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Supplementary Appendix 

This appendix has been provided by the authors to give readers additional information about their work. 
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Christophe E. Graf, Walter Zingg, Stephan Harbarth. Explosive nosocomial outbreak of SARS-CoV-2 in a 

rehabilitation clinic: the limits of genomics for outbreak reconstruction. 
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Supplementary Material 

Microbiological Methods 

Unbiased high-throughput sequencing (HTS) analysis  

All nasopharyngeal swabs (NPS) with cycle threshold (Ct) values ≤ 30 or < 35 obtained for the E gene (Cobas 

6800 SARS CoV2 RT-PCR and the Charite assays) and the S gene (BD SARS-CoV2 reagent kit for BD Max 

system), respectively, and for which sufficient volume remained, were selected for unbiased HTS analysis 

(n=56).  

HTS analysis was performed using the RNA protocol previously published [1]. Briefly, for each NPS, 

220 μl were centrifuged at 10,000 × g for 10 min to remove cells. Then, two-hundred μl of cell-free 

supernatant were treated with 40U of Turbo DNAse (Ambion, Rotkreuz, Switzerland), according to the 

manufacturer’s instructions. Nucleic acids were extracted with TRIzol (Invitrogen, USA). Ribosomal RNA 

depletion (Ribo-Zero Gold depletion kit (Illumina, USA) was done before libraries preparation (TruSeq total 

RNA preparation protocol (Illumina)). Libraries concentrations and sizes were analysed using the Qubit (Life 

Technologies, USA) and the 2200 TapeStation instruments (Agilent, USA), respectively. Libraries were 

multiplexed (1:4, 1:5 or 1:6) on the HiSeq 4000 platform (Illumina) using the 2x100-bp protocol with dual-

indexing.  

Duplicate reads were removed using cd-hit (v4.6.8). Low-quality and adapter sequences were 

trimmed out using Trimmomatic (v0.33). Reads were then mapped against the reference sequence 

MN908947 using snap-aligner (v1.0beta.18). Consensus for sequences with at least 10-fold coverage were 

then generated using custom script. In parallel, all raw data were analysed using a bioinformatic pipeline [2] 

that used virusscan 1.0 (https://github.com/sib-swiss/virusscan) to map reads against a respiratory viruses 

restricted database from Virosaurus [3] for the detection of co-infections. 

NPS with either Ct values > 30 or ≥ 35 obtained for the E gene (Cobas 6800 SARS CoV2 RT-PCR and 

the Charite assays) and the S gene (BD SARS-CoV2 reagent kit for BD Max system), respectively, or for which 

low SARS-CoV-2 genome coverage were obtained (i.e. < 80%) by the unbiased HTS method, were sequenced 

with an amplicon-based sequencing method if a sufficient volume remained. Thus, nucleic acids were 
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extracted using the NucliSENS easyMAG (bioMérieux, Geneva, Switzerland) and them sequenced using an 

updated version of the nCoV-2019 sequencing protocol (https://www.protocols.io/view/ncov-2019-

sequencing-protocol-bbmuik6w) (Microsynth, Balgach, Switzerland) on a MiSeq instrument (Illumina) with a 

2x250-bp protocol. 

 

Phylogenetic analysis 

Sequence alignment was performed with MUSCLE (v3.8.31). The Evolutionary analyses were conducted in 

MEGA X [4] using the Maximum Likelihood method and Tamura 3-parameter model [5]. The tree includes 

also all SARS-CoV-2 complete genomes sequenced by our laboratory and submitted to GISAID from 

respiratory samples from COVID-19 positive patients presenting to our institute or others medical centre in 

Geneva, Switzerland, during the same period. 
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Implementation of the outbreaker2 models 

We combined epidemiologic and genetic data using the outbreaker2 package in the R software, which 

has been used successfully in the reconstruction of the 2003 SARS-CoV-1 outbreak in Singapore [6, 7]. The 

model uses a Bayesian framework, which combines information on the generation time (time between 

infections in an infector/infectee pair), with a model of sequence evolution to probabilistically reconstruct 

the transmission tree. 

As dates of onset of symptoms are known, and because dates of infection (i.e. acquisition) are not 

known with certainty, we imputed serial intervals from estimates from the work by Ali et al. [8], who showed 

that the serial interval decreased from the early stages of the pandemic due to improved control using non-

pharmaceutical measures. For the primary analysis we used a short serial interval (mean 3.0, standard 

deviation [SD] 4.1), under the assumption of swift isolation of patients following symptoms. We used the 

incubation period as estimated by Bi et al., which follows a lognormal distribution with parameters mu of 

1.57 and sigma 0.65 (corresponding to a mean of 5.95 days and SD 4.31) [9]. Where dates of onset were 

unavailable, we imputed them by using the median of the difference between symptom onset and date of 

swab. 

The outbreaker package is designed to use contact tracing data to inform who infected whom. These 

data were unavailable for our outbreak, but we made a series of assumptions to generate a matrix of 

possible contacts between cases. Initially we aimed to construct this matrix using dates of presence in the 

hospital/ward for patients based on administrative data, and based on human resources shift rota for HCWs. 

However we identified potential inconsistencies in the latter, in particular stemming from multiple (including 

last-minute) changes as a result of many HCWs self-isolating due to possible or confirmed COVID-19. We 

therefore used these data in a sensitivity analysis, but for our main analysis, we reverted to a simpler set of 

assumptions to build our contact matrix. In our main analysis we assumed that HCWs were present in the 

hospital every day until the date of their first positive swab, included. We further assumed that patients only 

interacted with patients in their own ward, except for frail patients who were assumed to not have contact 

with any other patients. We assumed that all HCWs and administrative staff were able to infect each other, 
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but only HCWs could have contact with patients, and only in the wards they were attributed to; HCWs such 

as physical therapists or doctors who worked across multiple wards could have significant contact with all 

HCWs and patients. Under these assumptions, we are likely to capture many contacts which did not happen, 

and it is possible that we miss a few contacts which in fact did happen. However outbreaker does account 

for imperfect sensitivity and specificity of contact data, the levels of which are estimated as part of the 

model.   

We conducted a number of different analyses, including a base scenario and several (n = 4) one-way 

sensitivity analyses (Supplementary Table 1): 

o Sensitivity analysis 1: 

§ We did not make any assumptions about contact patterns, and therefore all cases in 

the outbreak could potentially infect all other cases. 

o Sensitivity analysis 2: 

§ We used a longer serial interval (mean 5.2 days, SD 4.7) to allow for potentially 

slower isolation of symptomatic patients. 

o Sensitivity analysis 3: 

§ We used the HCW shift data from the human resources department, with minor 

corrections (removing HCWs that were mislabelled as "present" after date of 

positive RT-PCR). For both patients and HCWs we categorised days of "susceptibility" 

(5th percentile of the cumulative incubation period from Bi et al. [9]) and days of 

"infectiousness" (2 days before symptom onset based on the study by He et al. [10]). 

The last day of "infectiousness" was the date of swab for HCWs. 

o Sensitivity analysis 4: 

§ We assumed that isolation precautions prescribed for patients on date of positive 

RT-PCR were effective, and that from that date patients were no longer infectious. 
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For each model, we used a uniform prior between 0.75 and 1 for the reporting probability ("pi"). 

Indeed, we had a comprehensive screening and testing strategy, including of asymptomatic cases, and are 

therefore confident that we captured a near-total proportion of cases. We obtained sequences for 82% of all 

identified cases, and these are the cases used in the model. The lower bound of the prior for "pi" thus allows 

us to have missed 6 cases in addition to the 14 that were not sequenced. Posterior estimates for "pi" were 

compared to our prior choice to assess the validity of this assumption.  

Given our high sampling rate, we allowed a single unobserved case on a transmission chain between 

any two observed cases (maximum "kappa" of 2 in outbreaker). This allows for identification of missed 

cases. 

We used the default priors for the mutation rate ("mu") for all models (uninformative expoential 

prior with mean 1), and, where relevant, those for non-infectious contact rate ("lambda") and contact 

reporting coverage ("eps"), which uniform on [0, 1] [7, 11]. We used the default likelihoods for all models, 

except for the model without contact data where this was disabled [7, 11]. 

We ran each outbreaker model over 500,000 iterations of the MCMC, with a thinning of 1 in 500, in 

order to obtain 1000 posterior likelihood estimates, after a burn-in of 500 iterations. Convergence was 

assessed visually and through the Gelman-Rubin convergence diagnostic (using the gelman.diag function 

in the R package coda v0.19-4) [12], concluding that the chains converged appropriately if the upper 

limit of the confidence interval was < 1.1. 

We reconstructed who infected whom within a Bayesian framework, while simultaneously 

estimating the dates of infection and mutation rate, as well as the sensitivity and specificity of reported 

contacts. We were also able to determine whether there were multiple importation events and missed 

cases. We examined the transmission tree with the highest posterior probability (which was also the 

iteration with the highest posterior likelihood).  
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Supplementary Tables 

Supplementary Table 1. Composition of baseline outbreaker2 model and different sensitivity analyses.  

Scenario type Onset of 

symptoms 

Genetic data Contact data Short 

serial interval 

Longer serial 

interval 

Baseline scenario X X X X  

 

Sensitivity analyses      

1. X X  X  

2. X X X  X 

3. X X Xa X  

4.  X X Xb X  

 a For this model, we used the HR data for healthcare workers (with some corrections) 

b For this model, we assumed that patients were no longer infectious after the date of positive RT-PCR 
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Supplementary Table 2. Proportions of infections attributed to HCWs (fHCW) derived from a sample of 999 
reconstructed transmission trees, for main analysis and all sensitivity analyses. 
The Wilcoxon-Mann-Witney test compares the reported mean fHCW to random expectations given the 
proportion of HCWs cases (46·8%). 
 

Type of infected case Mean fHCW 95% CI Relative excess of 
HCW infections 

Wilcoxon-
Mann-Whitney 
test 

p-value 

Main analysis 

All cases 70·7% 70·4% - 71·2% + 51·3% V = 499500 p < 2·2e-16 

Only HCWs  61·1% 60·5% - 61·7% + 30·6% V = 492607 p < 2·2e-16 

Only patients 79·0% 78·5% - 79·5% + 68·5% V = 499500 p < 2·2e-16 

Only frail patients 82·3% 81·8% - 82·9% + 76·1% V = 499495 p < 2·2e-16 

Sensitivity analysis 1 

All cases 54·9% 54·4% - 55·3% + 17·3% V = 480614 p < 2·2e-16 

Only HCWs  55·0% 54·4% - 55·6%   + 17·6% V = 444150 p < 2·2e-16 

Only patients 54·6% 54·0% - 55·1% + 16·6% V = 458552 p < 2·2e-16 

Only frail patients 54·7% 54·1% - 55·4% + 17·0% V = 434052 p < 2·2e-16 

Sensitivity analysis 2 

All cases 72·6% 72·2% - 72·9% + 55·2% V = 499478 p < 2·2e-16 

Only HCWs  63·0% 62·4% - 63·6% + 34·6% V = 494900 p < 2·2e-16 

Only patients 80·8% 80·3% - 81·3% + 72·7% V = 499486 p < 2·2e-16 

Only frail patients 84·2% 83·6% - 84·7% + 79·9% V = 499491 p < 2·2e-16 

Sensitivity analysis 3 

All cases 71·8% 71·4% - 72·1% + 53·4% V = 499500 p < 2·2e-16 

Only HCWs  63·4% 62·9% - 63·9% + 35·6% V = 498370 p < 2·2e-16 

Only patients 78·8% 78·4% - 79·2% + 68·5% V = 499500 p < 2·2e-16 

Only frail patients 82·9% 82·4% - 83·3% + 77·1% V = 499500 p < 2·2e-16 

Sensitivity analysis 4 

All cases 68·6% 68·2% - 69·1% + 46·7% V = 499495 p < 2·2e-16 

Only HCWs  61·5% 60·9% - 62·1% + 31·5% V = 492946 p < 2·2e-16 

Only patients 74·6% 74·0% - 75·2% + 59·5% V = 499484 p < 2·2e-16 

Only frail patients 77·4% 76·7% - 78·1% + 65.6% V = 499365 p < 2·2e-16 
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Supplementary Figures 

Supplementary Figure 1. Sensitivity analysis of time-varying reproduction number Rt. 
Sensitivity analysis of estimated time-varying reproduction number Rt (panel B) using a longer serial interval (mean 5.2 days, SD 4.7) [9]. The epidemic curve 
(panel A) is shown above for ease of interpretation. 
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Supplementary Figure 2. Change in time-varying reproduction number after interventions. 
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Supplementary Figure 3. Gelman-Rubin diagnostic test of convergence for the Markov-Chain Monte-Carlo iterations. 
The values of the upper limit of the 95% confidence interval of the potential scale reduction factors were all <1.1, indicating good convergence.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
post, log-posterior values; like, log-likelihood values; prior, log-value of the prior; pi, reporting probability; mu, mutation rate; pi, reporting probability, eps, 
contact reporting coverage; lambda, non-infectious contact rate  
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Supplementary Figure 4. Sensitivity analysis of outbreaker model with absence of contact data. 
A. ancestry reconstruction, B. transmission tree from Markov-Chain Monte-Carlo iteration with highest 
likelihood. 
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Supplementary Figure 5. Sensitivity analysis of outbreaker model with longer serial interval (mean 5.2 days, SD 
4.7) [9]. 
A. ancestry reconstruction, B. transmission tree from Markov-Chain Monte-Carlo iteration with highest 
likelihood. 
A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B. 
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Supplementary Figure 6. Sensitivity analysis of outbreaker model where contacts were based on human 
resources data for HCWs and on infectious and susceptible periods. 
A. ancestry reconstruction, B. transmission tree from Markov-Chain Monte-Carlo iteration with highest 
likelihood. 
A. 
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Supplementary Figure 7. Sensitivity analysis of outbreaker model where contacts were based on human 
resources data for HCWs and on infectious and susceptible periods. 
A. ancestry reconstruction, B. transmission tree from Markov-Chain Monte-Carlo iteration with highest 
likelihood. 
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Supplementary Figure 8. Proportions of transmissions attributed to HCWs (fHCW) for each sensitivity analysis (I-
IV). 
The blue histograms indicate the expected Binomial distributions of fHCW, given the proportion of HCWs 
amongst cases. The red histograms show the distribution of fHCW, across 999 transmission trees reconstructed 
by outbreaker2. Dotted lines indicate the mean estimate of the proportion. A. All cases. B. Transmission to 
HCWs only. C. Transmission to patients only. D. Transmission to frail patients only. 
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