
 

 

 

 

 

 

 

Supplementary Fig. 1 | Relationships between simulated robustness of ecosystem service 

supply quartiles Rc and analytically-estimated network fragility 𝒇𝒄∗ where c = (a) 0.25 (for 

which 𝜆0.25 = -1.65) and (b) 0.75 (for which 𝜆0.75 = -1.35), from the analysis of 251 empirical 

networks as described in Fig. 4. 

 

 

 

 

 

 

 



 

 

 

 

Supplementary Fig. 2 | Uncertainty in robustness of ecosystem service supply calculated 

from 251 empirical networks is greatest at intermediate values of network fragility (f*0.5). 

We quantified uncertainty as the interquartile range R0.75 – R0.25. A loess smoother (span = 

0.8) with 95% confidence intervals is shown to illustrate the concave relationship. 
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S1 Robustness in the simplified model

In the main text (see Methods), we describe an analytically tractable model
of ecosystem processes (e.g. services), seen as Boolean functions of the pres-
ence/absence of S species (but one could think of populations or even individ-
uals). We distinguish species from their N functional traits, and consider a
special set of Boolean functions of the form

E = AND �ORN : {0, 1}S ! {0, 1}N ! {0, 1}

where ORN : {0, 1}S ! {0, 1}N is a mapping from species to traits configura-
tions. It is the Cartesian product of N (partial) OR functions associated with
traits (thus, a trait is present if at least one species that has this trait is present).
We model the universe of ORN as random bipartite networks with connectance
p. Deriving an expression for the distribution of fraction of species extinctions
that lead to a loss of service is the goal of this subsection. We start from the
probability of having lost at least one trait when n species are lost. The latter
reads

P (ne  n) = 1� (1� qS�n)N ; q = 1� p (S1)

where ne would be the number of extinctions that led to the loss of the first
trait. If we write p(ne), the probability of the loss occurring after exactly ne

extinctions

P (ne  n) =
nX

ne=1

p(ne) (S2)
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We can understand Equation (S1) from the following argument. Consider one
functional trait and write its distribution over species as a vector

[0, 0, 0| {z }
S�n

, 1, ..., 0, 1| {z }
n

]

Extinctions proceed from the right, removing entries until only the S � n last
entries remain. The trait is still represented at this stage if not all remaining
entries are zero. The probability of all these entries being zero is qS�n and, thus,
the probability of the trait still being present is 1 � qS�n. That all traits are
present then reads (1 � qS�n)N , so that the complementary probability is the
probability that at least one trait is lost after n extinctions, thus that ne  n.

We have not yet conditioned on the fact that the process ought to be running
when all species are present. The probability of a trait being present before
extinctions take place is 1 � qS . The probability of all traits being present is
therefore (1 � qS)N , which gives us that p(0) = 1 � (1 � qS)N . From Bayes’
theorem it holds that

P (ne  n) = p(ne  n|ne = 0)p(0) + P (ne  n|ne > 0)(1� p(0))

By definition, P (ne  n|ne = 0) = 1. We deduce that the conditional probabil-
ity

P (ne  n|ne > 0) =
P (ne  n)� p(0)

1� p(0)

This is the cumulative probability of number of extinctions leading to the loss
of at least one trait. From this expression it is straightforward to deduce any
percentile of the actual probability distribution P (ne). For instance, its median
n0.5 is such that, by definition:

P (ne  n0.5|ne > 0) = 0.5

More generally, the cth percentile of P (ne) is the number nc such that

P (ne  nc|ne > 0) = c

which we can invert to get that

nc = S �
log

�
1� (1� qS)c̄1/N

�

log q
c̄ = 1� c

We define robustness R(E), along a specific extinction scenario, as the fraction
ne/S. We thus have that the cth percentile of the distribution of robustness
reads

Rc(E) = 1� fc; fc =
log

�
1� (1� qS)c̄1/N

�

S log q

where we defined a family of network fragility measures (fc)0<c<1.
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S2 Time to service failure

If we assume a constant rate � of species extinction, we can deduce from the
derivations in Appendix S1 the median time to functional extinction, as follows.
Let pt be the probability that a given species, present at time 0, went extinct
by time t. This probability is simply

pt = 1� e��t

On the other hand, consider the median time t0.5 needed for SR0.5 extinctions
to occur, which, is the median number of extinctions needed to lose the function.
We have that

Spt0.5 ⇡ SR0.5 , pt0.5 = R , �t0.5 = � log(1�R0.5) = � log(f0.5)

Note that this formula cannot be true at very high values of R (or low values of
network fragility), where we know that an explicit logarithmic dependence in S
should manifest (indeed t0.5 ⇠ logS if R = 1), a behaviour that takes over the
simple heuristic formula (which diverges at R = 1).

S3 Random Boolean Model

S3.1 Redundancy of random Boolean functions

A Boolean function E⇤ has output 0 or 1 depending on the configuration of N
bits:

E⇤ : x 2 {0, 1}N ! {0, 1}

There are 2N bit configurations, and to each a function associates 0 or 1. Con-
sider the case N = 3. The configuration space is

{0, 1}3 = {(000), (100), (010), (110), (001), (101), (011), (111)}

A function assigns a 0 or a 1 to these configurations, for instance:

E⇤
0 = [00000000]

assigns 0 to all configurations. It is the 0th function. In fact, to each function
we associate a number which is its output list in base 2. For instance:

E⇤
69 = [10100010] = 1 + 0 + 22 + 0 + 0 + 0 + 26 + 0 = 69

is the 69th function. The last function is

E⇤
255 = [11111111] = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27 = 255

so that there are 1 + 255 = 28 functions. More generally, for any N there are
22

N

functions. We can uniformly sample the space of functions by assigning at
random – and with equal probability – the output 0 or 1 to each configuration.
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Supplementary Fig. 3. Left: redundancy of a random Boolean function over {0, 1}N ,

with N = 10. Starting from the configuration (1, 1, ..., 1) the number of bitflips

needed to change the function’s output is exponentially distributed, with mean 2.

Right: for N = 5, 10, 50, we sample 500 functions and plot their mean redundancy.

We see that, as N grows, the distribution becomes increasingly peaked around 2.

Thus, for large N , a typical function requires approximately two bitflips to change its

output.

This procedure is equivalent to sampling numbers between, say, 0 and 10,000
by picking each of 4 digits from a uniform distribution over 0,1,2,...,9.

We will consider functions that have output 1 when all bits are 1, and 0
when all bits are 0.

E⇤(1, 1, ..., 1) = 1; E⇤(0, 0, ..., 0) = 0

Starting from the configuration where all bits are 1, we are interested in the
redundancy of functions. That is, the number of single bit flips required (a bit
is flipped at most once) to change the function output from 1 to 0. The least
redundant function is the logical AND, since one bit flip is enough (redundancy=
1), the most redundant function is the logical OR, since all bits must be flipped
(redundancy = N). From our sampling procedure we deduce that, for a random
function, the probability that its output changes after nflips is 2�n, and the
probability that it takes all bits to be flipped is 2⇥ 2�(2N�1) (and not 2�(2N�1)

since the output must be 0 if all bits are zero; we can check that, with this
constraint, the probability sums to one over the 2N � 1 bit flips). We deduce
that, for a typical function, redundancy is exponentially distributed with an
average of two. Over a uniform sampling of functions their mean redundancy
will distribute around two, with the distribution becoming increasingly peaked
as N grows (Supplementary Fig. 3).

S3.2 Simulation of the random model

From S3.1, we expect that choosing E⇤ =AND (the least redundant function)
over trait configurations is representative of a random choice, taken uniformly
over the space of Boolean functions. Here, we demonstrate this using simu-
lations. We generate random S-species to N -traits networks and informally
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Supplementary Fig. 4. The logical AND for the auxiliary function E⇤ on trait
configurations vs a uniform random choice over the whole space of Boolean functions
bool(N). From left to right: we compare the first quantile, the median, and the third
quantile of the distribution ne/S as a function of the corresponding fragility measure

(f0.25, f0.5 and f0.75, respectively). As expected, the random choice shifts the
distribution to slightly larger values of robustness but without qualitatively a↵ecting

its relationship with network fragility.

sample a Boolean function E⇤ in bool(N), the space of Boolean functions over
{0, 1}N . We compare the results for robustness to the case where E⇤ =AND. As
expected, the random choice systematically gives a larger robustness yet with-
out qualitatively a↵ecting the universal relationship between network fragility
and robustness (Supplementary Fig. 4).
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