Biophysical Journal, Volume 120

Supplemental information

Physical phenotype of blood cells is altered in COVID-19

Markéta Kubánková, Bettina Hohberger, Jakob Hoffmanns, Julia Fürst, Martin Herrmann, Jochen Guck, and Martin Kräter

Physical phenotype of blood cells is altered in COVID-19

M Kubánková, B Hohberger, J Hoffmanns, J Fürst, M Herrmann, J Guck[#], M Kräter

corresponding author

Supplementary Figures and Tables

Supplementary table 1. Patient characteristics, medical management and outcome of all donors included in this study.

	All donors n=54 (100%)				
	Control n=24	Recovered n=14	COVID-19 n=17		
Age (years): median (range)	62.5 ± 13.6 years (26-81)	58.6 ± 12.4 (27-76)	68·± 10.4 (41-87)		
Gender	•				
male	12 (50%)	10 (71.4%)	13 (76.5%)		
female	12 (50%)	4 (18.6%)	4 (23.5%)		
Primary virus identification (PCR airway)	n.a.	14 (100%)	17 (100%)		
Complications and medical management					
Oxygen supplementation	0	0	17 (100%)		
Mechanical ventilation	0	0	13 (76.5%)		
ECMO	0	0	6 (35.3%)		
Dialysis	0	0	3 (17.6%)		
Systemic Superinfection	0	0	7 (41.1%)		
Pulmonary embolism	0	0	6 (35.3%)		
Drugs					
Azithromycin	0	0	3 (17.6%)		
Hydroxychloroquine	0	0	9 (52.9%)		
Heparin prophylactic/therapeutic anticoagulation	0	0	13 (76.5%)		
Outcome					
Length of hospital stay (days)	0	7 ± 2.4 (5-12)	22.8 ± 14 (7-50)		
Intensive care unit stay	0	0	13 (76.5%)		
Discharged	0	14 (100%)	9 (52.9%)		
Further hospitalized	0	0	0		
Death	0	0	8 (47.1%)		

- 2 **Supplementary table 2.** Kruskal-Wallis *H*-statistics, *p*-values and effect sizes ε^2 . The last three columns
- 3 represent *p*-values from Dunn's posthoc tests conducted for the significant results of Kruskal-Wallis *H*-
- 4 tests.

	A - healthy	p (Kruskal-	H (Kruskal-	ε^2 (Kruskal-	p AC	p AB	p BC
	B- recovered	Wallis)	Wallis)	Wallis)	(Dunn's)	(Dunn's)	(Dunn's)
	C - COVID						
Eryt	hrocytes						
	Median area	0.1162	4.30	0.080	0.4896	0.1503	1.0000
	SD area	0.0000	26.99	0.500	0.0000	0.2259	0.0112
	Median volume	0.2532	2.75	0.051	1.0000	0.2938	1.0000
	SD volume	0.0000	33.75	0.625	0.0000	0.9204	0.0002
	Median deformation	0.2180	3.05	0.056	0.4480	1.0000	0.3380
	SD deformation	0.0000	42.30	0.783	0.0000	0.0024	0.0340
	% of ery with def < 0.28	0.0000	25.83	0.478	0.0000	1.0000	0.0016
Neu	itrophils						
	Median area	0.0000	22.95	0.425	0.0000	0.2704	0.0260
	SD area	0.0001	18.86	0.349	0.0023	0.0001	0.6791
	Median volume	0.0000	23.53	0.436	0.0000	0.1319	0.0517
	SD volume	0.0001	19.78	0.366	0.0005	0.0002	1.0000
	Median deformation	0.0013	13.31	0.246	0.0021	1.0000	0.0319
	SD deformation	0.0059	10.28	0.190	0.0041	0.3772	0.5059
	Median Young's modulus	0.1698	3.55	0.066	0.1827	1.0000	0.8807
Lym	phocytes						
	Median area	0.0499	6.00	0.111	0.1667	1.0000	0.0939
	SD area	0.0000	30.78	0.570	0.2270	0.0010	0.0000
	Median volume	0.0814	5.02	0.093	0.3403	1.0000	0.1134
	SD volume	0.0000	28.36	0.525	0.7403	0.0003	0.0000
	Median deformation	0.0132	8.66	0.160	0.0107	0.1945	1.0000
	SD deformation	0.0000	35.61	0.659	0.0043	0.0218	0.0000
	Median Young's modulus	0.0029	11.68	0.216	0.0029	0.0542	1.0000
Mo	nocytes						
	Median area	0.0000	30.64	0.567	0.0000	0.0001	1.0000
	SD area	0.0011	13.65	0.253	0.0007	0.0892	0.7682
	Median volume	0.0000	27.71	0.513	0.0000	0.0001	1.0000
	SD volume	0.0001	18.48	0.342	0.0001	0.0075	1.0000
	Median deformation	0.7918	0.47	0.009	1.0000	1.0000	1.0000
	SD deformation	0.4949	1.41	0.026	0.7256	1.0000	1.0000
	Median Young's modulus	0.7763	0.51	0.009	1.0000	1.0000	1.0000
-							
EOS	Median area	0 1290	4 10	0.076	0 6000	0 1547	1 0000
	Niedian area	0.1289	9 7600	0.076	0.0099	0.1547	1.0000
	SD area	0.0120	0.7000	0.162	1 0000	0.0108	1.0000
	SD volumo	0.2332	2.73	0.031	0.0000	0.2956	0.0002
	Modian deformation	0.0000	1 76	0.023	1 0000	0.9204	0.0002
	SD deformation	0.4145	1.70	0.033	1.0000	1 0000	0.3361
	Median Vound's modulus	0.0500	1.05	0.019	1 0000	1 0000	1 0000
	We dian roung s moutins	0.9392	0.08	0.002	1.0000	1.0000	1.0000
% of WBC							
	% neutrophils	0 0105	9 10	0 169	0.0499	1.0000	0.0174
	% lymphocytes	0.0007	14.63	0.271	0.0006	0.2426	0.0328
	% monocytes	0.0151	8.38	0.155	0.0244	1.0000	0.0644
	% eosinophils	0.0010	13.73	0.254	0.1576	0.0007	0.1970
	NLR	0.0022	12.22	0.226	0.0031	0.7018	0.0252
	I			,			

6 Supplementary figure 1. Proportions of white blood cells calculated from real-time deformability

7 cytometry (RT-DC) data. The percentage of A) neutrophils, B) lymphocytes and C) monocytes in the

8 total white blood cell count; a comparison of the control blood donor cohort (grey), recovered patients

9 (green) and hospitalized COVID-19 patients (yellow). D) The neutrophil to lymphocyte ratio is

significantly higher in hospitalized patients compared to the recovered and healthy donor cohorts, * *p*

11 < .05, ** p < .01, *** p < .001.

12

13 Supplementary figure 2. Physical properties of erythrocytes of COVID-19 patients compared to

14 **controls.** Quantification of A-C) cross-sectional cell area, D-F) cell volume, G-I) cell deformation; in

15 these graphs COVID-19 patients (yellow, n = 17) are compared to recovered donors (green, n = 14) and

healthy donors (grey, n = 24). Panels C), F), I) show three patients measured at two time points, during
COVID-19 and after recovery; circle markers represent the median value and error bars represent the

18 standard deviation for each patient. Statistical comparisons in C), F), I) were performed using linear

19 mixed model analysis. All other statistical comparisons were done using Kruskal-Wallis test with Dunn's

20 posthoc test. * *p* < .05, ** *p* < .01, *** *p* < .001.

22 Supplementary figure 3. Physical properties of lymphocytes of COVID-19 patients compared to

controls. Quantification of A-C) cross-sectional cell area, D-F) cell volume, G-I) cell deformation, J-L)
Young's modulus; in these graphs COVID-19 patients (yellow, n = 17) are compared to recovered

donors (green, n = 14) and healthy donors (grey, n = 24). Panels C), F), I) and L) show three patients

26 measured at two time points, during COVID-19 and after recovery; circle markers represent the median

27 value and error bars represent the standard deviation for each patient. Statistical comparisons in C),

28 F), I), L) were performed using linear mixed model analysis. All other statistical comparisons were done

using Kruskal-Wallis test with Dunn's posthoc test. * p < .05, ** p < .01, *** p < .001.

Supplementary figure 4. Physical properties of monocytes of COVID-19 patients compared to 31 32 controls. Quantification of A-C) cross-sectional cell area, D-F) cell volume, G-I) cell deformation, J-L) Young's modulus; in these graphs COVID-19 patients (yellow, n = 17) are compared to recovered 33 34 donors (green, n = 14) and healthy donors (grey, n = 24). Panels C), F), I) and L) show three patients 35 measured at two time points, during COVID-19 and after recovery; circle markers represent the median 36 value and error bars represent the standard deviation for each patient. Statistical comparisons in C), 37 F), I), L) were performed using linear mixed model analysis. All other statistical comparisons were done 38 using Kruskal-Wallis test with Dunn's posthoc test. * p < .05, ** p < .01, *** p < .001.

39

40 Supplementary figure 5. Physical properties of neutrophils of COVID-19 patients compared to 41 controls. Quantification of A-C) cross-sectional cell area, D-F) cell volume, G-I) cell deformation, J-L) 42 Young's modulus; in these graphs COVID-19 patients (yellow, n = 17) are compared to recovered donors (green, n = 14) and healthy donors (grey, n = 24). Panels C), F), I) and L) show three patients 43 44 measured at two time points, during COVID-19 and after recovery; circle markers represent the median 45 value and error bars represent the standard deviation for each patient. Statistical comparisons in C), 46 F), I), L) were performed using linear mixed model analysis. All other statistical comparisons were done 47 using Kruskal-Wallis test with Dunn's posthoc test. * p < .05, ** p < .01, *** p < .001.

50 Supplementary figure 6. Physical properties of eosinophils of COVID-19 patients compared to

controls. Quantification of A-C) cross-sectional cell area, D-F) cell volume, G-I) cell deformation, J-L)
Young's modulus; in these graphs COVID-19 patients (yellow, n = 17) are compared to recovered
donors (green, n = 14) and healthy donors (grey, n = 24). Panels C), F), I) and L) show three patients
measured at two time points, during COVID-19 and after recovery; circle markers represent the median

value and error bars represent the standard deviation for each patient. Statistical comparisons in C),

56 F), I), L) were performed using linear mixed model analysis. All other statistical comparisons were done

using Kruskal-Wallis test with Dunn's posthoc test. * p < .05, ** p < .01, *** p < .001.

58

60 Supplementary figure 7. A comparison of the physical properties of the four examined white blood

cell types in COVID-19 patients (yellow) compared to the control group (grey). A) Median cell size, B)
median cell volume, C) median deformation, D) median Young's modulus.