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Supplementary text and figures

Experimental methods

All the experiments were carried out in a custom-built commercial cryostat (SPECS) at a 

temperature of T = 1.2 K in ultra-high vacuum. Details of the sample cleaning and cold Fe 

deposition can be found in Refs. 1,2. To make different clusters of Fe atoms, we use vertical atom 

manipulation where Fe atoms were first transferred from the sample surface to the tip and then 

dropped back to the desired location. Details of the vertical atom manipulation and also the 

interstitial atom manipulation are described in Ref.2. The Ta(001)-O surface under study consists 

of a regular network of (3x3) plaquettes with square and circular shapes with a relative abundance 

of 4:1, respectively. In order to facilitate measurements with a superconducting tip, we first created 

Fe clusters of different sizes and shapes with more than one cluster of each type, followed by 

preparing a superconducting tip. Within error bars, each cluster of the same type showed 

qualitatively similar spectroscopic features which are different for other clusters of different sizes 

and shapes. For spectroscopy, we used a superconducting tip which was prepared by coating a Cr 

tip with Ta via a controlled dipping of the tip into the Ta substrate. For spectroscopy on very large 

clusters we used a W tip. The dI/dV spectra were measured with the standard lock-in technique 

with a modulation frequency of f = 827 Hz. A modulation voltage of Vmod = 20 μV (100 μV) was 

used for measurements of small bias range spectra with a superconducting (tungsten) tip, while, 

Vmod = 2-4 mV was used for measurements of large bias range spectra. To extract the local density 

of states from the measured spectra in the low-bias range as obtained with a superconducting tip, 

we used a standard deconvolution technique 2,3.
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DFT calculations

To determine the structural arrangement of the Fe cluster with an IFA, we performed a set 

of DFT simulations using the VASP package 4,5. A minimal supercell of the bcc(001) crystal was 

built from five layers of Ta atoms with a lattice constant of 3.30 Å. The supercell of the surface 

was chosen to reproduce the area of one (3 x 3) plaquette, as seen in STM images. All simulations 

were done using spin-polarized functionals using the generalized gradient approximation 

(GGA+U) for the exchange-correlation part 6,7. The standard calculation was performed with U = 

4.3 eV, J = 0.9 eV for the Fe d-states 8 and U = 6 eV, J = 0.8 eV for the O p-states. An enlarged 

cut-off energy was set up to 500 eV and the number of bands was increased by 50%. The structural 

optimization was performed until forces were less than 0.01 eV/Å on the  k-points grid. 6 × 6 × 1

We searched for the possible positions of IFAs in the first interspace of the TaO substrate, i.e. 

between the first and the second layer of the bcc(001)-arranged Ta atoms. These configurations of 

the surface with a single IFA were then compared by total energies and the induced type of 

reconstructions.

Figure S1. Interstitial Fe atom (IFA) within DFT approach. (a) Suggested positions with one IFA 
per (3 x 3) plaquette (initial sites) that are marked by letters (i-iv). (b) Comparison of the total 
energy per unit cell as obtained within GGA+U (UFe-d | UO-p) simulations for different structural 
arrangements (i-iv).
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We have also considered an additional position of an IFA in a hollow site of the Ta island. The 

latter configuration leads to significant reconstruction of the surface and a loss of the (3 x 3) 

plaquette structure, so we disregarded it. Among the other positions, one can see that, after 

relaxation, the IFA that was initially located on (iii) converged to location (i). In this setup, the 

IFA occupies approximately the center of the Ta octahedron with irregular base and two apexes, 

connected by the bridge oxygen atom. Among all considered configurations, only case (i) satisfies 

the criteria of lowest energy and smallest distortion of the surface (3 x 3) plaquette structure. To 

control the charge localization in the system, we used an on-site Coulomb parameter for Fe and O 

states, which was found to improve the convergence of the electronic and ionic minimizations 

significantly but did not change the structure qualitatively. The main surface change, induced by 

the presence of such an IFA in the first interlayer, is an elevated oxygen atom in the bridge position 

together with a slight upwards shift of the nearest Ta atoms. This change would be reflected in an 

STM image as an enhancement of the cross-like shape of the (3 x 3) plaquette near the IFA 9, 

which is indeed seen in the experiment (see Figure 1a of the main manuscript).

The adsorption of the Fe adatom at the center of the (3 x 3) plaquette was studied separately 

to account for van-der-Waals (vdW) contributions at the surface. The slab was transformed to the 

symmetric setup of five layers with two identical surfaces to avoid an interaction with charge 

images. The midpoint of the (3 x 3) plaquette coincides with the central Ta atom, which is marked 

as a particularly polarized atom in the surface electronic structure 9. To account for the 

polarizability of the local structures on the surface, we performed a set of structural optimizations 

including dispersion correction energies, with an accuracy of atomic forces of less than 0.001 

eV/Å. First, the slab with an adatom in the central position was relaxed using the Tkatchenko-

Scheffler (TS) method 10, where all surface atoms, including the adatom, were free to relax. To 

account for possible corrections from the ionic states of the surface, we also included the 

Hirschfield iterative (HI) 11,12 partitioning scheme (TS/HI) with a self-consistent cycle 13,14. After 

relaxation, the Fe adatom has a tiny in-plane offset from the symmetric central position, with a 

magnitude of the vector of only 0.001 Å. The extracted position of the adatom was then used to 

compare between different methods in simulations with both the Fe adatom and the IFA.
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Figure S2. VdW approximations for the Fe adatom at the center of the (3 x 3) plaquette. 
Comparison of the heights and total energies (in the slab with two surfaces) for the system of one 
Fe adatom at the center of the (3 x 3) plaquette with respect to different vdW frameworks, 
implemented in the VASP package: no vdW (no van-der-Waals interaction), TS (Tkatchenko-
Scheffler method), TS/HI (TS scheme with iterative Hirschfield partitioning) and TS/HI-SCS 
(self-consistent scheme of TS/HI).
 

The Fe adatom was allowed to move only along the z-direction, while the two in-plane adatom 

coordinates were fixed to the center position resulting from the full free relaxation of the surface 

within the TS/HI scheme. The reduction of the repulsive interaction between the adatom due to 

the dispersion forces, acting between the adatom and the polarizable substrate, is clearly visible 

here. This effect indicates the presence of a strong dynamical dipole-dipole interaction, that should 

be accounted for in the adsorption process on such surfaces, as it was predicted earlier 9. Within a 

full surface relaxation, the screening TS/HI-SCS method or switching the vdW part off (no vdW) 

lead to the relaxation of the adatom to the nearest hollow position, which is off-center. We attribute 

this error to a rather effective way of the inclusion of the dynamics of the interaction between 

fluctuating charges as part of a pseudopotential and its possible reduction in the DFT-vdW-SCS 

method. The obtained height of the Fe adatom over the surface is approx. 2.5 Å (TS/HI) that fits 

to the experimental results 1,2.
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Figure S3. Magnetization of the Fe adatom in the presence of an IFA. Left: Density of states for 
the d-states of the Fe adatom (a) and the IFA (b) in the slab with both Fe atoms. Here, continuous 
lines refer to the slab with 2 atoms (Fe adatom and IFA) and dashed lines refer to the slab with one 
Fe atom in absence of the other (either adatom or IFA). Red and blue colors denote spin-up and 
spin-down densities, respectively. Right: Density of states for two additional IFA assemblies 
without Fe adatom: diamond (c) and linear (d). Here, continuous and dashed lines correspond to 
two sorts of IFAs in the supercell as shown in the corresponding insets. Dashed lines in (c) are 
shifted by 0.1 units for clarity. Due to a substantial amount of space in the bcc structure and 
mobility of the oxygen lattice, the IFA positions obtained from relaxation of the linear structure 
(d) are shifted along the z-axis with respect to each other.

The position of the adatom was extracted from the vdW calculations, while the IFA occupies the 

space beneath the bridge oxygen atom (case (i) in Figure S1). A few additional atomic 

configurations were relaxed within the spin-polarized scheme with reasonable parameters of the 

Coulomb interaction U = 6.0 eV and J = 0.9 eV for the d-states of Fe impurity. The other 

parameters were kept according to those introduced earlier as a standard calculation (see above). 

We observe a finite magnetic moment for both types of atoms in the main configuration (Figure 

S3 a,b): Fe adatom (3.1 ) and IFA (1.6 ). An isolated IFA has a magnetic moment of 0.9 . 𝜇𝐵 𝜇𝐵 𝜇𝐵
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Figure S3 shows the differences in the spin-polarized density of states of the Fe adatom and IFA, 

two additional spatial configurations of IFAs of diamond and linear form are given for comparison.

The shift of the peaks between slabs with one and two atoms in Figure S3a,b is caused by different 

effective U parameters used in standard and magnetic calculations for one and two atoms. Overall, 

one can see quite similar and small magnitudes of magnetic moments at all IFA's locations (Figure 

S3b,d). However, the magnetic moments get stabilized by magnetic interaction with the Fe adatom 

(Figure S3b). Due to the structural complexity of the host system, in particular because of the 

strong hybridization of the IFA to the electronic states of the substrate, we limited ourselves only 

to a qualitative analysis of the isotropic magnetic interactions for the selected configurations.

The IFAs are found to exhibit weak antiferromagnetic interaction among themselves, with a 

calculated exchange parameter1 of J=-0.5 meV (linear, Figure S3d) and J= -4 meV (diamond, 

Figure S3c). In comparison, the value of the magnetic exchange interaction between the Fe adatom 

and an IFA is estimated to be considerably larger than between the IFAs, and has a value of J= -

15.2 meV, i.e. antiferromagnetic. This result agrees very well with the experimentally extracted 

estimates for the exchange splitting via the exchange gap measured on the Fe adatoms.

1 We used a mapping of DFT ground state energies for different spin configurations to classical isotropic Heisenberg 

model  , where  - unit vector of magnetization at i-atom, N - number of magnetic atoms in the 𝐻 = ―2∑𝑁
𝑖 > 𝐽𝐽𝑖𝑗𝒆𝑖𝒆𝑗 𝒆𝑖

unit cell,  - exchange interaction chosen such that . Then, for the given configurations the exchange 𝐽𝑖𝑗 𝐽𝐴𝐹𝑀 < 0

parameter has the common form: , where  is the ground state energy of the system 𝐽 = (𝐸𝐹𝑀 ― 𝐸𝐴𝐹𝑀) 4𝑍 𝐸𝐹𝑀(𝐴𝐹𝑀)

with FM(AFM) aligned spins, Z - number of the nearest neighbors, that have changed their direction in respect to the 

magnetization axis. The Heisenberg Hamiltonian can be rewritten in terms of spin operators with proper expectation 

values, so the  would be also rescaled accordingly. 𝐽𝑖𝑗
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Fitting of the Kondo resonance

In order to determine the Kondo temperature, we fit dI/dV spectra taken on the adatom to 

a Fano function given by 15:

𝜎(𝑉) ∝ 𝜎0 + 𝜎1

(𝑞 +
𝑉 ― 𝑉0

𝛤 )
2

1 + (𝑉 ― 𝑉0

𝛤 )
2

where  is the form factor which determines the line shape of the spectra,  is the half width at 𝑞 𝛤

half maximum (HWHM), and  is the bias value at the maximum of the spectra.  and  are 𝑉0 𝜎0 𝜎1

the offset and the amplitude of the spectra, respectively.

For those spectra showing the resonance and a ZBA, we fit the dI/dV curves to the product of a 

Fano function and an inverted Lorentzian, given by:

𝜎(𝑉) ∝ 𝜎0 + 𝜎1[(𝑞 +
𝑉 ― 𝑉0

𝛤 )
2

1 + (𝑉 ― 𝑉0

𝛤 )
2] × [1 ―

𝜎2

1 + (𝑉 ― 𝑉𝑠

𝛤𝑠 )2]
Here,  is the half width in energy of the ZBA gap,  is the position of the gap, and  is 𝐸𝑠 = 𝑒𝛤𝑠 𝑉𝑠 𝜎2

a constant.

Finally, we use the HWHM, , to extract the Kondo temperature of each assembly and use 𝛤

Wilson’s definition 16 to define the Kondo temperature as , where kB is the 𝑇𝐾 = 0.27𝑒𝛤 𝑘𝐵

Boltzmann constant.
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Figure S4. dI/dV spectroscopy on Fe adatoms of additional Fe clusters. (a) Schematic top view 
diagram and corresponding STM images of different clusters of Fe atoms. (b) Large bias range 
dI/dV spectra (open dots) showing the Kondo resonance. The dashed red lines are fits to a Fano 
function, which is multiplied by a Lorentzian dip (see above). The horizontal dashed lines are the 
zero lines of each spectrum, which are shifted vertically for better visibility. Stabilization 
parameters for STS: Vstab = 100 mV, Istab = 100 pA, Vmod = 2 - 4 mV. (c) Small bias range dI/dV 
spectra measured with a superconducting tip (open dots), showing the peaks due to the YSR states. 
The horizontal dashed lines are the zero lines of each spectrum, which are shifted vertically for 
better visibility. Stabilization parameters for STS: Vstab = 2.5 mV, Istab = 100 pA, Vmod = 20 μV.



10

Figure S5. Spatial variation of dI/dV spectra showing YSR and Kondo features. (a) Schematic top 

view diagram and corresponding STM images of clusters of Fe atoms under study. The horizontal 

dashed white line in the STM image corresponds to the line over which spectra were measured for 

(b) and (c). (b-c) Left panels: 2D color map of lateral evolution of the dI/dV spectra in small (b) 

and large bias range (c) measured with a superconducting tip along the dashed line across the Fe 

cluster shown in (a). Right panels: Corresponding height of the tip z of the measurement points. 

From the spectral evolution, it is clear that both, the YSR peaks (b) and the Kondo resonance (c), 

are confined to the position of the adatom. Only a very faint intensity of the YSR state on the 

negative bias side is still observable at the location of the IFAs.
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Figure S6. Asymmetry of the YSR peaks as a function of bound state energy. We observe that the 
intensities of the YSR peaks are asymmetric and as a general trend reverse sign with increasing 
number of IFAs in the assembly. To characterize this effect, we define the asymmetry as:

,𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 =
ℎ𝑅 ― ℎ𝐿

ℎ𝑅 + ℎ𝐿
 

where  is the amplitude of the YSR peak on the positive (negative) bias side. The ℎ𝑅(ℎ𝐿)
corresponding experimental values are shown as filled symbols, where different symbols represent 
the various Fe clusters defined in Figure 2c of the main manuscript. The plot also shows the results 
of the NRG calculations for  as open dots for comparison, showing qualitative agreement 𝛽 = 0
with the experimental trend.
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Slave-boson mean-field theory calculations

The total Hamiltonian for an Anderson impurity coupled to a superconducting substrate is 

. Here the substrate is described by the Hamiltonian 𝐻 = 𝐻𝑆 + 𝐻𝐷 + 𝐻𝑇 𝐻𝑆 = ∑
𝑘𝜎𝜖𝑘𝜎𝑐 †

𝑘𝜎𝑐𝑘𝜎 +△

, where we assume that the substrate density of states in the normal state is constant ∑
𝑘𝜎𝑐 †

𝑘↑𝑐 †
―𝑘↓

within a bandwidth of 2D and  is the energy gap of the superconductor. The tunneling △

Hamiltonian is given by  and the tunneling amplitude is given by 𝐻𝑇 = ∑
𝑘𝜎𝜈𝑘(𝑐 †

𝑘𝜎𝑑𝑖𝜎 + ℎ.𝑐.) Γ𝑖(𝜔)

. Here we drop the energy dependency of the tunneling amplitude and = 𝜋∑
𝑘|𝜐𝑖𝑘|2𝛿(𝜔 ― 𝜖𝑘)

assume that it is constant over the energy window . The Hamiltonian for the Γ𝑖(𝜔) = Γ𝑖 = 0.016𝐷

impurity is , where  is the energy level of the individual impurity. We solve this 𝐻𝐷 = ∑
𝜎𝜖𝑑𝑑 †

𝜎 𝑑𝜎 𝜖𝑑

model using Slave-boson mean-field theory (SBMFT) 17–22. We restrict the Hilbert space such that 

there is no double occupancy in the impurity due to a large Coulomb repulsion. This is done by 

introducing a bosonic and fermionic degree of freedom for each electronic operator, namely 𝑏 †
𝑖𝜎 =

, where  is fermion and  is boson creation operator. No double occupancy is achieved by 𝑓 †
𝑖𝜎𝑏𝑖 𝑓𝑖𝜎 𝑏𝑖

the constraint . Within the mean-field approximation, the bosonic operator 𝑏 †
𝑖 𝑏𝑖 + ∑

𝑖𝜎𝑓 †
𝑖𝜎𝑓𝑖𝜎 = 1

is replaced by a number and the constraint is fulfilled on an average by introducing a chemical 

potential. 

In the large TK limit it is favorable to break the Cooper pair such that the impurity spin can 

be screened. SBMFT is supposed to be valid in this regime 22,23, and thus, in particular, for our 

experimental setup kBTK/∆ >> 1. The spectrum of a single magnetic impurity in a superconductor 

consists of a continuum at higher energy and a bound state within the gap. This bound state appears 

close to the Fermi energy for small TK and shifts towards higher energy for larger TK. Figure 2a 

shows the evolution of bound states for different values of TK.
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Figure S7. YSR energy versus Kondo temperature. Blue data points and black lines are adapted 
from the experimental data and numerical renormalization group (NRG) calculations, respectively, 
for the system of MnPc molecules on Pb(111) 24. Red filled circles and the violet line represent 
our experimental data points and the Slave boson mean-field theory (SBMFT) calculations, 
respectively, for the system of Fe clusters on TaO.
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Numerical renormalization group calculations

We have used the “NRG Ljubljana” implementation of the numerical renormalization group. The 

calculations have been performed for a two-impurity Anderson model given by:

𝐻𝛼 = ∑
𝑘𝜎

𝜖𝑘𝑐 †
𝑘𝜎𝛼𝑐𝑘𝜎𝛼 ― ∆∑

𝑘

(𝑐 †
𝑘↑𝛼𝑐 †

―𝑘↓𝛼 + 𝐻.𝑐.) + ∑
𝜎

𝜖𝛼𝑑 †
𝜎𝛼𝑑𝜎𝛼 + 𝑈𝑛↑𝛼𝑛↓𝛼

+ ∑
𝑘𝜎

𝑉𝑘𝛼(𝑑 †
𝛼 𝑐𝑘𝛼 + 𝐻.𝑐.)

𝐻12

= 𝐽[(1 ― 𝛽)𝐬1 ⋅ 𝐬2 + 𝛽𝑠1,𝑧𝑠2,𝑧] ― 𝑡∑
𝜎

(𝑑 †
1𝜎𝑑2𝜎 + 𝐻.𝑐.) = 𝐽

[(1 ― 𝛽)𝑠1,𝑥𝑠2,𝑥 + (1 ― 𝛽)𝑠1,𝑦𝑠2,𝑦 + 𝑠1,𝑧𝑠2,𝑧] ― 𝑡∑
𝜎

(𝑑 †
1𝜎𝑑2𝜎 + 𝐻.𝑐.)

.𝐻 = 𝐻1 + 𝐻2 + 𝐻12

Here α indexes the two impurities (α = 1, 2), σ is the spin (↑, ↓), k is the electron momentum,  𝜖𝑘

the dispersion of band electrons, and  is the hybridization between the impurity α and the 𝑉𝑘𝛼

superconducting band ( , where  is the density of states in the band in the absence of Γ = 𝜋𝜌|𝑉|2 𝜌

superconductivity). Finally,  is the occupancy operator for impurity α, while  is the 𝑛𝜎𝛼 = 𝑑 †
𝜎𝛼𝑑𝜎𝛼 𝑠𝛼

impurity spin operator defined as , where  is the vector of Pauli matrices, 𝑠𝛼 = (1 2)𝑑 †
𝑖𝛼𝝈𝑖𝑗𝑑𝑗𝛼 𝝈

while i,j are the internal spin indexes. The exchange interaction is a pure Heisenberg coupling for 

 and pure Ising coupling for . In other words, the spin-flip terms (transverse part of the 𝛽 = 0 𝛽 = 1

exchange interaction) are progressively turned off as  evolves from 0 to 1.𝛽

We use the parameters  10,  0.7, , , with the gap 𝑈1 = 𝑈2 = Γ1 = Γ2 = 𝜖1 = ―4 𝜖1 = ―5

fixed at 0.001 (all parameters are expressed in units of the bandwidth). We have included a Δ =  

small constant hybridization between the impurities (  0.02) to suppress the sharp quantum 𝑡 =

phase transition; this is the main motivation for modelling in terms of the Anderson model instead 

of the pure-spin Kondo model. The overall strength of the exchange coupling is controlled by 

explicitly including a variable exchange coupling J. The calculations were performed for the 

discretization parameter  2 keeping up to 2000 state multiplets and averaging over 4 Λ = 𝑁𝑧 =  

interleaved discretization meshes. For studying the shape of the Kondo resonance, we have 



15

broadened the results in order to smooth out the superconducting gap. This is achieved by using 

the kernel that corresponds to the sine modulation used in the lock-in technique.  

Figure S8. YSR energy versus width of the exchange splitting gap. The plot shows results of NRG 
calculations, where the YSR peak energy corresponding to the larger (smaller) peaks are shown as 
filled (empty) circles. Different colors correspond to NRG calculations for  ranging from 0 to 1. 𝛽
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