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Extended Methods.16

Replacement Model. We model a network-structured population in which infectious individuals are diagnosed and sequestered17

(i.e. sent to the Q compartment), whence they recover with rate γQ , and return to the population. We assume that the working18

population, which consists of susceptibles (S), infectious (I) individuals that have not yet been diagnosed, and recovered (R)19

individuals, must remain constant in time. Individuals are discovered to be infectious (i.e. ’diagnosed’) with rate ε. Infectious20

individuals recover directly with rate γI . In order to maintain essential roles, individuals removed for quarantine are replaced21

from an external reservoir of individuals who ’inherit’ their network connections. This replacement individual is in one of the22

three disease states S,I,R, with rates rS ,rI ,rR , respectively, which can be determined by population rates of prevalence of the23

infection.24

The rates of change of expected number of individuals in each compartment is governed by the following system of equations:25

d

dt
[S] = −β[SI] + rS (ε[I]− γQ [Q]) [1]26

d

dt
[I] = β[SI]− ε[I]− γI [I] + rI (ε[I]− γQ [Q]) [2]27

d

dt
[R] = γI [I] + γQ [Q] + rR (ε[I]− γQ [Q]) [3]28

d

dt
[Q] = ε[I]− γQ [Q] [4]29

[5]30

Importantly, the quantities in brackets are expected counts, not densities, as the overall system is not constrained in size31

(due to recruitment from the population reservoir). The system above induces the following system of pair equations:32

d

dt
[SI] = β[SSI]− 2β[ISI]− β[SI]− γI [SI] + 2rS ε[II]− rSγQ

[Q]
[S] [SI]− rIγQ

[Q]
[I] [SI]− rS ε[SI]− rRε[SI]33

d

dt
[SS] = rS ε[SI]− 2rSγQ

[Q]
[S] [SS]− β[SSI]34

d

dt
[SR] = γI [SI] + rS ε[IR] + rRε[SI]− rSγQ

[Q]
[S] [SR]− β[ISR] + 2rSγQ

[Q]
[S] [SS] + rIγQ

[Q]
[I] [SI]35

d

dt
[IR] = β[ISR] + 2γI [II] + 2rRε[II]− rRε[IR]− γI [IR]− rS ε[IR] + rSγQ

[Q]
[S] [SI] + 2rIγQ

[Q]
[I] [II]− rIγQ

[Q]
[I] [IR]36

d

dt
[II] = β[SI]− 2(rS + rR )ε[II]− 2rIγQ

[Q]
[I] [II]− 2γI [II] + 2β[ISI]37

d

dt
[RR] = rSγQ

[Q]
[S] [SR] + γI [IR] + rRε[IR] + rIγQ

[Q]
[I] [IR]38

39

We complete pair approximations by assuming the same triple closures as (1), where k is the expected degree of a node in40

the network, and q = k2/k is the expected degree of a neighbor,41

d

dt
[SI] = 2β (q̄ − 1)

k̄
[SS] [SI]

[S] − β
(q̄ − 1)
k̄

[SI]2

[S] −
(
β + γI + ε(rS + rR ) + rSγQ

[Q]
[S] + rIγQ

[Q]
[I]

)
[SI] + 2rS ε[II]42

d

dt
[SS] = −2β (q̄ − 1)

k̄
[SS] [SI]

[S] − 2rSγQ

[Q]
[S] [SS] + (rS ε) [SI]43

d

dt
[SR] = −β (q̄ − 1)

k̄
[SI] [SR]

[S] + rS ε[IR]− rSγQ

[Q]
[S] [SR] + 2rSγQ

[Q]
[S] [SS] + (γI + rRε) [SI] + rIγQ

[Q]
[I] [SI]44

d

dt
[IR] = β

(q̄ − 1)
k̄

[SI] [SR]
[S] + 2

(
γI + rRε+ rIγQ

[Q]
[I]

)
[II]− (rRε+ γI + rS ε) [IR] + rSγQ

[Q]
[S] [SI]− rIγQ

[Q]
[I] [IR]45

d

dt
[II] = β

(q̄ − 1)
k̄

[SI]2

[S] + β[SI]− 2 (ε(rS + rR ) + γI ) [II]46

d

dt
[RR] = rSγQ

[Q]
[S] [SR] + γI [IR] + rRε[IR] + rIγQ

[Q]
[I] [IR].47

Following (2), we define48

CSI = N

k

[SI]
[S][I] , [6]49
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a measure of the correlation in SI pairs. When CSI = 1, SI pairs are formed purely at random; for any CSI greater than 1, S50

and I individuals are more likely than random to be paired.51

Using this measure of the correlation, we can rewrite the equation for d[I]/dt,52

d

dt
[I] = β

[S][I]k
N

CSI − (ε+ γI − rI ε)[I]− rIγQ [Q]. [7]53

We then can solve for R0,54

R0 = βk

ε(rS + rR ) + γI

CSI , [8]55

where, as pointed out by (2), we must consider the quasi-equilibrium value, C∗
SI
, that forms in the early period of the epidemic.56

Importantly, R0 grows as C∗
SI , which again measures the correlation in SI pairs. Examining the ‘decay’ of CSI in the early57

period of the epidemic,58

d

dt
CSI = N

k

d

dt

(
[SI]

[S][I]

)
→ β(q − 2)CSI + rS ε

[I]
[S]CII − βkC

2
SI

[9]59

as [S] −→ N , [I] −→ 1, [Q] −→ 0. We can see that the quasi-equilibrium value of C∗
SI

depends on [I]
[S]CII , (note: while

[I]
[S] −→ 0 in60

the limit, CII −→∞). Considering the decay of this term,61

d

dt

(
[I]
[S]CII

)
= 2N

k

d

dt

(
[II]

[S][I]

)
−→ [I]

[S]CII (βk + ε(rS + rR ) + γI ) + 2βCSI [10]62

and thus,63

[I]
[S]CII −→

2βCSI

βkCSI + ε(rS + rR ) + γI

. [11]64

Substituting this value into eq. 10, we see that C∗
SI must satisfy,65

β(q − 2)C∗
SI − βkC∗2

SI + 2βC∗
SI

βkC∗
SI + ε(rS + rR ) + γI

= 0. [12]66

Redistribution Model. Again, we model a network-structured population in which infectious individuals are diagnosed, with rate67

ε, and sequestered (i.e. sent to Q), where they recover with rate γQ , and return to the population. In the current model,68

sequestered individuals are not replaced; instead their network edges are reassigned to non-sequestered individuals at random.69

The model leads to the following system of compartmental equations,70

d

dt
[S] = −β[SI]71

d

dt
[I] = β[SI]− (ε+ γI )[I]72

d

dt
[R] = γQ [Q] + γI [I]73

d

dt
[Q] = ε[I]− γQ [Q]74

75

We then have the following system of pair equations:76
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d

dt
[SI] = β[SSI]− 2β[ISI]− β[SI]− γI [SI]− ε[SI] [S] + [R]

[S] + [I] + [R]77

−γq[Q]k̄ [SI]
[SI] + [SS] + [SR] + [IR] + [II] + [RR]78

d

dt
[SS] = −β[SSI] + ε[SI] [S]

[S] + [I] + [R] − γq[Q]k̄ [SS]
[SI] + [SS] + [SR] + [IR] + [II] + [RR]79

d

dt
[SR] = γI [SI]− β[ISR] + ε

(
[SI] [R]

[S] + [I] + [R] + [IR] [S]
[S] + [I] + [R]

)
80

+γq[Q]k̄
(

[S]
[S] + [I] + [R] −

[SR]
[SI] + [SS] + [SR] + [IR] + [II] + [RR]

)
81

d

dt
[IR] = β[ISR] + 2γI [II]− γI [IR] + ε

(
2[II] [R]

[S] + [I] + [R] − [IR] [S] + [R]
[S] + [I] + [R]

)
82

+γq[Q]k̄
(

[I]
[S] + [I] + [R] −

[IR]
[SI] + [SS] + [SR] + [IR] + [II] + [RR]

)
83

d

dt
[II] = β[SI] + 2β[ISI]− 2

(
ε

[S] + [R]
[S] + [I] + [R] + γI

)
[II]− γq[Q]k̄ [II]

[SI] + [SS] + [SR] + [IR] + [II] + [RR]84

d

dt
[RR] = γI [IR] + ε[IR] [R]

[S] + [I] + [R] + γq[Q]k̄
(

[R]
[S] + [I] + [R] −

[RR]
[SI] + [SS] + [SR] + [IR] + [II] + [RR]

)
85

d

dt
k̄ =

−2([SI] + [SS] + [SR] + [IR] + [II] + [RR]) ∗ ( d
dt

[S] + d
dt

[I] + d
dt

[R])
([S] + [I] + [R])286

87

After applying the triple closures, we can re-express the above as,88

d

dt
[SI] = 2β (q − 1)

k
[SS] [SI]

[S] − β
(q − 1)
k

[SI]2

[S] − β[SI]− γI [SI]− ε[SI] [S] + [R]
[S] + [I] + [R] + 2ε[II] [S]

([S] + [I] + [R])89

−γq[Q]k̄ [SI]
[SI] + [SS] + [SR] + [IR] + [II] + [RR]90

d

dt
[SS] = −2β (q − 1)

k
[SS] [SI]

[S] + ε[SI] [S]
[S] + [I] + [R] − γq[Q]k̄ [SS]

[SI] + [SS] + [SR] + [IR] + [II] + [RR]91

d

dt
[SR] = γI [SI]− β (q − 1)

k
[SI] [SR]

[S] + ε

(
[SI] [R]

[S] + [I] + [R] + [IR] [S]
[S] + [I] + [R]

)
92

+γq[Q]k̄
(

[S]
[S] + [I] + [R] −

[SR]
[SI] + [SS] + [SR] + [IR] + [II] + [RR]

)
93

d

dt
[IR] = β

(q − 1)
k

[SI] [SR]
[S] + 2γI [II]− γI [IR] + ε

(
2[II] [R]

[S] + [I] + [R] − [IR] [S] + [R]
[S] + [I] + [R]

)
94

+γq[Q]k̄
(

[I]
[S] + [I] + [R] −

[IR]
[SI] + [SS] + [SR] + [IR] + [II] + [RR]

)
95

d

dt
[II] = β[SI] + β

(q − 1)
k

[SI]2

[S] − 2
(
ε

[S] + [R]
[S] + [I] + [R] + γI

)
[II]− γq[Q]k̄ [II]

[SI] + [SS] + [SR] + [IR] + [II] + [RR]96

d

dt
[RR] = γI [IR] + ε[IR] [R]

[S] + [I] + [R] + γq[Q]k̄
(

[R]
[S] + [I] + [R] −

[RR]
[SI] + [SS] + [SR] + [IR] + [II] + [RR]

)
97

d

dt
k̄ =

−2([SI] + [SS] + [SR] + [IR] + [II] + [RR]) ∗ ( d
dt

[S] + d
dt

[I] + d
dt

[R])
([S] + [I] + [R])298

R0 is given by,99

R0 = βk

ε+ γI

CSI . [13]100

Using the same method as above, we have,101

d

dt
CSI −→ β(q − 2)CSI + ε

[I]
[S]CII − βkC

2
SI , [14]102
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where again we have a dependency on the ε [I]
[S]CII term. In the limit,103

[I]
[S]CII −→

2βCSI

βkCSI + γI + ε
. [15]104

Thus, our quasi-equilibrium value, C∗
SI
, must satisfy the following equation:105

β(q − 2)C∗
SI

+ 2εβCSI

βkCSI + γI + ε
− βkC∗2

SI = 0. [16]106

Comparison of R0. Let RRep.
0 be the R0 value for the replacement model, and RRed.

0 be the R0 value for the redistribution model.107

We wish the know when RRep.
0 > RRed.

0 .108

In both models, R0 depends on the quasi-equilibrium value C∗
SI
, which satisfies conditions 12 and 16 for the replacement109

and redistribution models, respectively. Both of these conditions can be re-expressed as quadratic equations in C∗
SI
. For the110

redistribution model, the coefficients of this quadratic are:111

ared. = −β2k
2

bred. = βk[β(q − 2)− (ε+ γI )]
cred. = β[(q − 2)(ε+ γI ) + 2ε]

[17]112

and similarly for the replacement model:113

arep. = −β2k
2

brep. = βk[β(q − 2)− (ε(rS + rR ) + γI )]
crep. = β[(q − 2)(ε(rS + rR ) + γI ) + 2rS ε]

[18]114

As the parameters, β, k, q, ε, rS , rI , rR , γI > 0, it is easy to show that,115

|brep. | > |bred. |, [19]116

crep. < cred. . [20]117

The above conditions allow us to re-express the inequality, RRep.
0 > RRed.

0 , as118

brep. +
√
b2

rep.
− 4arep.crep.

βk(ε(rS + rR ) + γI )
>
b2

red.
+
√
b2

red.
− 4ared.cred.

βk(ε+ γI )
. [21]119

When q > 2 (for a Poisson network, this is equivalent to k > 1 as q = k + 1),120

RRep.
0 > RRed.

0 ⇒ 1 <
(ε+ γI )

√
b2

rep.
− 4arep.crep.

(ε(rS + rR ) + γI )
√
b2

red.
− 4ared.cred.

. [22]121

For the parameter regions considered in Fig. 2 in the paper, the preceding condition holds and RRep.
0 > RRed.

0 .122

Legends for Dataset S1 to S3123

SI Dataset S1 (DatasetS1.xlsx)124

Health care worker (HCW) survey: The hospital is an approximately 1000-bed, academic, tertiary care center. We125

administered a cross sectional egocentric survey of HCWs via RedCap to assess contact networks and demographic characteristics.126

Inclusion criterion was all hospital staff present since the first local Covid-19 case. An estimated total of 4572 surveys were127

distributed by email via departmental champions, and 583 surveys were submitted, of which 464 were valid after exclusion of128

those who did not include job type or whose answers were non-interpretable. The effective response rate was 10%, representing129

approximately 5% of the total HCW population. Administrative workers were poorly sampled (4 total). HCW types are defined130

by role rather than title, grouping together those with similar duties and contact patterns. For example, “Nurse” includes131

largely unit-based registered nurses, licensed practical nurses, nurse aids, patient care assistants, and support technicians. The132

complete survey is included in the second tab of this spreadsheet; it includes more extensive questions, responses to which are133

available with appropriate data sharing agreement per IRB approval.134

SI Dataset S2 (DatasetS2.xlsx)135

HCW Absenteeism and Covid-19 Incidence: Outcome variables were number of absences by day, unit, and HCW136

type; Covid-19 related absence proportion; and total incidence. Data was aggregated by week. The weekly incidence curve in137

Fig. 1 is inclusive of the whole hospital. Hospital absences are recorded as UTO (Unpaid Time Off) and PTO (Paid Time Off)138

shifts missed. Covid work-related illness is considered PTO, so it has been manually added to the UTO count to calculate139

total number missed shifts. We use UTO/PTO as a baseline operationalized measure of absenteeism, choosing not to make140

assumptions about the average number of UTOs per Covid case (on average 1-2) or number of shifts missed per UTO (on141

average 1-3). As such, our absence rates are a lower bound of the traditional Employee Absence Rate, which counts “Days142

Absent” in the denominator instead of UTO and PTOs. Baseline (weighted average) weekly absenteeism across the 6 units for143

the same month in 2019 ranged from 3-5%, with an average of 4.2%, expressed by the dotted line in Fig. 1.144
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