Supplementary text summary:

This .pdf file is composed by the Supplementary Material:

- Pg. 2 9: Supplementary Information Supplementary Methods, References, Figure Legends, and Table Headings
- Pg. 10 11: colored versions of Fig.1 and Fig.2 for HTML version.
- Pg. 12 17: Supplementary Figures 1 6
- Pg. 18 20: Supplementary Tables 1 3

1 Supplementary Information

2	Extinction of anciently associated gut bacterial symbionts in a clade of
3	stingless bees
4	
5	Alan Emanuel Silva Cerqueira ¹ , Tobin J. Hammer ² , Nancy A. Moran ² , Weyder
6	Cristiano Santana ³ , Maria Catarina Megumi Kasuya ¹ , Cynthia Canêdo da Silva ¹
7	
8	Corresponding author: Alan Emanuel Silva Cerqueira: emanuelalansc@gmail.com /
9	+55 31 36125056
10	¹ Department of Microbiology, Federal University of Viçosa, Viçosa, MG 36570-900,
11	Brazil
12	² Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712,
13	USA
14	³ Department of Entomology, Federal University of Viçosa, Viçosa, MG 36570-900,
15	Brazil

16 Supplementary Methods

We sampled bee colonies from 23 Melipona populations from four 17 Brazilian biomes: Atlantic Forest, Caatinga (dry Tropical Forest in semiarid 18 region), Cerrado (Brazilian Savanna) and Amazon (SISBIO/ICMBio authorization 19 number 69500-1). For each population (i.e., bees from the same species living in 20 the same site) 3 bee colonies, consisting of bees living in beekeeping boxes, 21 22 were sampled. Additionally, 3 colonies of honeybees (Apis mellifera) and 8 of the stingless bee Tetragonisca angustula were sampled and used as comparison 23 groups (Table S1). 24

Bee specimens with similar morphology were grouped into morphotypes and identified based on taxonomic keys [1] and by comparison with specimens previously identified by specialists. A total of 14 morphotypes, comprising 8 identified species from the four *Melipona* sub-genera [2] and 6 morphotypes whose identification could not be confirmed (referred to as "*Melipona* cf. = *conferatum*") were sampled (see Table S1 for details).

Some bees were identified by collaborators: bees sampled in Amazonian 31 biome (coded MSN and MIN) were identified by Professor Fernando Amaral da 32 33 Silveira from the Federal University of Minas Gerais – Brazil; bees from the Santa Tereza city in the Atlantic forest biome (coded MQ7, MRF and MAN) were 34 identified by Professor Eduardo Antonio Ferreira from the Federal Institute of 35 Espírito Santo – Brazil; Tetragonisca angustula bees (coded TET) were identified 36 by Professor Helder Canto Resende from the Federal University of Vicosa -37 Brazil. Voucher specimens were deposited in the scientific collection of the 38 Regional Museum of Entomology of the Federal University of Vicosa (UFVB) -39 40 Brazil.

41 From each of the 80 bee colonies we sampled, 10-20 bees were taken from the box entrance and placed in sterile tubes containing 95% ethanol. Then, 42 5 bees from each box were dissected using sterile forceps and iris scissors with 43 a stereoscopic microscope. Each set of 5 guts was pooled together as a single 44 sample, an approach used to ensure a sufficient yield of DNA for PCR 45 amplification. Then, we extracted total DNA using the kit NucleoSpin® Soil 46 (Macherey-Nagel) preceded by a proteinase K treatment for 4 hours at 56°C. The 47 DNA was submitted for 250 bp paired-end amplicon sequencing at Novogene 48 49 Corporation Inc (Sacramento, CA, USA) using an Illumina NovaSeq 6000

50 Sequencing System. The primer pairs 341F (CCTAYGGGRBGCASCAG) – 806R

51(GGACTACNNGGGTATCTAAT)andITS5-1737F52(GGAAGTAAAAGTCGTAACAAGG)-ITS2-2043R

(GCTGCGTTCTTCATCGATGC) were used, targeting the 16S rRNA V3-V4 and 53 ITS1 rDNA regions, respectively. Sequencing of the 16S rDNA gene region was 54 successful for all the samples, but two samples (coded MRF and MSP3) were not 55 sequenced for the fungal ITS region due to poor amplification during library 56 preparation (Table S1). The data (SRA accession number PRJNA678404) were 57 processed with the DADA2 [3] package in R following the DADA2 microbiome 58 59 pipeline for 16S (available at: https://benjjneb.github.io/dada2/tutorial.html) and for ITS (available at: https://benjjneb.github.io/dada2/ITS_workflow.html). Briefly, 60 DADA2 was used to filter, trim, de-replicate and denoise sequences. For fungi, 61 62 trimming was not performed, and adapters were removed using Cutadapt [4]. After removing chimeras, we then used these merged paired-end reads to 63 construct an exact sequence variant (ESV) table. Finally, the taxonomy was 64 assigned to ESVs by naive Bayesian classifier method implemented in DADA2 65 using trained SILVA database for bacteria and trained UNITE database for fungi. 66 67 For data analysis we used the R packages "mctoolsr" (available at: https://github.com/leffi/mctoolsr), "phyloseg" [5], "ggplot2" [6] and "vegan" [7]. 68 First, mitochondria, chloroplasts, and low abundance ESVs (those with <100 total 69 reads across all samples) were removed from the dataset (Table S3). We then 70 made rarefaction curves, which demonstrate that our sequencing depth 71 72 adequately captured the majority of bacterial diversity (Fig. S6). Then, we visualized the differences in bacterial (Fig. 1A) and fungal (Fig. 2) community 73 composition between bee species at the genus level and, for bacteria, we 74

compared our results to previously published data [8]. The significance of the 75 76 differences in the relative abundance of microbial taxa between our Melipona, Apis mellifera and Tetragonisca angustula samples was determined using a 77 Kruskall-Wallis test. For the core Melipona bacterial taxa (i.e., taxa containing 78 ESVs present in all samples of all Melipona species) we compared the log-79 transformed mean relative abundances of the most abundant ESVs in each bee 80 population (Fig. 1B). Furthermore, these ESVs were submitted to BLASTN 81 similarity searches against GenBank at NCBI Reference Sequence Database at 82 which we could identify and download sequences from type isolates aligned to 83 84 them. Downloaded sequences (Table S2) were aligned using ClustalW and the Maximum Likelihood phylogenetic tree made with bootstrap of 1000 replications 85 using MEGA software [9]. By this approach we could determine the possible 86 87 origin of dominant ESVs in *Melipona*, specifically whether they are related to widespread environmental taxa or to specialized associates of social bees (Fig. 88 S1-S4). A similar approach was used to determine the possible origin of the most 89 abundant ESVs of Starmerella, the only core Melipona fungal taxon (Fig. S5). 90 Finally, we made a simplified representation of the phylogenetic relationship 91 92 between eusocial corbiculate bees (based on [2]) showing the gains [8, 10] and our hypothesized losses of corbiculate core symbionts (Fig. 1C). 93

94 Supplementary References

95	1.	Camargo JMF, Pedro SRM. Meliponini Lepeletier, 1836. In Moure, J. S.,
96		Urban, D. & Melo, G. A. R. (Orgs). Catalogue of Bees (Hymenoptera,
97		Apoidea) in the Neotropical Region - online version. 2013.
98		http://www.moure.cria.org.br/catalogue. Accessed 20 Jan 2021.
99	2.	Ramírez SR, Nieh JC, Quental TB, Roubik DW, Imperatriz-Fonseca VL,
100		Pierce NE. A molecular phylogeny of the stingless bee genus Melipona
101		(Hymenoptera: Apidae). Mol Phylogenet Evol. 2010; 56: 519–525.
102	3.	Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes
103		SP. DADA2 : High-resolution sample inference from Illumina amplicon
104		data. Nat Methods. 2016; 13 : 581–583.
105	4.	Martin M. Cutadapt Removes Adapter Sequences From High-Throughput
106		Sequencing Reads. EMBnet J. 2011; 17 : 5–7.
107	5.	McMurdie PJ, Holmes S. phyloseq : An R Package for Reproducible
108		Interactive Analysis and Graphics of Microbiome Census Data. PLoS
109		One. 2013; 8 : e61217.
110	6.	Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2016. Springer-
111		Verlag New York.
112	7.	Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et
113		al. vegan: Community Ecology Package. R package version 2.5-7.
114		https://CRAN.R-project.org/package=vegan.
115	8.	Kwong WK, Medina LA, Koch H, Sing KW, Soh EJY, Ascher JS, et al.
116		Dynamic microbiome evolution in social bees. Sci Adv. 2017; 3: 1–17.

117	9.	Kumar S, Stecher G, Tamura K. MEGA7 : Molecular Evolutionary
118		Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;
119		33 : 1870–1874.

10. Kwong WK, Moran NA. Gut microbial communities of social bees. *Nat Rev Microbiol.* 2016; **14**: 374–384.

122

123 Supplementary Figure Legends

124 Fig S1. Phylogenetic tree of the most abundant *Lactobacillus* ESVs found in the samples of the Melipona bee populations. Sequences used in the tree were 125 obtained in the GenBank database (accession numbers and other information in 126 Table S2). Bootstrap values are shown in blue letters. ESVs in orange are 127 128 phylogenetically closer to isolates obtained from environmental samples. ESVs in purple are closer to isolates obtained from honeybees or bumblebees 129 130 (Lactobacillus Firm-4 or Firm-5). Only taxa most closely related to Melipona ESVs 131 are labeled. The root was placed on the branch leading to Pediococcus acidilactici. 132

133 Fig S2. Phylogenetic tree of the most abundant Acetobacteraceae ESVs found in the samples of the Melipona bee populations. Sequences used in the tree were 134 135 obtained in the Genbank database (accession numbers and other information in Table S2). Bootstrap values are shown in blue letters. ESVs in orange are 136 phylogenetically closer to isolates obtained from environmental samples. ESVs 137 in purple are closer to isolates obtained from bees. ESVs in gray are closer to 138 isolates from alternative hosts (ESV 5) or have uncertain phylogenetic proximity 139 to environmental – pollen/flowers or bee associated isolates (ESV 9 and ESV 12). 140

141 Only taxa most closely related to *Melipona* ESVs are labeled. The root was 142 placed on the branch leading to *Acidomonas methanolica*.

Fig S3. Phylogenetic tree of the most abundant Bifidobacteriaceae ESVs found in the samples of the *Melipona* bee populations. Sequences used in the tree were obtained in the Genbank database (accession numbers and other information in Table S2). Bootstrap values are shown in blue letters. ESVs in purple are phylogenetically closer to bacteria isolated from bees. Only taxa most closely related to *Melipona* ESVs are labeled. The root was placed on the branch leading to *Gardnerella vaginalis*.

Fig S4. Phylogenetic tree of the core *Floricoccus* ESV found in the samples of the *Melipona* populations. Sequences used in the tree were obtained in the Genbank database (accession numbers and other information in Table S2). Bootstrap values are shown in blue letters. The ESV in orange is closely related to environmental isolates. Only the taxon most closely related to *Melipona* ESV is labeled. The root was placed on the branch leading to *Lactobacillus kunkeei* and *Lactobacillus apis*.

Fig S5. Phylogenetic tree of the most abundant Starmerella ESVs found in the 157 158 samples of the Melipona populations. Sequences used in the tree were obtained in the Genbank database (accession numbers and other information in Table S2). 159 Bootstrap values are shown in blue letters. ESVs in orange are phylogenetically 160 closer to isolates obtained from environmental (beehive) samples. ESVs in purple 161 are closer to isolates obtained from bees. Only taxa most closely related to 162 Melipona ESVs are labeled. The root was placed on the branch leading to 163 164 Wickerhamiella azymoides.

165

Fig S6. Rarefaction the 80 166 curves of samples after removing Mitochondria/Chloroplasts and low abundance ESVs (<100 reads across all 167 samples) from the bacterial dataset. The curves indicate that the samples 168 reached a plateau, thus, overall bacterial diversity is adequately captured by our 169 sequencing. 170

171

172 Supplementary Table Headings

- 173 Table S1. Bee populations sampled in this study.
- 174 Table S2. GenBank sequences used for analyses.
- 175 Table S3. Number of ESVs and reads in the original bacterial dataset, after initial
- 176 filtration of mitochondria/chloroplasts, and after subsequent low abundance ESVs
- 177 filtering.

(a) Melipona spp. from the Atlantic Forest biome

- (b) Melipona spp. from the Caatinga biome
- (c) Melipona spp. from the Cerrado biome
- (d) Melipona spp. from the Amazon biome

- (e) Tetragonisca angustula from the Atlantic Forest biome
- (f) Apis mellifera from Atlantic Forest biome
- NSB Neotropical Stingless bees
- HB Honeybees

Sample Size

Code		Sampling date	Sampling Biome	Sampling city	Sampling state	Popul ation	Morph otype	Bee species	Sub-genus	Sequenced samples	
	NOBI									16S	ITS
MQ1	MQA1	May-19	Atlantic Forest	Magé	Rio de Janeiro	1	1	Melipona quadrifasciata	Melipona	3	3
MQ2	MQA2	May-19	Atlantic Forest*2	São Sebastião do Paraíso	Minas Gerais	2	1	Melipona quadrifasciata	Melipona	3	3
MQ3	MQA3	May-19	Atlantic Forest*2	Antônio dos Santos/Caeté	Minas Gerais	3	1	Melipona quadrifasciata	Melipona	3	3
MQ4	MQA4	Apr-19	Atlantic Forest	Viçosa	Minas Gerais	4	1	Melipona quadrifasciata	Melipona	3	3
MQ5	MQA5	May-19	Atlantic Forest	Cotia	São Paulo	5	1	Melipona quadrifasciata	Melipona	3	3
MQ6	MQA6	May-19	Atlantic Forest	São Paulo	São Paulo	6	1	Melipona quadrifasciata	Melipona	3	3
MQ7	MQA7	Apr-19	Atlantic Forest	Santa Tereza	Espírito Santo	7	1	Melipona quadrifasciata	Melipona	3	3
MQ8	MQQ	May-19	Atlantic Forest	Cotia	São Paulo	8	1	Melipona quadrifasciata	Melipona	3	3
MM1	MM1	Aug-18	Atlantic Forest	Viçosa	Minas Gerais	9	2	Melipona mondury	Michmelia	3	3
MSP1	MM2	May-19	Atlantic Forest	Cotia	São Paulo	10	3	Melipona cf. mondury	Michmelia	3	3
MSP2	MRF_ SP	May-19	Atlantic Forest	São Paulo	São Paulo	11	4	Melipona cf. rufiventris	Michmelia	3	3
MRF	MRF	Apr-19	Atlantic Forest	Santa Tereza	Espírito Santo	12	5	Melipona rufiventris	Michmelia	3	-
MSP3	MSC	May-19	Atlantic Forest	Cotia	São Paulo	13	6	Melipona cf. scutellaris	Michmelia	3	-
MSP4	MBS	May-19	Atlantic Forest	São Paulo	São Paulo	14	7	Melipona cf. bicolor	Eomelipona	3	3
MSP5	MRG	May-19	Atlantic Forest	Cotia	São Paulo	15	8	Melipona cf. marginata	Eomelipona	3	3
MAN	MAN	Apr-19	Atlantic Forest	Santa Tereza	Espírito Santo	16	9	Melipona mandacaia	Melipona	3	3
MAN2	MAN2	May-19	Caatinga	Petrolina	Pernambuco	17	9	Melipona mandacaia	Melipona	3	3
MAL	MAL	May-19	Caatinga	Petrolina	Pernambuco	18	10	Melipona asilvai	Eomelipona	3	3
MSU	MSU	Aug-19	Caatinga	Mossoró	Rio Grande do Norte	19	11	Melipona subnitida	Melipona	3	3
MQ9	MQA8	Dec-18	Cerrado	Passos	Minas Gerais	20	1	Melipona quadrifasciata	Melipona	3	3
MSN	MSN	Jun-19	Amazon	Iranduba	Amazonas	21	12	Melipona seminigra merrillae	Michmelia	3	3
MSP6	MFL	Jun-19	Amazon	Iranduba	Amazonas	22	13	Melipona cf. rufiventris	Michmelia	3	3
MIN	MIN	Jun-19	Amazon	Iranduba	Amazonas	23	14	Melipona interrupta	Melikerria	3	3
TET	TET	Oct-19	Atlantic Forest	Camargo/Ouro Preto	Minas Gerais	-	-	Tetragonisca angustula	-	8	8
AML	AML	Jul-19	Atlantic Forest	Viçosa	Minas Gerais	-	-	Apis mellifera	-	3	3

Table S1. Bee populations sampled in this study.

*¹ Population code deposited in NCBI-SRA (available at https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA678404)

*² Atlantic forest in transition with Cerrado biome.

Table S2. GenBank sequences used for analyses.

Species name on the tree	Accession	Isolation substrate					
Lactobacillus tree							
Lactobacillus jinshani	NR_165780.1	Solid-State Vinegar Culture of Zhenjiang Aromatic Vinegar					
Lactobacillus apis	NR 125702.1	Stomach of Honeybees					
Lactobacillus bombi	NR_134065.1	Digestive tract of a bumblebee queen (Bombus terrestris)					
Lactobacillus mellis	NR_126249.1	Honey stomach of the honeybee Apis mellifera					
Lactobacillus kunkeei	NR 026404.1	Partially fermented grape juice.					
Lactobacillus modestisalitolerans	NR_136786.1	Traditional Fermented Foods					
Lactobacillus namurensis	NR_042514.1	Sourdough					
Lactobacillus gallinarum	NR 042111.1	Chicken intestine					
Lactobacillus acetotolerans	NR 117073.1	fermented broth of rice vinegar					
Lactobacillus gigeriorum	NR_117057.1	Chicken Crop					
Pediococcus acidilactici	NR_042057.1	Barley					
	Ac	etobacteraceae tree					
Bombella apis	NR 157653.1	The midgut of a honey bee.					
Commensalibacter intestini	NR 116307.1	Drosophila melanogaster gut					
Gluconacetobacter tumulisoli	NR 114383.1	Soil					
Gluconobacter cerevisiae	NR 117735.1	The brewery environment					
Gluconobacter kanchanaburiensis	NR 112822.1	Fermented fruits (spoiled fruits). Artocarpus heterophyllus					
Gluconobacter oxydans	NR 118196.1	Involved in industrial vinegar					
Neokomagataea tanensis	NR 112959.1	Flower of candle bush. Senna alata					
Nauvenibacter vanlangensis	NR 125459 1	Rice rhizosphere					
riguyonibaotor vaniangonolo	111(_12010011	Isolated from Honovboo larvao, associated to purso crops, hypopharvagaal					
Parasaccharibacter apium	NR_133042.1	solated from honeybee larvae, associated to hurse crops, hypopharyngea					
Saccharibacter fioricola	NR_024819.1	Pollen in flowers					
Swingsia samulensis	NR_132672.1	A flower of golden trumpet (Allamanda cathartica)					
l anticharoenia sakaeratensis	NR_041601.1	Soil					
Acidomonas methanolica	NR_112209.1	A septic methanol processing mixture					
	Bit	Idobacteriaceae tree					
Bifidobacterium commune	NR_136422.1	The bumble bee gut					
Bifidobacterium asteroides	NR_044154.1	The Honey Stomach of the Honeybee Apis Mellifera					
Bifidobacterium bohemicum	NR_108439.1	The digestive tract of three bumblebee species					
Bifidobacterium coryneforme	NR_044690.2	The Hindgut of honeybee					
Bifidobacterium indicum	NR_043439.1	The hindgut of honeybee					
Bifidobacterium minimum	NR_044692.2	Sewage					
Bifidobacterium rousetti	NR_164634.1	Faeces of the Egyptian fruit bat Rousettus egyptiacus					
Bifidobacterium myosotis	NR_147760.1	The faeces of common marmosets (Callithrix jacchus)					
Bifidobacterium bombi	NR_104872.1	The Digestive tract content of the bumblebee Bombus lucorum					
Bifidobacterium callitrichos	NR_113172.1	The faeces of common marmoset (Callithrix jacchus)					
Gardnerella vaginalis	NR_118377.1	Human vaginal secretions					
		Floricoccus tree					
Floricoccus penangensis	NR_159225.1	Flowers of Durian tree and Hibiscus					
Floricoccus tropicus	NR_159226.1	Flowers of Durian tree and Hibiscus					
Lactococcus formosensis	NR_114366.1	Fermented broccoli stems					
Lactococcus plantarum	NR_118903.1	Frozen peas					
Lactococcus lactis	NR_113960.1	Human					
Streptococcus tangierensis	NR_134818.1	Raw camel milk					
Streptococcus thoraltensis	NR_026368.1	The intestine of a pig					
Streptococcus hyovaginalis	NR_044912.1	Isolated from the vagina of a pig					
Streptococcus cameli	NR_134817.1	Raw camel milk					
Streptococcus minor	NR_025729.1	The tonsils of a dog					
		Starmerella tree					
Starmerella apicola	NR_130681.1	Gut of bee					
Starmerella floris	NR_155820.1	Adult of the stingless bee Trigona sp. in a <i>M. quinquefolia</i> flower					
Starmerella khaoyaiensis	NR_155821.1	Flower					
Starmerella meliponinorum	NR_137869.1	Pollen provisions of Tetragonisca angustula					
Starmerella neotropicalis	NR_160316.1	Adult bee, Melipona quinquefasciata					
Starmerella riodocensis	NR_137870.1	Pollen-nectar provisions of the solitary bee Megachile sp					
Starmerella bombicola	NR_121483.1	Honey of bumblebee (Bombus)					
Starmerella kuoi	NR_164377.1	Concentrated grape juice					
		Larval provisions, larvae and pupae of the solitary bees Diadasina distincta					
Starmerella batistae	NK_155813.1	and Ptilotrix plumata					
Starmerella jinningensis	NR_155850.1	Flowers of Erianthus rufipilus					
		Ripe fruits of Eugenia uniflora and the larva of the fly Anastrepha					
Wickerhamiella azymoides	NK_164509.1	mucronota found in Peritassa campestris fruits					

Table S3. Number of ESVs and reads in the original bacterial dataset, after initial filtration of mitochondria/chloroplasts, and after subsequent low abundance ESVs filtering.

Original dataset		# / % after filtering mitochondria and chloroplasts	# / % after filtering low abundance ESVs		
ESVs	2852	2806 / 98.39%	794 / 28.30%		
READS	6,911,317	6,894,536 / 99.76%	6,865,138 / 99.57%		