## SUPPLEMENTARY INFORMATION

## Secondary metabolite biosynthetic diversity in the fungal family *Hypoxylaceae* and *Xylaria hypoxylon*

Eric Kuhnert<sup>1,\*</sup>, Jorge C. Navarro-Muñoz<sup>2</sup>, Kevin Becker<sup>1,3</sup>, Marc Stadler<sup>3</sup>, Jérôme Collemare<sup>2</sup>, Russell J. Cox<sup>1</sup>

1 Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany

2 Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands

3 Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany

\*Correspondence: Eric Kuhnert, eric.kuhnert@oci.uni-hannover.de

## **Table of Contents**

| Supplementary tables (S1-S5)   | Page 2  |
|--------------------------------|---------|
| Supplementary figures (S1-S16) | Page 6  |
| References                     | Page 20 |

| Protein             | protein name                                | organism                     | Reference                     |
|---------------------|---------------------------------------------|------------------------------|-------------------------------|
| Acc. No.            |                                             | organishi                    | Reference                     |
| Δ6T923              | FAD-dependent urate hydroxylase HpxO        | Klehsiella                   | (O'Leary                      |
| A01525              |                                             | nneumoniae                   | et al                         |
|                     |                                             | pheumonide                   | 2009)                         |
| 000101              | EAD-dependent monooxygenase TerC (terrein   | Asperaillus terreus          | (72005)                       |
| QUDIFI              | hiosynthesis) - reannotated                 | Asperginus terreus           | (2aemeei                      |
| VUV21161121 V       | EAD dependent menoexygenase Asl 4           | Sarocladium sp               | (Schor at                     |
| A0A20802L4          | (vonovulono A biosynthosis)                 | Sulociuliuni sp.             | (JCHOI 22                     |
| ΔΟΔΟΙΙΘΙΙΟΙΟ        | EAD dependent menoeyygenase Asl 6           | Sarocladium sp               | (Schor at                     |
| AUAZU8UZLU          | (vonovulono A biosunthosis)                 | Surociuululli sp.            | (JCHOI EL                     |
|                     | EAD dependent menoevygenase Adr             | Ponicillium roquoforti       | (Poins                        |
| AUATTOBIL 9         | (andrastin biosynthesis)                    | Femennum Toquejorti          | (Nojas-                       |
|                     | (and as the biosynthesis)                   |                              | AEU0 EL                       |
|                     | EAD dependent menoeyugenase BurE            | Acnoraillus fumigatus        | (11. 2017)                    |
| Q4WLD1              | (puripuropopo biosunthosis)                 | Asperginus junnyutus         | (11011 21 01.                 |
| 000014              | (pyripyropene biosynthesis)                 | Acharaillus tarraus          | 2010)                         |
| QUC9L4              | (citropyiridin biosynthesis)                | Aspergillus terreus          | (LIII <i>Et ul.</i>           |
|                     | (citreovinum biosynthesis)                  | Collatatrichum               | 2010)<br>(Teukada             |
| H11/1/130           | (higginginging higgunghosic)                | biggingiggum                 |                               |
|                     | (nigginsianin biosynthesis)                 | nigginsianum                 | 2020                          |
| A0A2016602          | FAD dependent managevigenase StrO           | Strahilurus tangsallus       | 2020)<br>(Nofiani             |
| AUA3BIEFQZ          | (strabilurin A biosunthesis)                | Strobilurus tenucellus       |                               |
|                     | (strobilurin A biosynthesis)                |                              | 2018)                         |
| 000162              | C mathylealightic acid daearhayylaca AtA    | Aconstallus torrous          | 2018)<br>(Cup of              |
| QUC162              | 6-methylsalicylic acid decarboxylase AtA    | Aspergillus terreus          | (Guo et                       |
|                     | (terreic acid biosynthesis)                 |                              | <i>al.</i> 2014)              |
| n/a                 | FAD-dependent monooxygenase MirPigN         | wondscus ruber               | (Chen et a)                   |
| C2// 4/C2           | (azaphilone biosynthesis)                   | A                            | <i>al.</i> 2017)              |
| G3XIVIC2            | FAD-dependent monooxygenase AzaH            | Aspergilius niger            | (Zabala <i>et</i>             |
| A 20757             | (azanigerone biosynthesis)                  | Announillus ninou            | (1) $(2012)$                  |
| AZQTE7              | (asstalamida historithasia)                 | Aspergilius niger            | (wang  et                     |
| 01040724            | (pestalamide biosynthesis)                  | llun ann la a fuaraifa mar a | 01. 2018)<br>(Decker at       |
| QNC49734            | (acceptions bicounthesis)                   | пурохуют јгадіјотте          |                               |
| DELINIZE            | (azaphilone biosynthesis)                   | Donicillium rubonc           | (Kablart                      |
| BOHIN/0             | (application of the synthesis)              | Penicillum rubens            | (Kanlert                      |
|                     | (sorbicilinoid biosynthesis)                |                              | 2020                          |
| CODETO              | FAD dependent menopy/genoce CarE            | Trichadorma rocci            | 2020)<br>(Derntl et           |
| GURBIU              | (corbicillingid biosynthesis)               | inchodernia reeser           | (Definit et al. 2017)         |
|                     | (sol bicininolu biosynthesis)               | Acnoraillus nidulans         | <i>UI.</i> 2017)<br>(Vaogashi |
| USBOAS              | (asperniding A biosynthesis)                | Asperginus muuluns           | (raegasiii                    |
|                     | (asperniume A biosynthesis)                 |                              | 2012)                         |
| A O A O O A D O 7 F | FAD dependent menopy/genoce CAT7            | Stachybetryc                 | 2015)<br>(Samaika             |
| AUAU84B925          | (catratavia biosynthesic)                   | stachyboliys                 | (Semens                       |
|                     | (satratoxin biosynthesis)                   | chartarum                    | 2014)                         |
|                     | FAD dependent manageurgenase AfeD           | Acnoraillus nidulans         | 2014)<br>(Chiang at           |
| Q2BE11              | (asperfurances biosynthesis)                | Asperginus maulans           |                               |
|                     | (asperiuranone biosynthesis)                | Charatanium                  | 01. 2009)                     |
| n/a                 | (abaataviridin biggynthasis)                | chaetomium                   | (whiter $et$                  |
|                     | (chaetovinum biosynthesis)                  | giobosum<br>Dhama an         | (7hai at                      |
| AUA4V1E815          | rad-dependent monooxygenase EupB            | Phoma sp.                    | (2  naret)                    |
|                     | (eupeniteiain biosynthesis)                 | Carooladium                  | ui. 2019)                     |
| AUA2U8U2L6          | Allcylate hydroxylase ASL1 (Xenovulene A    | Sarociaaium sp.              |                               |
|                     | Diosyllillesis)                             | Acnoraillus nidulana         | ui. 2018)<br>(Corke et        |
| UNUNC               | (Derivative of henzeldebude biosynthesis)   | Aspergillus Illuululis       | al 2012                       |
|                     | (Derivative of Derizableffyde Diosynthesis) |                              | ui. 2012j                     |

**Table S1**: Reference protein sequences used for phylogenetic reconstruction of Flavin-dependent monooxygenases involved in azaphilone biosynthesis.

| B8M9J8   | FAD-dependent monooxygenase TropB<br>(tropolone biosynthesis) | Talaromyces<br>stinitatus | (Davison<br>et al          |
|----------|---------------------------------------------------------------|---------------------------|----------------------------|
| QNC49728 | FAD-dependent monooxygenase Hfaza2D                           | Hypoxylon fragiforme      | 2012)<br>(Becker <i>et</i> |
|          | (azapinione biosynthesis)                                     |                           | ui. 2021)                  |

| e S2: Reference protein sequences used for phylogenetic reconstruction of NRPS-like proteins with A-T-TE. |
|-----------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------|

| Protein     | protein name                                    | organism             | Reference                |
|-------------|-------------------------------------------------|----------------------|--------------------------|
| Acc. No.    |                                                 |                      |                          |
| B8NTZ9      | Piperazines biosynthesis cluster protein A LnaA | Aspergillus flavus   | (Forseth                 |
|             |                                                 |                      | et al.                   |
|             |                                                 |                      | 2013)                    |
| Q0CU19      | Butyrolactone IIa synthetase BtyA               | Aspergillus terreus  | (Hühner                  |
|             |                                                 |                      | et al.                   |
| 050774      |                                                 | A                    | 2018)<br>()(also at a)   |
| Q5B714      | Microperturanone synthase MicA                  | Aspergilius niaulans | (Yen <i>et al.</i>       |
|             | Atromantin synthetaca AtrA                      | Taninalla nanuaidas  | 2012)<br>(Schnoider      |
| DISITI      | Attomentin synthetase AttA                      | rupinenu punuoiues   | (Schneider               |
|             |                                                 |                      | 2008)                    |
| I6NXV7      | Atromentin synthetase GreA                      | Suillus arevillei    | (Wackler                 |
|             |                                                 | eamae greenner       | et al.                   |
|             |                                                 |                      | 2012)                    |
| A0A0S1RUN4  | Atromentin synthetase InvA2                     | Paxillus involutus   | (Braesel <i>et</i>       |
|             |                                                 |                      | al. 2015)                |
| A0A0S2E7Z1  | Atromentin synthetase InvA1                     | Paxillus involutus   | (Braesel <i>et</i>       |
|             |                                                 |                      | al. 2015)                |
| A7XRY0      | Didemethylasterriquinone D synthetase TdiA      | Aspergillus nidulans | (Balibar <i>et</i>       |
|             |                                                 |                      | al. 2007)                |
| AUO29226    | Phenguignaric acid synthetase PgnA              | Aspergillus terreus  | (Hühner                  |
|             |                                                 |                      | et al.                   |
| 0000000     |                                                 | A                    | 2018)                    |
| QUCWDU      | Aspuivinone E synthase ApvA                     | Aspergilius terreus  | (Hunner                  |
|             |                                                 |                      | et al.<br>2019)          |
| 00033611965 | Asnulvinone E synthetase MelA                   | Asneraillus terreus  | 2010)<br>(Gaih <i>et</i> |
| A043300303  | Asparvinone E synthetase MelA                   | Asperginus terreus   | al. 2016)                |

**Table S3**: Composition of growth media used in the secondary metabolite screening.

| Name         | Ingredient    | Conc. | Notes/instructions |
|--------------|---------------|-------|--------------------|
|              |               | [g/L] |                    |
| SMYA (semi-  | Maltose       | 40.0  | -                  |
| viscous)     | Yeast extract | 10.0  |                    |
|              | Meat peptone  | 10.0  |                    |
|              | agar          | 4.0   |                    |
| YMG (liquid) | Malt extract  | 10.0  | рН 6.3             |
|              | D-glucose     | 4.0   |                    |
|              | Yeast extract | 4.0   |                    |
| YMG +        | Beech chips   | 4.0   | -                  |
| beech chips  |               |       |                    |
| CYG10        | Corn meal     | 50.0  | -                  |
| (liquid)     | D-glucose     | 10.0  |                    |

| Y             | Yeast extract                          | 1.0    |                                             |
|---------------|----------------------------------------|--------|---------------------------------------------|
| GG1 (liquid)  | Glycerol                               | 75.0   | рН 7.5                                      |
| [             | D-glucose                              | 10.0   |                                             |
| Y             | Yeast autolysate                       | 5.0    |                                             |
| 9             | Soybean meal                           | 5.0    |                                             |
|               | Tomato paste                           | 5.0    |                                             |
| 9             | Sodium citrate                         | 2.0    |                                             |
|               | NH <sub>4</sub> SO <sub>4</sub>        | 2.0    |                                             |
| GZ (liquid)   | Oat meal                               | 30.0   | рН 6.5                                      |
| (             | Corn steep liquor (liq.)               | 10.0   |                                             |
| <u>c</u>      | Soybean meal                           | 10.0   |                                             |
| MMK2 I        | Mannitol                               | 40.0   | -                                           |
| (liquid)      | Yeast extract                          | 5.0    |                                             |
| 1             | Murashoge & Skoop salts                | 4.3    |                                             |
| MOG (liquid)  | Mannitol                               | 75.0   | рН 6.0                                      |
| 1             | MES                                    | 16.2   |                                             |
| (             | Oat flour                              | 15.0   |                                             |
| N             | Yeast extract                          | 5.0    |                                             |
| 1             | L-glutamic acid                        | 4.0    |                                             |
| Supermalt I   | Malt extract                           | 50.0   | -                                           |
| (liquid)      | Yeast extract                          | 10.0   |                                             |
|               | $FeSO_4 \times 7 H_2O$                 | 0.02   |                                             |
| 2             | ZnSO4 × 7 H2O                          | 0.007  |                                             |
| BRFT (rice,   | Yeast extract                          | 1.0    | 12 mL "base liquid" solution added to 3.3 g |
| solid)        | Sodium tartrate × 2 H₂O                | 0.5    | of brown rice                               |
|               | KH2PO4                                 | 0.5    |                                             |
| Vermiculite S | Sucrose                                | 150.0  | 12 mL YES added to 34 ccm vermiculite       |
| + YES (solid) | Yeast extract                          | 20.0   | (>0.5 cm diam.)                             |
| 1             | $MgSO_4 \times 7 H_2O$                 | 0.5    |                                             |
| 2             | $ZnSO_4 \times 7 H_2O$                 | 0.0001 |                                             |
| (             | $CuSO_4 \times 7 H_2O$                 | 0.001  |                                             |
| Wheat I       | Disodium tartrate × 2 H <sub>2</sub> O | 10.0   | 8.25 mL "base liquid" added to 5 g of whole |
| (solid)       | Glycerol                               | 2.0    | wheat grains                                |
|               | Yeast extract                          | 2.0    | -                                           |
| 1             | KH2PO4                                 | 1.0    |                                             |
| 1             | $MgSO_4 \times 7 H_2O$                 | 1.0    |                                             |
| 1             | FeSO₄ × 7 H₂O                          | 0.5    |                                             |

**Tab. S4**: Blastp analysis for the proteins encoded in the ergot alkaloid gene cluster of *Hypomontagnella monticulosa*, *Hypom. spongiphila* and *Annulohypoxylon truncatum*. The closest hit and its respective query coverage (QC) and identity (Ident) are listed.

| Gene name                   | Closest blastp hit                                 | QC [%] | Ident [%] |
|-----------------------------|----------------------------------------------------|--------|-----------|
| Hypomontagn                 | ella monticulosa                                   |        |           |
| easF                        | easF [Trichophyton benhamiae CBS 112371], D4AK46.1 | 96     | 63.7      |
| easE                        | easE [Epichloe festucae var. lolii], A2TBU3.1      | 97     | 53.1      |
| DMATS                       | DMATS [Epichloe coenophiala], Q6X2E2.1             | 99     | 64.8      |
| easG                        | easG [Epichloe festucae var. lolii], A2TBU1.1      | 98     | 67.8      |
| easA                        | easA [Epichloe festucae var. lolii], A2TBU0.1      | 97     | 71.1      |
| easD                        | easD [Aspergillus fumigatus], D3J0Z1.1             | 100    | 72.0      |
| easC                        | easC [Aspergillus fumigatus Af293], Q4WZ63.1       | 94     | 67.4      |
| Hypomontagnella spongiphila |                                                    |        |           |
| easF                        | easF [Microsporum canis CBS 113480], C5FTN1.1      | 96     | 64.8      |
| easE                        | easE [Epichloe festucae var. lolii], A2TBU3.1      | 97     | 52.5      |
| DMATS                       | DMATS [Epichloe coenophiala], Q6X2E2.1             | 95     | 67.1      |

| easG         | easG [Epichloe festucae var. lolii], A2TBU1.1      | 98  | 66.7 |
|--------------|----------------------------------------------------|-----|------|
| easA         | easA [Epichloe festucae var. lolii], A2TBU0.1      | 97  | 71.1 |
| easD         | easD [Aspergillus fumigatus], D3J0Z1.1             | 86  | 71.5 |
| easC         | easC [Aspergillus fumigatus Af293], Q4WZ63.1       | 94  | 69.7 |
| Annulohypoxy | lon truncatum                                      |     |      |
| lpsA         | lpsA [Epichloe festucae var. lolii], Q96V34.2      | 99  | 64.7 |
| easH         | easH [ <i>Claviceps purpurea</i> 20.1], G8GV69.1   | 96  | 62.0 |
| easF         | easF [Trichophyton benhamiae CBS 112371], D4AK46.1 | 95  | 66.8 |
| DMATS        | DMATS [Epichloe coenophiala], Q6X2E2.1             | 94  | 64.1 |
| easE         | easE [Epichloe festucae var. lolii], A2TBU3.1      | 97  | 55.7 |
| cloA         | cloA [Claviceps purpurea], Q2PBY6.1                | 100 | 46.2 |
| easG         | easG [Epichloe festucae var. lolii], A2TBU1.1      | 99  | 63.8 |
| easD         | easD [Penicillium roqueforti FM164], W6QIM3.1      | 84  | 67.0 |
| easA         | easA [Epichloe festucae var. lolii], A2TBU0.1      | 97  | 67.9 |
| lpsB         | lpsB [Epichloe festucae var. lolii], A2TBU4.1      | 97  | 65.8 |
| easC         | easC [Aspergillus fumigatus Af293], Q4WZ63.1       | 96  | 69.0 |

**Tab. S5**: Distribution and host preferences of the analyzed *Hypoxylaceae* species and *Xylaria hypoxylon*.

| Species                        | Distribution                                          | Host preference                                                                                                                                                                                                                           |
|--------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Annulohypoxylon truncatum      | Common in Southern USA, known from Mexico             | Probably Quercus spp.                                                                                                                                                                                                                     |
| Daldinia concentrica           | very common across most<br>European countries         | Prefers Fraxinus but also occurs<br>on other substrates (Alnus spp.,<br>Populus spp., Betula alba, Quercus<br>pubescens, Acacia cyanophylla,<br>Ulmus minor, Carpinus spp., Acer<br>spp., Fagus sylvatica, Prunus<br>spinosa)             |
| Hypomontagnella monticulosa    | Very common in the tropics                            | unknown                                                                                                                                                                                                                                   |
| Hypomontagnella spongiphila    | Only one record                                       | sponge                                                                                                                                                                                                                                    |
| Hypomontagnella submonticulosa | Common in the USA                                     | unknown                                                                                                                                                                                                                                   |
| Hypoxylon fragiforme           | common in Europe and North<br>America                 | Host specific to <i>Fagus</i> spp.                                                                                                                                                                                                        |
| Hypoxylon lienhwacheense       | Rare, only known from South-East<br>China and Thiland | unknown                                                                                                                                                                                                                                   |
| Hypoxylon pulicicidum          | supposedly common in the tropics                      | unknown                                                                                                                                                                                                                                   |
| Hypoxylon rickii               | Known from Argentina, Brasil,<br>Mexico, Caribbean    | unknown                                                                                                                                                                                                                                   |
| Hypoxylon rubiginosum          | Common across Europe                                  | Prefers Fraxinus spp. but also<br>occurs on other substrates (Fagus<br>sylvatica, Ulmus spp., Populus<br>tremula)                                                                                                                         |
| Jackrogersella multiformis     | common in Europe and North<br>America                 | Host specific to <i>Betula</i> spp.                                                                                                                                                                                                       |
| Pyrenopolyporus hunteri        | known from various tropical<br>countries              | unknown                                                                                                                                                                                                                                   |
| Xylaria hypoxylon              | very common in Europe, known<br>from the USA          | No host preference, known from<br>Fagus sylvatica, Fraxinus excelsior,<br>Carpinus betulus, Quercus spp.,<br>Populus tremula, Corylus avellana,<br>Tilia cordata, Acer campestre,<br>Picea abies, Salix spp., Lonicera<br>xylosteum, etc. |



**Fig. S1**: Synteny analysis between the curvupallide biosynthetic gene cluster (*cpa*) of *Curvularia pallescens* and a homologous BGC from *Jackrogersella multiformis* visualized with clinker.



**Fig. S2**: HPLC-UV chromatograms of culture-derived extracts of *Annulohypoxylon truncatum*, *Daldinia sp.*, and *Hypoxylon fragiforme* (top panel) and MS spectra of peaks identified as siderophores (bottom, next page). Top: green traces, UV chromatograms; blue traces, extracted ion chromatograms (EICs) of m/z 769.4, 485.3, 755.4, 741.4, and 783.4, representing the [M+H]<sup>+</sup> ions corresponding to coprogen (MW 768.4), dimerumic acid (MW 484.3 Da), N<sup> $\alpha$ </sup>-dimethylcoprogen B (MW 754.4), N<sup> $\alpha$ </sup>-methylcoprogen B (MW 740.4 Da), and N<sup> $\alpha$ </sup>-methylcoprogen (MW 782.4), respectively. Bottom: MS spectra of the respective siderophores .



**Fig. S3**: Synteny analysis between RiPP biosynthetic gene cluster identified in the *Hypoxylaceae* and the ustiloxin B cluster (ust) from *A. flavus* visualized by the clinker tool.



**Fig. S4**: A; Synteny analysis between the solanapyrone biosynthetic gene cluster (*sol* BGC) and related BGCs from the *Hypoxylaceae* visualized with clinker. B, C; Biosynthetic scheme for solanapyrone A according to literature is shown and a putative pathway for the biosynthesis of dalsymbiopyrone by *Hypoxylaceae* species is predicted. BGCs lacking a methyltransferase are predicted to produce a demethylated analog of dalsymbiopyrone.



and *Hypoxylon lienhwacheense* (top panel) and MS spectra of dalsymbiopyrone (bottom). Top: red traces, positive ion mode base peak chromatograms [BPC(+)]; blue traces, extracted ion chromatograms (EICs) of m/z 309.2, representing the [M–H<sub>2</sub>O+H]<sup>+</sup> ion corresponding to dalsymbiopyrone (MW 326.2 Da). Bottom: MS spectra of dalsymbiopyrone.



**Fig. S6**: Impact of uncurated reference biosynthetic gene cluster (BGC) on subnetwork formation during BiG-SCAPE analysis. A; uncurated BGC information of the viridicatumtoxin BGC (*vrt*) from *Penicillium aethiopicum* retrieved from the MIBiG repository prevents BiG-SCAPE subnetwork formation with homologous BGCs from the *Hypoxylaceae* genomes under global mode settings and a cutoff value of 0.4. B; Manual curation (trimming) of the *vrt* BGC results in subnetwork formation of the three homologous viridicatumtoxin BGCs.



**Fig. S7**: Maximum-Likelihood phylogenetic analysis of FAD-dependent monooxygenases known from azaphilone biosynthetic pathways (red) and other characterized FAD-dependent monooxygenases (black). Tree is rooted with the FAD-dependent urate hydroxylase (HPXO) from *Klebsiella pneumoniae*. Branch support was determined with the ultrafast bootstrap approximation. Support values [%] above 50 % are indicated. Only support values above 95 % are deemed significant. Available GenBank accession numbers are given.



**Fig. S8**: Synteny analysis between the trigazaphilone biosynthetic gene cluster from *Trichoderma guizhouense* and its homologs from *Hypomontagnella monticulosa* and *Hypom. spongipila* visualized by the clinker tool.



**Fig. S9**: HPLC-MS chromatograms of culture-derived extracts of *Annulohypoxylon truncatum* (top panel) and representative MS spectrum of a peak tentatively identified as ergovaline (bottom). Top: red traces, positive ion mode base peak chromatograms [BPC(+)]; blue traces, extracted ion chromatograms [EIC(+)] of *m*/*z* 556.3, representing the [M+Na]<sup>+</sup> ion corresponding to ergovaline (MW 533.3 Da). Bottom: representative MS spectrum of ergovaline (tentatively identified, ion formula accuracy: 5.5 ppm).



**Fig. S10**: Synteny analysis between the ergopeptine biosynthetic gene cluster identified from *A. truncatum*, *Hypoxylon* sp. EC38 and *Daldinia* sp. EC12 visualized by the clinker tool.

easE FAD-dependent oxidoreductase



**Fig. S11**: Homology analysis between the ergot alkaloid biosynthetic gene cluster from *A. truncatum* and *Hypom. spongiphila* performed with the Artemis Comparison Tool (ACT). The tblastx algorithm identified the remainders of a NRPS gene in *Hypom. spongiphila* highlighted by the red frame.



**Fig. S12**: HPLC-MS chromatograms of culture-derived extracts of *Daldinia concentrica* (top panel) and representative MS spectrum of cochliodinol (bottom). Top: green traces, UV chromatograms; blue traces, positive ion mode extracted ion chromatograms [EIC(+)] of *m*/*z* 507.2, representing the [M+H]<sup>+</sup> ion corresponding to cochliodinol (MW 506.2 Da). Bottom: representative MS spectrum of cochliodinol (ion formula accuracy: 0.8 ppm)



**Fig. S13**: HPLC-MS chromatograms of culture-derived extracts of *Hypoxylon* spp. (top panel) and MS spectra of brasilane E (bottom). Top: red traces, positive ion mode base peak chromatograms [BPC(+)]; blue traces, extracted ion chromatograms (EICs) of m/z 456.3, representing the  $[M+H]^+$  ion corresponding to brasilane E (MW 455.3 Da). Bottom: MS spectra of brasilane E identified from *H. fragiforme* (ion formula accuracy: 1.0 ppm) and *H. pulicicidum* (0.6 ppm), respectively.

Hypoxylon fragiforme























**Fig. S14**: Cytochalasins reported from *H. fragiforme, D. concentrica* and *X. hypoxylon*. Grey structures cannot be explained by the identified biosynthetic gene cluster and are likely derived from misidentified fungi or strain-specific cytochalasin BGCs.



**Fig. S15**: Proposed biosynthetic pathway for the formation of phenochalasin B in *Daldinia concentrica*. Putative intermediates are shown in grey. The biosynthetic gene cluster is shown at the bottom.



**Fig. S16**: HPLC-MS chromatograms of culture-derived extracts of *Xylaria hypoxylon* (top panel) and MS spectra of peaks tentatively identified as cytochalasans (bottom). Top: red traces, positive ion mode base peak chromatograms [BPC(+)]; blue traces, extracted ion chromatograms [EIC(+)], representing the [M+Na]<sup>+</sup> ions corresponding to putative cytochalasans. Bottom: MS spectra of respective putative cytochalasans (ion formulae accuracy: 0.2, 0.1, 0.0, and 0.0 ppm, respectively).

## References

Balibar CJ, Howard-Jones AR, Walsh CT (2007). Terrequinone A biosynthesis through L-tryptophan oxidation, dimerization and bisprenylation. *Nature Chemical Biology* **3**: 584–592.

Becker K, Pfütze S, Kuhnert E, *et al.* (2021). Hybridorubrins A–D: Azaphilone Heterodimers from Stromata of *Hypoxylon fragiforme* and Insights into the Biosynthetic Machinery for Azaphilone Diversification. *Chemistry – A European Journal* **27**: 1438–1450.

Braesel J, Götze S, Shah F, *et al.* (2015). Three redundant synthetases secure redox-active pigment production in the basidiomycete *Paxillus involutus*. *Chemistry and Biology* **22**: 1325–1334.

Chen W, Chen R, Liu Q, *et al.* (2017). Orange, red, yellow: biosynthesis of azaphilone pigments in *Monascus* fungi. *Chemical Science* **8**: 4917–4925.

Chiang YM, Szewczyk E, Davidson AD, *et al.* (2009). A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in *Aspergillus nidulans*. *Journal of the American Chemical Society* **131**: 2965–70.

Davison J, Al Fahad A, Cai M, *et al.* (2012). Genetic, molecular, and biochemical basis of fungal tropolone biosynthesis. *Proceedings of the National Academy of Sciences of the United States of America* **109**: 7642–7647.

Derntl C, Guzmán-Chávez F, Mello-de-Sousa TM, et al. (2017). In vivo study of the sorbicillinoid gene cluster in *Trichoderma reesei*. Frontiers in microbiology **8**: 2037.

Forseth RR, Amaike S, Schwenk D, *et al.* (2013). Homologous NRPS-like gene clusters mediate redundant small-molecule biosynthesis in *Aspergillus flavus*. *Angewandte Chemie - International Edition* **52**: 1590–1594.

Geib E, Gressler M, Viediernikova I, *et al.* (2016). A non-canonical melanin biosynthesis pathway protects *Aspergillus terreus* conidia from environmental stress. *Cell Chemical Biology* **23**: 587–597.

Gerke J, Bayram Ö, Feussner K, *et al.* (2012). Breaking the silence: Protein stabilization uncovers silenced biosynthetic gene clusters in the fungus *Aspergillus nidulans*. *Applied and Environmental Microbiology* **78**: 8234–8244.

Guo CJ, Sun WW, Bruno KS, *et al.* (2014). Molecular genetic characterization of terreic acid pathway in *Aspergillus terreus*. *Organic letters* **16**: 5250–3.

Hühner E, Backhaus K, Kraut R, *et al.* (2018). Production of α-keto carboxylic acid dimers in yeast by overexpression of NRPS-like genes from *Aspergillus terreus*. *Applied Microbiology and Biotechnology* **102**: 1663–1672.

Itoh T, Tokunaga K, Matsuda Y, *et al.* (2010). Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases. *Nature Chemistry* **2**: 858–864.

Kahlert L, Cox RJ, Skellam E (2020). The same but different: multiple functions of the fungal flavin dependent monooxygenase SorD from *Penicillium chrysogenum*. *Chemical Communications* **56**: 10934–10937.

Lin TS, Chiang YM, Wang CCC (2016). Biosyntheticpathway of the reduced polyketide product citreoviridin in *Aspergillus terreus* var. *aureus* revealed by heterologous expression in *Aspergillus nidulans*. *Organic letters* **18**: 1366–9.

Nofiani R, de Mattos-Shipley K, Lebe KE, *et al.* (2018). Strobilurin biosynthesis in basidiomycete fungi. *Nature Communications* **9**.

O'Leary SE, Hicks KA, Ealick SE, et al. (2009). Biochemical characterization of the HpxO enzyme from

Klebsiella pneumoniae, a novel FAD-dependent urate oxidase. Biochemistry 48: 3033–3035.

Rojas-Aedo JF, Gil-Durán C, Del-Cid A, et al. (2017). The biosynthetic gene cluster for andrastin A in *Penicillium roqueforti*. *Frontiers in microbiology* **8**: 813.

Schneider P, Bouhired S, Hoffmeister D (2008). Characterization of the atromentin biosynthesis genes and enzymes in the homobasidiomycete *Tapinella panuoides*. *Fungal Genetics and Biology* **45**: 1487–1496.

Schor R, Schotte C, Wibberg D, *et al.* (2018). Three previously unrecognised classes of biosynthetic enzymes revealed during the production of xenovulene A. *Nature Communications* **9**: 1963.

Semeiks J, Borek D, Otwinowski Z, *et al.* (2014). Comparative genome sequencing reveals chemotypespecific gene clusters in the toxigenic black mold *Stachybotrys*. *BMC genomics* **15**: 590.

Tsukada K, Shinki S, Kaneko A, *et al.* (2020). Synthetic biology based construction of biological activity-related library of fungal decalin-containing diterpenoid pyrones. *Nature communications* **11**: 1830.

Wackler B, Lackner G, Chooi YH, *et al.* (2012). Characterization of the *Suillus grevillei* quinone synthetase GreA supports a nonribosomal code for aromatic  $\alpha$ -keto acids. *ChemBioChem* **13**: 1798–1804.

Wang B, Li X, Yu D, *et al.* (2018). Deletion of the epigenetic regulator GcnE in *Aspergillus niger* FGSC A1279 activates the production of multiple polyketide metabolites. *Microbiological research* **217**: 101–107.

Winter JM, Sato M, Sugimoto S, *et al.* (2012). Identification and characterization of the chaetoviridin and chaetomugilin gene cluster in *Chaetomium globosum* reveal dual functions of an iterative highly-reducing polyketide synthase. *Journal of the American Chemical Society* **134**: 17900–17903.

Yaegashi J, Praseuth MB, Tyan SW, *et al.* (2013). Molecular genetic characterization of the biosynthesis cluster of a prenylated isoindolinone alkaloid aspernidine A in *Aspergillus nidulans*. *Organic letters* **15**: 2862–5.

Yeh HH, Chiang YM, Entwistle R, *et al.* (2012). Molecular genetic analysis reveals that a nonribosomal peptide synthetase-like (NRPS-like) gene in *Aspergillus nidulans* is responsible for microperfuranone biosynthesis. *Applied Microbiology and Biotechnology* **96**: 739–748.

Zabala AO, Xu W, Chooi YH, *et al.* (2012). Characterization of a silent azaphilone gene cluster from *Aspergillus niger* ATCC 1015 reveals a hydroxylation-mediated pyran-ring formation. *Chemistry and Biology* **19**: 1049–1059.

Zaehle C, Gressler M, Shelest E, *et al.* (2014). Terrein biosynthesis in *Aspergillus terreus* and its impact on phytotoxicity. *Chemistry & Biology* **21**: 719–731.

Zhai Y, Li Y, Zhang J, *et al.* (2019). Identification of the gene cluster for bistropolone-humulene meroterpenoid biosynthesis in *Phoma* sp. *Fungal Genetics and Biology* **129**: 7–15.