

Supplementary Information for

Moonrise timing is key for synchronized spawning in coral Dipsastraea speciosa

Che-Hung Lin, Shunichi Takahashi, Aziz J Mulla, Yoko Nozawa

Che-Hung Lin

Email: CHLin.coral@gmail.com

Yoko Nozawa

Email: nozaway@gate.sinica.edu.tw

This PDF file includes:

Figures S1 to S3 Tables S1 to S2 SI References

Fig. S1. The light spectrum used for bright (6000 lux; 83 μ mol m⁻² s⁻¹) and dim light (~0.3 lux) in the experiments. Note that 1 lux = 0.0138 μ mol m⁻² s⁻¹ in this light spectrum.

Fig. S2. Spawning of *Dipsastraea speciosa* under different moonlight patterns. Fragments of *D. speciosa* were exposed to artificial moonlight [dim light (\sim 0.3 lux)] at nighttime (18:30–05:00) with different exposure hours and nights: no light (panel 1); dim light in 18:30–05:00 for the first 4 days (panel 2); dim light in 19:30–05:00 for the first 4 days (panel 3), and dim light for the 3rd and 4th nights after the initial no light for the first two days (panel 4). Black bars indicate major spawning (> hundreds of eggs) and white bars indicate minor spawning (several eggs) in four replicate fragments. Note that the panel 1 and 2 are the same as the panel 1 and 3 in Fig. 2b, and the experiment for panel 3 and 4 were conducted together with those in Fig. 2. Different letters in the panels indicate significant differences between the treatments (ANOVA and Tukey HSD test; $P \le 0.001$). For detailed results of statistical analysis, refer to SI Appendix, Table S2. Note that data for panel 4 were excluded from the analysis due to the split spawning observed only in this treatment.

Fig. S3. Spawning of *Dipsastraea speciosa* fragments under different spectra of artificial moonlight. (A) Light spectrum of each treatment: blue LED light (the peak wavelength: 476 nm), green LED light (the peak wavelength: 530 nm), red LED light (the peak wavelength: 622 nm), and no light. (B) *Dipsastraea speciosa* fragments were exposed to three light spectra of artificial moonlight [blue, green and red dim light (~0.3 lux)] or no light at nighttime (18:30–05:00) for the first two days of the experiment. Black bars indicate major spawning (> hundreds of eggs) and white bars indicate minor spawning (several eggs) in four replicate fragments. Different letters in the panels in B indicate significant differences between the treatments (ANOVA and Tukey HSD test; P < 0.001). For detailed results of statistical analysis, refer to SI Appendix, Table S2.

Table S1. List of (scleractinian) coral species that has been observed to spawn around last quarter moon from multiple locations around the world.

Family	Genus	Species	Spawning day (days after full moon)	Reference	Note
Diploastreidae	Diploastrea	heliopora	4–5	1,2	
Euphylliidae	Galaxea	fascicularis	4–8*	2-6	In most of the
Lobophylliidae	Lobophyllia	hemprichii	6–8	5,7	cases
Merulinidae	Coelastrea	aspera	3–8	4-9	
		palauensis	5–6	5,9	
	Dipsastraea	favus	6–7	3	
		pallida	4–6	3,5,6	
		speciosa	4–8	1,4,9	
		stelligera	4–7	1,2	
	Favites	abdita	4–8	1,3,4,7-10	
		chinensis	5–6	4,5	
		contorta	7–10	11	
		entagona	5–6	5	
		magnistellata	4–8	1,3,6,7	
		pentagona	4–8*	1,6,8,11	In most of the cases
		valenciennesi	6–9	5,8	00303
	Goniastrea	edwardsi	4–9	1,2,4,6,9	
		minuta	3–6	1,12	
		pectinata	4–7	1,3,6,9	
		retiformis	4–9*	2-7,10	Spawned 1–4 days after full moon in Red Sea
	Leptoria	phrygia	5–7	1,4,5,10	
	Merulina	ampliata	3–8	3,6,7,9,10,12	
	Orbicella	annularis	5-8	13	
		faveolata	5-8	13	
		franksi	4-7	13	
	Pectinia	alcicornis	4–6	5,6,9	
		lactuca	4–6	5,12	
		paeonia	3–7	5,12	
	Platygyra	daedalea	4–7	1,4,6,10	
		lamellina	4, 6, 7	4,6	
		pini	5, 6, 8	1,4,6,7	
		ryukyuensis	3–8	1,3,7,12	
		sinensis	3–8*	1,3-8,10,12	In most of the cases
Poritidae	Porites	sp.	5–8	1	

Study sites and references for **Table S1**.

Site	Latitude	References	
Kochi, Japan	32°N	8,11	
Okinawa, Japan	26°N	3	
Taiwan	21°–22°N	1,4	
Palau	7°N	9	
Singapore	1°N	12	
GBR, Australia	14°S–19°S	5,6	
Western Australia	20°S–24°S	7,10	
Red Sea	21°–22°N	2	
Caribbean	9°–23°N	13	

Table S2. Summary of one-way blocked ANOVA and Tukey HSD pairwise comparison test for each experiment.

Experiment	Factor	DF	F	p-value
Figure 1E	Treatment	2	769	< 0.001
	Colony (block)	3	8	0.016
	Residuals	6		
	Tukey HSD Test			
	Panel 1 - Panel 2			< 0.001
	Panel 1 - Panel 3			< 0.001
	Panel 2 - Panel 3			< 0.001
Figure 2B	Treatment	2	96.53	< 0.001
	Colony (block)	3	0.65	0.61
	Residuals	6		
	Tukey HSD Test			
	Panel 1 - Panel 2			0.001
	Panel 1 - Panel 3			< 0.001
	Panel 2 - Panel 3			< 0.001
Figure 3	Treatment	3	35.11	< 0.001
	Colony (block)	3	0.92	0.47
	Residuals	9		
	Tukey HSD Test			
	Panel 1 - Panel 2			< 0.001
	Panel 1 - Panel 3			< 0.001
	Panel 1 - Panel 4			1.00
	Panel 2 - Panel 3			0.46
	Panel 2 - Panel 4			< 0.001
	Panel 3 - Panel 4			< 0.001
Figure S2	Treatment	2	186.33	< 0.001
	Colony (block)	3	2.67	0.14
	Residuals	6		
	Tukey HSD Test			
	Panel 1 - Panel 2			< 0.001
	Panel 1 - Panel 3			0.001
	Panel 2 - Panel 3			< 0.001
Figure S3B	Treatment	3	29.1	< 0.001
	Colony (block)	3	2.7	0.11
	Residuals	9		
	Tukey HSD Test			
	Panel 1 - Panel 2			0.96
	Panel 1 - Panel 3			0.96
	Panel 1 - Panel 4			< 0.001
	Panel 2 - Panel 3			0.78
	Panel 2 - Panel 4			< 0.001
	Panel 2 - Panel 4			4 0.00 i

SI References

- 1 Lin, C. H. & Nozawa, Y. Variability of spawning time (lunar day) in *Acropora* versus merulinid corals: a 7-yr record of in situ coral spawning in Taiwan. *Coral Reefs* 36, 1269-1278, doi:10.1007/s00338-017-1622-5 (2017).
- 2 Bouwmeester, J. *et al.* Multi-species spawning synchrony within scleractinian coral assemblages in the Red Sea. *Coral Reefs* 34, 65-77, doi:10.1007/s00338-014-1214-6 (2015).
- 3 Hayashibara, T. *et al.* Patterns of Coral Spawning at Akajima Island, Okinawa, Japan. *Marine Ecology Progress Series* 101, 253-262, doi:DOI 10.3354/meps101253 (1993).
- 4 Dai, C. F., Soong, K. & Fan, T. Y. in *Proceedings of the 7th International Coral Reef Symposium.* 448-455.
- Willis, B. L., R.C. Babcock, P.L. Harrison and J.K Oliver. in *Proceedings of the 5th International Coral Reef Symposium*. 343-348 (1985).
- Babcock, R. C. et al. Synchronous spawnings of 105 scleractinian coral species on the great barrier reef. Marine Biology 90, 379-394, doi:10.1007/bf00428562 (1986).
- 7 Simpson, C. J. Mass spawning of scleractinian corals in the Dampier archipelago and the implications of management of coral reefs in Western Australia. *Australia Department of Conservation Environmental Bulletin* 244, 1-35 (1985).
- 8 Mezaki, T. *et al.* Spawning patterns of high latitude scleractinian corals from 2002 to 2006 at Nishidomari, Otsuki, Kochi, Japan. *Kuroshio Biosphere* 3, 33-47 (2007).
- Penland, L., Kloulechad, J., Idip, D. & van Woesik, R. Coral spawning in the western Pacific Ocean is related to solar insolation: evidence of multiple spawning events in Palau. *Coral Reefs* 23, 133-140, doi:10.1007/s00338-003-0362-x (2004).
- 10 Simpson, C. J., Cary, J. L. & Masini, R. J. Destruction of corals and other reef animals by coral spawn slicks on Ningaloo Reef, Western Australia. *Coral Reefs* 12, 185-191, doi:10.1007/BF00334478 (1993).
- 11 Nozawa, Y. Annual variation in the timing of coral spawning in a high-latitude environment: influence of temperature. *The Biological Bulletin* 222, 192-202, doi:10.1086/BBLv222n3p192 (2012).
- 12 Guest, J. R., Baird, A. H., Goh, B. P. L. & Chou, L. M. Seasonal reproduction in equatorial reef corals. *Invertebrate Reproduction & Development* 48, 207-218, doi:10.1080/07924259.2005.9652186 (2005).
- 13 Levitan, D. R. *et al.* Mechanisms of reproductive isolation among sympatric broadcast-spawning corals of the *Montastraea annularis* species complex. *Evolution* 58, 308-323, doi:DOI 10.1111/j.0014-3820.2004.tb01647.x (2004).