achieved by tar-
geting a less functionally relevant region of the protein.
Cryptic pockets can provide both a new target for drug
development and the potential to achieve specificity. For
example, cryptic pockets that remain closed and invisible
in the crystal structure but open in solution because of ther-
mal fluctuations (55) can present unique potential binding
sites due to differences in the dynamics of subsets of homo-
logs (e.g., open in coronavirus homologs, but closed in hu-
man CMTr1). Therefore, it may be easier to achieve
specificity by targeting a cryptic pocket. Importantly, the
cryptic pocket must communicate with functional sites to
be an effective therapeutic target. Here, we explore whether
Nsp16 contains any cryptic pockets that, when open, would
stabilize the inactive state identified with DiffNets.

To find cryptic pockets, we applied Exposons, an algo-
rithm (55) that identifies residues with cooperative changes
in solvent exposure, to Nsp16 simulation data. Using this
method, we found that residues in the b3-strand and a3-he-
lix transition between closed states and open states (i.e., low
to high solvent-accessible surface area) (Fig. 3 A). Specif-
ically, the b4-strand curls up to form an a-helical structure,
which results in surface exposure of b3 and residues from
a3 (Fig. 3 A). The opening motion of b4 shifts the adjacent
SAM-binding loop (SAMBL) 2 against gate loop 2 to
collapse the SAM-binding pocket in a closed conformation
(Fig. 3, A and B). This agrees with the DiffNet prediction
that the b4-strand moving away from b3 is associated
with inactivation (see Fig. S6). Furthermore, several resi-
dues forming this cryptic pocket directly contact Nsp10 in
crystal structures of the Nsp16/Nsp10 complex (see
Fig. S7). The b3–b4 pocket opening displaces these
Nsp10 binding residues, which could inhibit Nsp16’s asso-
ciation with Nsp10 (see Fig. S7). The Nsp16/Nsp10 binding
interface has also been targeted with peptide-based inhibitor
design (31,32). Although this flat surface may be amenable
to peptide inhibitors, it is a challenging target for small mol-
ecules. In contrast, the concave shape of the cryptic pocket
identified in this work presents a more viable target for
small-molecule inhibitors. Finally, we find that this open
pocket structure is commonly visited as part of monomeric
Nsp16’s conformational ensemble, as measured with MSM
equilibrium populations (Fig. 3 B). Taken together, we pro-
pose that targeting the b3–b4 pocket with a small molecule
could inhibit Nsp16’s activity by preventing SAM binding
or preventing association with Nsp10.
Conservation of the cryptic pocket in Nsp16
makes it a promising target for broad-spectrum
inhibitors

To explore the possibility of targeting the cryptic pocket for
broad-spectrum inhibition of coronaviruses, we evaluated
the conservation of cryptic pocket opening in Nsp16 homo-
logs. Ideally, a therapeutic developed to treat SARS-CoV-2
would also work against other coronaviruses, such as MERS
and SARS-CoV-1, and potential future outbreaks. Addition-
ally, the therapeutic target should be sufficiently dissimilar
from human CMTr1 such that it would not cause unwanted,
off-target effects. Although we identified a promising
cryptic pocket in SARS-CoV-2, we wanted to investigate
if this pocket is specific to SARS-CoV-2, or specific to co-
ronaviruses in general, or if it is common across homologs,
including CMTr1.

First, we analyze cryptic pocket conservation by
comparing sequence features and structural features based
on the native, folded state. We find that the b3–b4 pocket
residues are 100% conserved between SARS-CoV-2 and
SARS-CoV-1 (Fig. 4 B). Additionally, of the 11 residues
that form the pocket, there are only two nonconservative
mutations between SARS-CoV-2 and MERS. Based on the
sequence similarity, we expect that, if the cryptic pocket
forms in all homologs, it may be possible to develop
small-molecule therapeutics that targets all three. Further-
more, we find substantial sequence differences between
SARS-CoV-2 and CMTr1. 8 out of the 11 pocket residues
are nonconservative mutations relative to SARS-CoV-2.
Based on sequence differences alone, we reason that selec-
tive inhibition could be achieved even if the cryptic pocket is
adopted by CMTr1. Moreover, the sequences and structure
of SARS-CoV-2 Nsp16 and human CMTr1 are sufficiently
different in the b3–b4 pocket region that the human protein
may not even have the cryptic pocket (Fig. S8). Based on
these sequence and structural differences, combined with
the lack of requirement of a stabilizing binding partner,
we hypothesized that cryptic pocket opening is not likely
to be conserved in CMTr1.

To explore cryptic pocket opening across homologs, we
performed FAST-pocket simulations of monomeric Nsp16
Biophysical Journal 120, 2880–2889, July 20, 2021 2887
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for SARS-CoV-1 and MERS, as well as for human CMTr1.
We then built an MSM for each homolog and measured the
opening of the b3–b4 pocket by measuring the equilibrium-
weighted solvent exposure of the pocket residues we previ-
ously used to define the pocket (i.e., Fig. 3). In these simu-
lations, we find that the b3–b4 pocket opens with high
probability in both SARS-CoV-1 and MERS Nsp16
(Fig. 4). The timescales for transitioning between the open
and closed states of the pocket are given in Table S1.
Encouragingly, we find that the b3–b4 pocket has a substan-
tially lower probability of opening in CMTr1. Taken
together, features of the b3–b4 cryptic pocket in coronavirus
homologs of Nsp16 appear sufficiently similar to each other
and dissimilar to CMTr1 to make for a promising target for
pan-coronavirus inhibitors.
CONCLUSIONS

Our work provides mechanistic insight into how Nsp16 is
activated and reveals a new opportunity for inhibiting this
essential viral component that could provide a target for
pan-coronavirus antivirals. First, we elucidate the activa-
tion mechanism of Nsp16 by comparing its dynamics in
the presence and absence of its activator, Nsp10. Our re-
sults are consistent with previous experimental findings
that Nsp16 cannot bind its substrates SAM or RNA in
the absence of Nsp10 (18). We provide a structural ratio-
nale for this observation by elucidating the structural dy-
namics of Nsp16 in its monomeric state, which has
remained inaccessible to experimental studies, and
comparing it to the structural dynamics of the Nsp16/
Nsp10 complex. Here, we find that Nsp10 activates
Nsp16 by opening its SAM- and RNA-binding loops, al-
lowing them to accommodate their respective ligands.
Guided by this activation mechanism, we identify struc-
tural states of Nsp16 that are incompatible with substrate
binding and also contain potential drug binding sites. Spe-
cifically, we find a pocket formed between b3 and b4 of
Nsp16 that collapses the SAM-binding pocket when
open. The region of the pocket has an overlap with where
Nsp10 binds to Nsp16, so targeting this cryptic pocket
could inhibit both substrate (SAM) and Nsp10 binding.
Therefore, this cryptic site is a promising target for
small-molecule inhibitor development. Furthermore, we
find that this cryptic pocket is conserved in MERS and
SARS-CoV-1 Nsp16 but not in the human homolog
CMTr1, suggesting its potential for development of a
pan-coronavirus, broad-spectrum inhibitor that may be effi-
cacious against COVID-19 and yet unseen coronavirus
outbreaks.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2021.03.024.
2888 Biophysical Journal 120, 2880–2889, July 20, 2021
AUTHOR CONTRIBUTIONS

N.V., M.D.W., S.S., and G.R.B. designed the research. N.V., M.D.W.,

M.I.Z., B.N., J.H.B., and S.S. performed research. N.V., M.D.W., J.H.B.,

and G.R.B. wrote the manuscript.
ACKNOWLEDGMENTS

We are grateful to the citizen scientists who contribute to Folding@home by

running simulations on their personal computers. We are grateful to Cath-

erine Knoverek for her thoughtful feedback when editing initial drafts of the

writing.

This work was funded by National Science Foundation CAREER Award

MCB-1552471, National Science Foundation RAPID 58628, and National

Institutes of Health grants R01 GM124007 and RF1AG067194. G.R.B.

holds a Career Award at the Scientific Interface from the Burroughs Well-

come Fund and a Packard Fellowship for Science and Engineering from

The David & Lucile Packard Foundation.
REFERENCES

1. Zhou, P., X. L. Yang, ., Z. L. Shi. 2020. A pneumonia outbreak
associated with a new coronavirus of probable bat origin. Nature.
579:270–273.

2. Zimmerman, M. I., J. R. Porter,., G. R. Bowman. 2020. SARS-CoV-2
simulations go exascale to capture spike opening and reveal cryptic
pockets across the proteome. bioRxiv https://doi.org/10.1101/2020.
06.27.175430.

3. Wu, A., Y. Peng, ., T. Jiang. 2020. Genome composition and diver-
gence of the novel coronavirus (2019-nCoV) originating in China.
Cell Host Microbe. 27:325–328.

4. Johns Hopkins Coronavirus Resource Center. 2020. COVID-19 Map.
Johns Hopkins University & Medicine, https://coronavirus.jhu.edu/
map.html<span class¼"role">web.

5. Chan-Yeung, M., and R. H. Xu. 2003. SARS: epidemiology. Respirol-
ogy. 8 (Suppl ):S9–S14.

6. Zaki, A. M., S. van Boheemen, ., R. A. M. Fouchier. 2012. Isolation
of a novel coronavirus from a man with pneumonia in Saudi Arabia.
N. Engl. J. Med. 367:1814–1820.

7. Chan, J. F.-W., K. K.-W. To, ., K.-Y. Yuen. 2013. Interspecies trans-
mission and emergence of novel viruses: lessons from bats and birds.
Trends Microbiol. 21:544–555.

8. Belete, T. M. 2020. A review on Promising vaccine development prog-
ress for COVID-19 disease. Vacunas. 21:121–128.

9. Callaway, E. 2020. COVID vaccine excitement builds as Moderna re-
ports third positive result. Nature. 587:337–338.

10. Jackson, L. A., E. J. Anderson, ., J. H. Beigel; mRNA-1273 Study
Group. 2020. An mRNA vaccine against SARS-CoV-2 - preliminary
report. N. Engl. J. Med. 383:1920–1931.

11. Huang, Y., C. Yang, ., S.-W. Liu. 2020. Structural and functional
properties of SARS-CoV-2 spike protein: potential antivirus drug
development for COVID-19. Acta Pharmacol. Sin. 41:1141–1149.

12. da Silva, S. J. R., C. T. Alves da Silva, ., L. Pena. 2020. Role
of nonstructural proteins in the pathogenesis of SARS-CoV-2.
J. Med. Virol. 92:1427–1429.

13. Snijder, E. J., E. Decroly, and J. Ziebuhr. 2016. The nonstructural pro-
teins directing coronavirus RNA synthesis and processing. Adv. Virus
Res. 96:59–126.

14. Ramanathan, A., G. B. Robb, and S. H. Chan. 2016. mRNA capping:
biological functions and applications. Nucleic Acids Res. 44:7511–
7526.

https://doi.org/10.1016/j.bpj.2021.03.024
https://doi.org/10.1016/j.bpj.2021.03.024
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref1
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref1
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref1
https://doi.org/10.1101/2020.06.27.175430
https://doi.org/10.1101/2020.06.27.175430
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref3
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref3
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref3
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref4
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref4
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref4
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref4
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref4
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref4
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref5
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref5
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref5
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref6
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref6
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref6
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref7
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref7
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref7
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref8
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref8
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref9
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref9
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref10
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref10
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref10
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref11
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref11
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref11
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref12
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref12
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref12
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref13
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref13
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref13
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref14
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref14
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref14


Nsp16 activation and cryptic pocket
15. Daffis, S., K. J. Szretter,., M. S. Diamond. 2010. 20-O methylation of
the viral mRNA cap evades host restriction by IFIT family members.
Nature. 468:452–456.

16. Decroly, E., I. Imbert, ., B. Canard. 2008. Coronavirus nonstructural
protein 16 is a cap-0 binding enzyme possessing (nucleoside-2’O)-
methyltransferase activity. J. Virol. 82:8071–8084.

17. Sawicki, S. G., D. L. Sawicki, ., S. G. Siddell. 2005. Functional and
genetic analysis of coronavirus replicase-transcriptase proteins. PLoS
Pathog. 1:e39.

18. Chen, Y., C. Su,., D. Guo. 2011. Biochemical and structural insights
into the mechanisms of SARS coronavirus RNA ribose 20-O-methyl-
ation by nsp16/nsp10 protein complex. PLoS Pathog. 7:e1002294.

19. Decroly, E., C. Debarnot, ., B. Canard. 2011. Crystal structure and
functional analysis of the SARS-coronavirus RNA cap 20-O-methyl-
transferase nsp10/nsp16 complex. PLoS Pathog. 7:e1002059.

20. Menachery, V. D., K. Debbink, and R. S. Baric. 2014. Coronavirus
non-structural protein 16: evasion, attenuation, and possible treatments.
Virus Res. 194:191–199.

21. Smietanski, M., M. Werner, ., J. M. Bujnicki. 2014. Structural anal-
ysis of human 20-O-ribose methyltransferases involved in mRNA cap
structure formation. Nat. Commun. 5:3004.

22. Hodel, A. E., P. D. Gershon, and F. A. Quiocho. 1998. Structural basis
for sequence-nonspecific recognition of 50-capped mRNA by a cap-
modifying enzyme. Mol. Cell. 1:443–447.

23. Bouvet, M., C. Debarnot, ., E. Decroly. 2010. In vitro reconstitution
of SARS-coronavirus mRNA cap methylation. PLoS Pathog.
6:e1000863.

24. Rosas-Lemus, M., G. Minasov,., K. Satchell. 2020. The crystal struc-
ture of nsp10-nsp16 heterodimer from SARS-CoV-2 in complex with
S-adenosylmethionine. bioRxiv https://doi.org/10.1101/2020.04.17.
047498.

25. Viswanathan, T., S. Arya, ., Y. K. Gupta. 2020. Structural basis of
RNA cap modification by SARS-CoV-2. Nat. Commun. 11:3718.

26. Lin, S., H. Chen, ., G. Lu. 2020. Crystal structure of SARS-CoV-
2 nsp10/nsp16 20-O-methylase and its implication on antiviral drug
design. Signal Transduct. Target. Ther. 5:131.

27. Debarnot, C., I. Imbert, ., B. Canard. 2011. Crystallization and
diffraction analysis of the SARS coronavirus nsp10-nsp16 complex.
Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67:404–408.

28. Krafcikova, P., J. Silhan, ., E. Boura. 2020. Structural analysis of the
SARS-CoV-2 methyltransferase complex involved in RNA cap crea-
tion bound to sinefungin. Nat. Commun. 11:3717.

29. Khan, R. J., R. K. Jha,., A. K. Singh. 2020. Targeting SARS-CoV-2: a
systematic drug repurposing approach to identify promising inhibitors
against 3C-like proteinase and 20-O-ribose methyltransferase.
J. Biomol. Struct. Dyn Published online April 20, 2020. https://doi.
org/10.1080/07391102.2020.1753577.

30. Petrossian, T. C., and S. G. Clarke. 2011. Uncovering the human meth-
yltransferasome. Mol. Cell. Proteomics. 10:M110.000976.

31. Wang, Y., Y. Sun,., D. Guo. 2015. Coronavirus nsp10/nsp16 methyl-
transferase can Be targeted by nsp10-derived peptide in vitro and
in vivo to reduce replication and pathogenesis. J. Virol. 89:8416–8427.

32. Ke, M., Y. Chen, ., D. Guo. 2012. Short peptides derived from the
interaction domain of SARS coronavirus nonstructural protein nsp10
can suppress the 20-O-methyltransferase activity of nsp10/nsp16 com-
plex. Virus Res. 167:322–328.

33. Lee, A. C.-L., J. L. Harris, ., J. H. Hong. 2019. A comprehensive re-
view on current advances in peptide drug development and design. Int.
J. Mol. Sci. 20:2383.

34. �Sali, A., and T. L. Blundell. 1993. Comparative protein modelling by
satisfaction of spatial restraints. J. Mol. Biol. 234:779–815.

35. Jorgensen, W. L., J. Chandrasekhar,., M. L. Klein. 1983. Comparison
of simple potential functions for simulating liquid water. J. Chem.
Phys. 79:926–935.

36. Hess, B. 2008. P-LINCS: a parallel linear constraint solver for molec-
ular simulation. J. Chem. Theory Comput. 4:116–122.
37. Darden, T., D. York, and L. Pedersen. 1993. Particle mesh Ewald: an N
,log(N) method for Ewald sums in large systems. J. Chem. Phys.
98:10089–10092.

38. Berendsen, H. J. C., J. P. M. Postma, ., J. R. Haak. 1984. Molecular
dynamics with coupling to an external bath. J. Chem. Phys. 81:3684–
3690.

39. Bussi, G., D. Donadio, and M. Parrinello. 2007. Canonical sampling
through velocity rescaling. J. Chem. Phys. 126:014101.

40. Zimmerman, M. I., and G. R. Bowman. 2015. FAST conformational
searches by balancing exploration/exploitation trade-offs. J. Chem.
Theory Comput. 11:5747–5757.

41. Zimmerman, M. I., and G. R. Bowman. 2016. How to run FAST sim-
ulations. Methods Enzymol. 578:213–225.

42. Zimmerman, M. I., K. M. Hart,., G. R. Bowman. 2017. Prediction of
new stabilizing mutations based on mechanistic insights from Markov
state models. ACS Cent. Sci. 3:1311–1321.

43. Hendlich, M., F. Rippmann, and G. Barnickel. 1997. LIGSITE: auto-
matic and efficient detection of potential small molecule-binding sites
in proteins. J. Mol. Graph. Model. 15:359–363, 389.

44. Ward, M. D., M. I. Zimmerman, ., G. R. Bowman. 2020. DiffNets:
self-supervised deep learning to identify the mechanistic basis for
biochemical differences between protein variants. bioRxiv https://doi.
org/10.1101/2020.07.01.182725.

45. Bowman, G. R., V. S. Pande, and F. No�e. 2014. An Introduction to Mar-
kov State Models and Their Application to Long Timescale Molecular
Simulation. Springer, Dordrecht, the Netherlands.

46. Chodera, J. D., and F. No�e. 2014. Markov state models of biomolecular
conformational dynamics. Curr. Opin. Struct. Biol. 25:135–144.

47. Sch€utte, C., and M. Sarich. 2015. A critical appraisal of Markov state
models. Eur. Phys. J. Spec. Top. 224:2445–2462.

48. Porter, J. R., M. I. Zimmerman, and G. R. Bowman. 2019. Enspara:
modeling molecular ensembles with scalable data structures and paral-
lel computing. J. Chem. Phys. 150:044108.

49. Shrake, A., and J. A. Rupley. 1973. Environment and exposure to sol-
vent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 79:351–371.

50. McGibbon, R. T., K. A. Beauchamp, ., V. S. Pande. 2015. MDTraj: a
modern open library for the analysis of molecular dynamics trajec-
tories. Biophys. J. 109:1528–1532.

51. Gonzalez, T. F. 1985. Clustering to minimize the maximum intercluster
distance. Theor. Comput. Sci. 38:293–306.

52. Bowman, G. R., X. Huang, and V. S. Pande. 2009. Using generalized
ensemble simulations and Markov state models to identify conforma-
tional states. Methods. 49:197–201.

53. Gentle, J. E., L. Kaufman, and P. J. Rousseuw. 1991. Finding groups in
data: an introduction to cluster analysis. Biometrics. 47:i-iv.

54. Zimmerman, M. I., J. R. Porter, ., G. R. Bowman. 2018. Choice of
adaptive sampling strategy impacts state discovery, transition probabil-
ities, and the apparent mechanism of conformational changes. J. Chem.
Theory Comput. 14:5459–5475.

55. Porter, J. R., K. E. Moeder, ., G. R. Bowman. 2019. Cooperative
changes in solvent exposure identify cryptic pockets, switches, and
allosteric coupling. Biophys. J. 116:818–830.

56. Madeira, F., Y. M. Park, ., R. Lopez. 2019. The EMBL-EBI search
and sequence analysis tools APIs in 2019. Nucleic Acids Res.
47:W636–W641.

57. Waterhouse, A. M., J. B. Procter, ., G. J. Barton. 2009. Jalview
Version 2–a multiple sequence alignment editor and analysis work-
bench. Bioinformatics. 25:1189–1191.

58. Pettersen, E. F., T. D. Goddard,., T. E. Ferrin. 2004. UCSF Chimera–
a visualization system for exploratory research and analysis. J. Comput.
Chem. 25:1605–1612.

59. Joseph, J. S., K. S. Saikatendu, ., P. Kuhn. 2006. Crystal structure of
nonstructural protein 10 from the severe acute respiratory syndrome
coronavirus reveals a novel fold with two zinc-binding motifs.
J. Virol. 80:7894–7901.
Biophysical Journal 120, 2880–2889, July 20, 2021 2889

http://refhub.elsevier.com/S0006-3495(21)00254-X/sref15
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref15
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref15
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref15
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref16
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref16
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref16
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref17
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref17
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref17
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref18
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref18
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref18
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref18
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref19
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref19
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref19
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref19
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref20
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref20
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref20
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref21
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref21
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref21
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref21
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref22
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref22
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref22
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref22
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref23
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref23
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref23
https://doi.org/10.1101/2020.04.17.047498
https://doi.org/10.1101/2020.04.17.047498
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref25
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref25
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref26
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref26
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref26
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref26
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref27
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref27
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref27
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref28
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref28
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref28
https://doi.org/10.1080/07391102.2020.1753577
https://doi.org/10.1080/07391102.2020.1753577
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref30
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref30
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref31
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref31
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref31
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref32
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref32
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref32
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref32
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref32
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref33
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref33
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref33
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref34
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref34
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref35
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref35
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref35
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref36
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref36
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref37
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref37
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref37
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref38
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref38
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref38
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref39
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref39
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref40
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref40
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref40
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref41
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref41
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref42
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref42
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref42
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref43
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref43
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref43
https://doi.org/10.1101/2020.07.01.182725
https://doi.org/10.1101/2020.07.01.182725
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref45
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref45
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref45
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref45
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref46
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref46
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref46
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref47
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref47
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref47
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref48
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref48
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref48
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref49
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref49
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref50
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref50
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref50
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref51
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref51
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref52
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref52
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref52
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref53
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref53
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref54
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref54
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref54
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref54
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref55
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref55
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref55
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref56
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref56
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref56
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref57
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref57
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref57
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref58
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref58
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref58
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref59
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref59
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref59
http://refhub.elsevier.com/S0006-3495(21)00254-X/sref59


Biophysical Journal, Volume 120

Supplemental information

SARS-CoV-2 Nsp16 activation mechanism and a cryptic pocket with

pan-coronavirus antiviral potential

Neha Vithani, Michael D. Ward, Maxwell I. Zimmerman, Borna Novak, Jonathan H.
Borowsky, Sukrit Singh, and Gregory R. Bowman



Figure S1. 

 
 
Figure S1. Implied timescales plotted as a function of the lag time for MSMs for 
Nsp16/Nsp10 complex (SARS-CoV2), Nsp16 homologs (SARS-CoV2, SARS-CoV1, & 
MERS) and human CMTr1 for different clustering cut-offs. 5 ns lag-time was selected to 
build the final MSMs used in this study. 
 
 
  



Figure S2. 
 
 

 
 
Figure S2. (A) Probability-weighted distance distribution between RNA-binding gate 
loops 1 and 2 comparing monomeric Nsp16 (black) to the Nsp10-Nsp16 complex (gray) 
are shown for three different clustering cut-offs. (B) Probability-weighted distance 
distribution between SAM-binding loop 2 and gate loop 2, comparing monomeric Nsp16 
(black) to the Nsp10-Nsp16 complex (gray) are shown for three different clustering cut-
offs. The distance for a SAM and RNA bound crystal structure is also plotted (red dotted 
line) in all figures. 
 
 
Figure S3. 
 
 

 
 
Figure S3. Equilibrium probability weighted 2D histograms of solvent-accessible surface 
area (SASA) of the cryptic pocket residues and the distance between SAMBL2 and gate 
loop 2 in Nsp16, derived from MSMs built with three different clustering cut-offs (5000 
cluster centers, 5.2 nm2 cluster radius and 5.5 nm2 cluster radius) 
 
 
  



Figure S4. 
 
 

 
Figure S4. Equilibrium probability-weighted distribution of the solvent exposure of pocket 
forming residues for SARS-CoV2 (black), SARS-CoV1 (blue), MERS (red) and CMTr1 
(cyan). Solid lines show the distributions derived from MSM built on 5000 clusters (for 
SARS-CoV2 Nsp16) and 1500 clusters (for other homologs). Thick dashed lines show 
the distributions derived from MSM built on clustering with 5.5 nm2 (for SARS-CoV2 
Nsp16) and 4.5 nm2 clusters (for other homologs). Thin dashed lines show the 
distributions derived from MSM built on clustering with 5.2 nm2 (for SARS-CoV2 Nsp16) 
and 4.0 nm2 clusters (for other homologs). Black dotted line depicts SASA of pocket 
residues in the crystal structure of Nsp16/Nsp10 complex (PDB: 6wks). 
 
  



Figure S5. 
 

 
Figure S5.  Change in root mean square fluctuation (rmsf) of Nsp16 upon Nsp10 
association. (A) Probability weighted Δrmsf of Nsp16’ residues upon Nsp10 binding is 
plotted. Negative values represent a decrease in rmsf upon Nsp10 binding. RNA binding 
loops (gate loop 1 and 2) and SAM binding loops (SAMBL1 and 2) are highlighted by the 
blue colored boxes. (B)  Probability weighted Δrmsf of Nsp16 is mapped on its structure, 
with negative values shown in blue and positive values in red.  
 

 

  



Figure S6. 
 
 

 
Figure S6. DiffNets predict that β4 peels away from β3 in Nsp16 inactive structural states. 
(Left) Structural states changing from inactive to active (white to purple) as predicted by 
the DiffNet. (Right) The loop connecting β3 and β4 peels away from β3 into solution in 
predicted inactive states. 
 
 
 
Figure S7. 

 
 
Figure S7. Displacement of Nsp10 binding residues by cryptic pocket opening. (A) 
Structure of Nsp16 in cryptic pocket closed state is shown in grey. Cryptic pocket forming 
residues and the residues undergoing opening motion are shown in cyan and blue, 
respectively. Cryptic pocket residues that contact Nsp10 are depicted in spheres. (B) 
Opening motion of the cryptic pocket shows the displacement of Nsp10 binding residues.  



Figure S8. 
 

 
 
Figure S8. Structural comparison of β3-β4 cryptic pocket in SARS-CoV2 Nsp16 and 
human CMTr1. (A) β3 and residues lining the cryptic pocket in SARS-CoV2 are shown in 
cyan and blue, respectively. (B) Regions of human CMTr1, structurally equivalent to β3 
and the pocket lining regions are depicted in cyan and blue, respectively. 
 
 
Table S1. Timescales for transitioning between the pocket closed and open states in 
Nsp16 homologs.  

Nsp16 homolog Transition time (microseconds) 
‘Closed’ → ‘Open’ 

Transition time (microseconds) 
‘Open’ → ‘Closed’ 

SARS-CoV2 77.0 81.4 

SARS-CoV1 26.0 13.5 

MERS 19.5 9.9 

 
 
 
  



Figure S9. 
 
 

 
Figure S9. Multiple sequence alignment of Nsp16 homologs from coronaviruses. The 
color ranges from white to orange for the sequence conservation score ranging from 0 to 

10, where 10 denotes 100% sequence identity. Residues of ꞵ3 are enclosed in the black 
box. Uniprot ids of the sequences used for the alignment are given in the Methods section. 
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