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Supporting Information Text11

1. Forward in time dynamics12

In this section, we show how the genealogy of an expanding population can be mapped to an effective well-mixed population13

with a broad distribution of reproductive values. We only consider the case of density-independent migration here, but the14

argument is analogous when D depends on n. As discussed in Ref. (1), we approximate the population front using the15

steady state solution of the corresponding deterministic equation and incorporate the effects of front fluctuations by using an16

appropriate cutoff in the low density region at the edge of the front. Using this approximation, the equation describing the17

front has the form18

∂n

∂t
= D

∂2n

∂x2 + r(n)n. [1]19

We assume the population is comprised of m neutral subtypes with relative fractions fi(t, x) ≡ ni(t, x)/n(t, x) and20 ∑m

i=1 fi(t, x) = 1. In the deterministic limit, it is then easy to show that fi(t, x) obey the following equation (2, 3):21

∂fi
∂t

= D
∂2fi
∂x2 + 2D∂ lnn

∂x

∂fi
∂x

. [2]22

It will be useful in the following to consider the above equation in the comoving frame of reference given by the change of23

variables ζ ≡ x− vt. Introducing this expression in Eq. (2) we get24

∂fi
∂t

= D
∂2fi
∂ζ2 +

(
v + 2D∂ lnn

∂ζ

)
∂fi
∂ζ

, [3]25

where the time variable t captures the transient time dependence of fi(t, ζ) after eliminating translational motion with constant26

velocity along the x axis. It can be shown that Eq. (3) has the property that it admits a time-invariant quantity of the form27

π =

∫∞
−∞ dζfi(t, ζ)n

2(ζ)evζ/D∫∞
−∞ dζn

2(ζ)evζ/D
. [4]28

The proof that π is time-invariant can be found in Refs. (2, 3).29

In order to understand the meaning of Eq. (4) it is useful to consider the case of a single mutant arising at time t = 0 at ζi.30

At this initial time, we can approximate the density of the mutant by a delta function ni(0, ζ) = δ(ζ− ζi). Denoting the value of31

π for this specific initial condition by u(ζi), introducing the expression for ni(0, ζ) into Eq. (4), and using ni(t, x) = fi(t, ζ)n(ζ)32

we find the following expression:33

π|ni(0,ζ)=δ(ζ−ζi) ≡ u(ζi) = n(ζi)evζi/D∫∞
−∞ dζn

2(ζ)evζ/D
. [5]34

From the time-invariance of π, it follows that limt→∞ fi(t, ζ) = u(ζi). Thus, u(ζi) represents the fraction of the population35

descended from the original mutant as t→∞. Note, the above result is strictly valid only for deterministic fronts.36

How can we extend the above analysis to stochastic fronts? Here, it is helpful to make an anology with well-mixed models37

such as the one analyzed in Ref. (4). Consider a population of size N , with discrete generations. Each generation, individuals38

produce offspring according to a distribution P (W ), N of which are chosen to form the next generation. As discussed in Ref.39

(4), it is necessary to choose P (W ) such that 〈W 〉 > 1 to ensure that at least N offspring are produced with sufficiently high40

probability. However, sampling N individuals from the offspring pool each generation ensures that the population size stays41

constant and that no lineage has an advantage over the rest.42

In this simplified model, consider what happens if we sample a subpopulation of size ni(0) and track the clone size ni(τ)43

over time. At τ →∞, the whole population is descended from a single individual and only one clone survives. However, when44

viewed across an ensemble of populations, we can define the fixation probability of a particular clone ui as the fraction of45

ensembles in which clone i is the only surviving clone. Since all individuals are equivalent, ui is simply proportional to the46

initial sample size:47

ui = ni(0)
N

. [6]48

Note that in the toy example above, every individual is identical, which is clearly not the case for an expanding population,49

where individuals closer to the front typically have higher fixation probabilities. However, as we show below, we can reduce50

the problem of fixation in an expanding population to that of a well-mixed population when the relaxation time τm at which51

fi(τm, ζ) ≈ u(ζi) is much shorter than the coalescence of the front Tc. Mathematically, τm is simply the largest eigenvalue of52

the right hand side of Eq. (3)∗.53

∗Note that for pulled fronts the two terms in front of ∂fi/∂ζ in Eq. (3) approximately cancel close to the leading edge and the motion of lineages can be approximated by a diffusion over the length of

the front, which scales as
√

D/r0 lnN . This leads to a mixing time τm ∼ r−1
0 ln2 N (5). For pushed fronts there is no known general expression for τm to our knowledge.
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Thus, after an effective generation time τm, a single individual sampled from the front at ζi expands into a clone that54

comprises a fraction u(ζi) of the population of the front. The quantity u(ζi) then defines the long-term reproductive success of55

the original individual so we will refer to it as the reproductive value of the individual. Since spatial information is lost past56

this point, front dynamics are effectively well-mixed when coarse-grained over timescales O(τm)†.57

In analogy with the well-mixed case, we can interpret the reproductive value u(ζi) as the fraction of offspring in the58

population descended from the ancestor after one generation. The relation between the number of offspring W and u can then59

be computed using60

W (ζ) = Nfu(ζ), [7]61

where Nf the population size in the well-mixed region at front. Since Nf is a constant, the distributions of u and W are the62

same. To simplify the notation, we use the reproductive value as the measure of fecundity throughout.63

We can compute the distribution of u by using64

p(u)du ∝ n(ζ)dζ, [8]65

to eliminate the position ζ. The distribution p(u) will in general depend on the whole shape of the profile, but since we are66

only interested in the tails of the distribution we only need to consider the region far ahead of the front where n(ζ) ∼ e−kζ ,67

where k = v
2D (1−

√
1− v2

F /v
2) is a constant (see next subsection). Using this expression we find that p(u) takes the form of a68

power law69

p(u) ∝ u
− 2

1−
√

1−v2
F

/v2
= u−2−α, [9]70

where71

α =
2
√

1− v2
F /v

2

1−
√

1− v2
F /v

2
. [10]72

For pulled waves, v/vF = 1 and we have p(u) ∝ u−2. This distribution has a divergent mean and leads to Bolthausen-73

Sznitman coalescent (5). In the semi-pushed region, 1 < v
vF

< 3
2
√

2 , and the descendant distribution changes continuously74

from u−2 to u−3. Finally, in fully-pushed waves, it decreases at least as fast as u−3. In this case, the population is described75

by a Kingman coalescent (8).76

A. Deterministic fronts with finite population sizes. Discreteness in real populations requires a modification in the continuum77

model from Eq. (1). In the case of deterministic fronts one can simply set the density below one individual to zero. This78

analysis is fairly straightforward in the case of fully pushed and semi-pushed fronts, but some care is required for pulled fronts.79

For completeness, we briefly outline the argument for deriving these cutoffs below, but interested readers may wish to consult80

Ref. (9) and Sec. IX of the SI from Ref. (1) for a more extensive discussion.81

To simplify the calculations later on we introduce a normalized population density ρ(ζ), defined as82

ρ(ζ) = n(ζ)
N

, [11]83

where n(ζ) is the travelling wave solution to Eq. (1) and ζ is the position in the comoving reference frame as defined in the84

previous subsection. It is easy to show that close to the edge of the expansion, where ρ � 1, there are two independent85

solutions for the shape of the front, of the form e−kζ and e−qζ , with86  k = v
2D

(
1 +

√
1− v2

F /v
2
)
,

q = v
2D

(
1−

√
1− v2

F /v
2
)
,

[12]87

where the reader may recall the definition of the Fisher velocity given in the main text vF = 2
√
r0D. It can further be shown88

that in the pushed regime‡ (v > vF ), the front converges to the more sharply decaying solution (see SI, Sec. II of Ref. (1) and89

(10) for details) given by90

ρ(ζ) ∼ e−kζ . [13]91

Thus, to find the cutoff distance ζpushed
d for deterministic fronts we simply invert the equation ρ(ζpushed

d ) = 1/N , which gives92

ζpushed
d ≈ 1

k
lnN. [14]93

†The argument presented above can be made more rigorous, but relies on the equation for the front to obey a deterministic PDE (2). A rigorous extension of these results to stochastic fronts remains an
important open question. In order to make progress we use a “tuned model” approach as in Refs. (1, 6, 7), which is elaborated in the next subsection.

‡Note that here and in the next subsection we use the term “pushed” to refer to both fully pushed and semi-pushed expansions. We do this as a matter of convenience when discussing properties which
are same in both fully pushed and semi-pushed regimes.
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Note that in general there is an additive correction to Eq. (14), which depends on the details of the model, but not on N .94

For pulled fronts the situation is slightly more complicated because the two independent eigenvalues k and q become equal95

to kF =
√

r0
D

when v = vF . A similar problem was addressed in Ref. (9) which analyzed the effect of setting the growth rate96

r(ρ) to zero below a fixed density ρc = 1/N (using our notation). Note this is slightly different from our simulations where the97

front is discrete and the population density, not the growth rate, is zero below 1/N . Nevertheless, in the limit of large N we98

conjecture the two models will give similar results. Close to the leading edge, the solution then should have the form99

ρ(ζ) ≈ Aζc
π

sin
(
πζ

ζc

)
e−kF ζ , [15]100

where A is an undetermined constant with units of inverse length. We can rewrite this equation in terms of the adimensional101

lengths102

L = kF ζ, [16]103

as104

ρ(L) ≈ A′Lc
π

sin
(
πL

Lc

)
e−L, [17]105

where all of the variables are now adimensional.106

To find the location of the cutoff we look for the solution of the equation ρ(L) = 1/N , near Lc. As we will see, the prefactor107

together with the sine factor in Eq. (17) only contribute a constant shift to the value of L, which can be ignored in the limit of108

N →∞ we are interested in. Guided by this insight, we can solve the equation by looking for a solution of the form L = Lc− ε.109

Taking the logarithm on both sides and using the approximation sin[π(1− x)] ≈ πx for x� 1 gives110

Lc − ε− ln(A′ε) = lnN. [18]111

Assuming the dominant balance is between Lc and lnN , we find a self-consistent solution Lc = lnN . The next order112

correction is then given by the solution to the equation ε = − ln(A′ε), which will be some constant independent of N . As a113

check, we indeed have Lc � ε for sufficiently large N , as required for our approximation to be valid. Taken together these114

calculations give the following simple expression for the cutoff in deterministic fronts:115

ζpulled
d ≈ 1

kF
lnN. [19]116

B. Stochastic fronts with finite population size. For stochastic fronts, the analysis is much more complicated. Nevertheless,117

theoretical studies starting from Refs. (11, 12) and continuing through Refs. (1, 6) have established that the dynamics of118

all three classes of expansions can also be described using a similar, but distinct, cutoff in the population density as in the119

deterministic case. We briefly recapitulate the argument for deriving the cutoff in stochastic fronts below. The presentation120

closely follows the one from Ref. (1) so readers familiar with those results may wish to skip to the next subsection.121

The correct procedure for determining the cutoff for a general growth function r(n) in the case of stochastic expansions was122

determined in Ref. (1) using the method developed in Ref. (6). The starting point of the analysis is be the stochastic version123

of Eq. (1) which we use in the main text and has the following form:124

∂n

∂t
= D

∂2n

∂x2 + r(n)n+
√
γn(n)n η(t, x). [20]125

Compared to Eq. (1) we have included a demographic noise term whose strength is determined by γn(n). The precise126

dependence of the noise strength on n depends on the details of the birth-death process at the front (see Ref. (1), SI, Sec. IV127

for an extensive discussion). For example, the simulations presented in this study correspond to γn(n) = γ
(0)
n (1− n/N), but128

other choices are possible. In general, the stochastic properties of the front are primarily determined by the low density region129

at the edge of the expansion (n� N) as we show below, so we expect choice of γn(n) to not change any of our results as long130

as γn(n)→ γ
(0)
n smoothly as n→ 0, for some constant γ(0)

n .131

Solving Eq. (20) directly is difficult because the moments of n(t, x) do not close due to the nonlinear growth term r(n).132

Instead Ref. (6) argued that the properties of Eq. (20) can be determined using a moment closure scheme, whereby the133

equation describing the stochastic process n(t, x) is modified to one where the equation for the first moment closes Eq. (1)§. It134

was also shown that the effect of such conditioning can be captured using the equation135

D
d2n

dζ2 − v
dn

dζ
+ r(n)n− γn(n)n2evζ/D∫ +∞

−∞ dξn2(ξ)evξ/D
= 0. [21]136

§One may wonder why such as scheme would give the correct description of the front dynamics, since we later argue that large fluctuations in the front edge are crucial for recovering the correct behavior
of the front velocity and genealogical structure. While this is not at all obvious a priori, it is partially justified by Ref. (13) which showed that closing the hierarchy of equations at higher moments of n(t, x)
leads to very similar results as the simple first-order closure used in Refs. (1, 6) and here. In addition, this approach was shown to lead to the correct exponents for the scaling of Tc with N in the case
of semi-pushed waves (1) and, as we will later show here, also captures the correct structure of the coalescent. These results suggests the moment-closure scheme does give an accurate description of
dynamics of Eq. (20), although more work is needed to prove this.
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The last term in Eq. (21) is exponentially suppressed for small values of ζ, where the solution is well approximated by the137

solution to the deterministic equation Eq. (1). At large values of ζ it has the effect of imposing a cutoff on the growth function138

at ζs which can be determined by equating the last two terms:139

r(n(ζs)) = γn(n(ζs))n(ζs)evζs/D∫ +ζs

−∞ dζn2(ζ)evζ/D
. [22]140

The above equation can be further simplified by noting that for large values of ζs, n(ζs) � N and both r(n) and γn(n)141

can be approximated by their values at n = 0. Making this approximation and using ρ(ζ) = n(ζ)/N as before, we obtain the142

following implicit equation for the cutoff ζs:143

ρ(ζs)evζs/D ≈ r0N

γ
(0)
n

∫ ζs

−∞
dζρ2(ζ)evζ/D. [23]144

To solve Eq. (23) note that the integral converges to a constant value with a very weak dependence on ζs, which can145

be ignored to leading order in N . It is also useful to make the replacement v/D = k + q from the definitions in Eq. (12).146

Substituting this expression along with Eq. (13) into Eq. (23) we get the following expression for the cutoff in pushed stochastic147

fronts:148

ζpushed
s ≈ 1

q
lnN. [24]149

Note that compared to the cutoff in the deterministic case given by Eq. (19), the cutoff above goes further into the low150

density region ahead of the front.151

The calculation is similar in the pulled case, but the details end up more complicated due to the presence of the sine factor.152

Again, we use the relation vF /D = 2kF and introduce the adimensional lengths L = kF ζ to simplify the notation. Then, the153

expression for the cutoff is given by the implicit equation154

Lc
π

sin
(
πL

Lc

)
eL ≈ A′ r0L

2
c

π2γ
(0)
n

N

∫ Lc

dξ sin2
(
πξ

Lc

)
, [25]155

where we use the variable L to control the limit L→ Lc. Note that we have dropped the lower limit in the integral on the right156

hand side of Eq. (25) since our expression for ρ(L) from Eq. (17) is only valid when L� 1. However, due to the exponential157

factor eL in the integral from Eq. (23) and the fact that limL→−∞ ρ(L) = 1, the contribution to the integral from the lower158

limit is small compared to that of the upper limit and can be neglected.159

While it may not be obvious at first sight, as in the previous subsection, the prefactor in front of eL on the left hand side of160

Eq. (25) only contributes a small constant shift in the value of the cutoff L and can be ignored when N is large. Likewise, the161

integral on the right hand side will be proportional to Lc times some constant C. Using these results, we find the following162

simplified equation:163

eL ≈ CA′r0

2π2kF γ
(0)
n

NL3
c . [26]164

An approximate solution in the limit of large N for the above equation can be found through the method of dominant165

balance. Specifically, taking the logarithm on both sides and ignoring the constant ratio on the right we have166

L ∼ lnN + 3 lnLc. [27]167

We can then look for a solution in the form of a series of successive approximations L = Lc + L2 + . . ., where each term168

in the series is much greater than the next. The first order approximation is given by ignoring the second term on the right169

of Eq. (27), which gives the familiar Lc ∼ lnN we saw in the deterministic case. In order to go beyond the deterministic170

approximation, we introduce our series expansion into Eq. (27) to get the next order correction171

L2 ∼ 3 ln lnN. [28]172

Including both leading orders and converting the result back to ζ therefore gives173

ζpulled
s ∼ 1

kF
lnN + 3

kF
ln lnN. [29]174

As a check, we indeed see that lnN � ln lnN as is required for our approximation to be self-consistent. In principle,175

the above procedure can be extended to higher orders, with the next level correction being O(ln ln lnN). However, for any176

biologically relevant values of N , such corrections are much too small to have any impact on our results and are likely to be of177

the same or lower magnitude as the terms we have ignored in deriving Eq. (29), such as the ratio CA′r0
2π2kF γ

(0)
n

in Eq. (26). But,178

as we show in the next subsection, not including the second order correction—which is equivalent to using the deterministic179

front approximation from Eq. (19)—fails to capture the correct statistics of the reproductive values of the front.180
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C. Effect of deterministic and stochastic cutoffs on the distribution of reproductive values. We are now in a position to analyze181

how stochasticity in the front shape impacts the distribution of reproductive values in the population. As we show below,182

the choice of cutoff—determined by the type of front we are considering, as we have showed in the previous subsections—has183

an important effect on the distribution of reproductive values given by Eq. (9). Instead of analyzing the distribution p(u)184

directly, it is more convenient to examine the effect of the front cutoff using the definition of u(ζ). Similar to the previous185

subsections, the calculations in the pulled regime are slightly more involved and are treated separately. Nevertheless, despite the186

mathematical differences between the different expansion classes, the most important conclusion of these calculations applies to187

all types of expansions—namely that deterministic front approximations invariably change the nature of the coalescent at the188

front when N is large.189

We begin by rewritting our definition of u(ζ) using the normalized population density ρ(ζ) from the previous sections:190

u(ζ) = ρ(ζ)evζ/D

N
∫ ζc

−∞ dξρ
2(ξ)evξ/D

. [30]191

As shown previously, in fully pushed and semi-pushed expansions ρ(ζ) ∼ e−kζ when ζ is large, from where we see that192

u(ζ) ∼ N−1eqζ . Thus, u(ζ) is a monotonically increasing function of ζ and has a maximum uc ≡ u(ζc) corresponding to the193

location of the cutoff in the population density ζc. In the case of stochastic fronts, the cutoff location is given by Eq. (24)194

and the exponential exactly cancels the N−1 factor in the definition of u(ζ). Therefore, the maximum reproductive value uc195

becomes a constant independent of N :196

u(ζpushed
s ) . O(1). [31]197

The exact value of the constant u(ζpushed
s ) in general depends on the details of the model and we expect it to be non-universal.198

In the case of fully pushed expansions, p(u) has a finite variance and the structure of the coalescent does not depend on the199

tails of the distribution (8, Sec. 3.2). For semi-pushed expansions, the tail of the distribution p(u) is important so here we200

might expect the cutoff to have a greater impact. However, in general only the distribution at very large values near the201

maximum at u = 1 will be affected. Such a cutoff is likely to have an impact on the statistics of very rare events when the202

number of descendants from one individual over a timescale comparable to the mixing time is close to the entire population of203

the front. But in most cases such events are so rare that they do not significantly change the overall shape of the SFS or the204

allele frequency distributions we are interested in.205

In the case of pushed deterministic expansions however, the situation is very different. Substitution of ζpushed
d from Eq. (14)206

into Eq. (30) gives207

u(ζpushed
d ) ∼ N−α/(1+α), [32]208

where α is the exponent of the distribution of reproductive values defined in Eq. (3) in the main text and Eq. (9). Compared to209

the stochastic case, now the maximum reproductive value decreases with N . For fully pushed expansions this could change the210

convergence of the model to the Kingman coalescent, but would otherwise leave structure intact. For semi-pushed expansions,211

however, the maximum fraction of lineages that can coalesce within a generation goes to zero as N → ∞. In other words,212

large multiple mergers become increasingly rare in both the fully pushed and semi-pushed deterministic fronts, contrary to the213

stochastic case.214

Finally, we now show that the change in coalescent structure due to a deterministic front approximation we demonstrated215

for semi-pushed expansions also applies in the pulled regime. The argument is essentially the same as the one presented above,216

but the expressions we obtain for the different quantities are slightly more complicated due to the presence of the sine factor in217

front shape in Eq. (15). Readers not interested in the mathematical details of the calculation can simply continue to the next218

section.219

It is again simplest to work using the adimensional lengths. Substituting Eq. (17) into Eq. (30) we get220

u(ζ) ≈
Lc
π

sin(πL/Lc)eL

NA′
(
Lc
π

)2 ∫ Lc

−∞ dξ sin2
(
πξ
Lc

) . [33]221

As before, the prefactor in front of eL can be ignored for L close to Lc and large N , giving the following asymptotic relation222

u(L) ∼ eL

NL3
c
. [34]223

The cutoff at L = Lc again imposes a cutoff on the maximum value of u. To determine the value of this cutoff in both224

stochastic and deterministic fronts, we simply introduce the appropriate value of Lc into Eq. (34). Thus, for stochastic fronts,225

from Eq. (27) we have Lpulled
s ∼ lnN + 3 ln lnN which gives the following scaling for the maximum u:226

u(Lpulled
s ) ∼ N ln3 N

N(lnN + 3 ln lnN)3 . O(1). [35]227

Similarly to the semi-pushed regime, we find that the cutoff in the stochastic regime only has an effect at very large values228

of u. To get the corresponding behavior for deterministic fronts, we insert Eq. (19) into Eq. (34). In this case the result reads229
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u(Lpulled
d ) ∼ N

N ln3 N
∼ ln−3 N. [36]230

Thus, we see that as in the case of semi-pushed expansions, restricting fluctuations at the front prevents the emergence of231

highly fecund clones which are crucial for generating non-Kingman genealogies. Unlike in the semi-pushed case, the cutoff at232

high values of u for pulled deterministic expansions is only logarithmic in N .233

As shown by Eqs. Eq. (32) and Eq. (36), the maximum reproductive value in both semi-pushed and pulled expansions234

goes to zero as N →∞. However, we are not aware of any rigorous proof that the genealogies in such a model converge to235

the Kingman coalescent. Indeed, if we naively convert the reproductive values into actual offspring using W = Nu, then the236

variance of W scales as N (1−α)/(1+α) for semi-pushed and as N/ ln3 N for pulled expansions, so we cannot use the standard237

results for the convergence to the Kingman coalescent of populations with finite variance (4). Our simulations, however, strongly238

suggest the emerge of a Kingman-like coalescent, at least for clones with frequencies high enough to sample p(u) near uc.239

2. Effective clone size distribution240

In this section we calculate the clone size distribution at the front on times scales much longer than τm, by approximating the241

process in the effective well-mixed population by a branching process. The probability distribution can be obtained analytically242

for α = 1
2 and when the number of descendants has a finite variance. All of the results in this section have been derived243

previously. Some useful references for readers unfamiliar with the theory of branching processes are summarized in A. Readers244

familiar with this literature may wish to skip parts or all of this section. To help guide readers through the most important245

results derived in this section we provide a brief overview below.246

The definitions of the different types of branching processes and the derivation of the master equation for the general247

case are discussed in B. In D, we consider a branching process with a finite variance in the number of offspring, which is248

directly relevant for the Kingman coalescent. Both the survival probability S(t) and the size distribution of surviving clones249

(p+(t, y)) are introduced and discussed here. In E we give a more formal definition of p+(t, y) and show how to calculate the250

complementary cumulative distribution function (CCDF) shown in S4. All of the previous results are extended to processes251

with infinite variance in the offspring number in F and G. We then use these results to derive the allele frequency distribution252

for different types of branching processes in 2.253

A. Relevant literature. Branching processes were first studied by Watson and Galton to describe the dynamics of British254

surnames (14); therefore they are often referred to as Galton-Watson processes. Branching processes have been applied to a255

number of fields including branching of neutrons in nuclear reactions, population genetics, earthquakes, chemical reaction,256

birth-death processes, shot noise, and many others. The monograph by Harris (15) contains the historical details and detailed257

mathematical treatment of simple and generalized branching processes together with several applications. A simpler and more258

limited exposition can be found in Ref. (16). A summary of the early progress in branching processes can be found in Ref. (17).259

Branching processes were also called multiplicative processes possibly because of the application to the nuclear reactions;260

see (18).261

The full solution for the branching process was developed by a great number of scientists who calculated different properties262

under different assumptions. Some of the key results that are relevant for us were obtained in Ref. (19, 20). The approach263

taken in the latter reference is very close to how a physicist would approach this problem and our discussion closely follows264

that of Ref. (20). More recently, branching processes have been used in the study of avalanches and total popularity on265

networks (21, 22). These references extend the classical results to compute the integral of the number of organisms over time266

for surviving families, i.e. avalanche size. On the mathematical side, branching processes can be studied in the continuum limit,267

which is known as continuous state branching processes. This description is equivalent to a Levy process with a time change.268

All of the results, however, can be derived from the discrete number of individuals by taking the continuum limit (23–25).269

B. Problem formulation and general solution. We consider a continuous time version of the branching process since it is simpler.270

The probability to observe n individuals at time t is denoted as pn(t). Unless specified otherwise, we assume that pn(0) = δn,1.271

The probability to leave k descendants is qk.272

The master equation reads273

ṗk = r[−kpk +
k∑
l=0

ql(k − l + 1)pk−l+1], [37]274

where r is the branching rate. Since r only enters the problem through the time scale, we set r = 1 in the following.275

Note that the transition rates are proportional to the number of individuals since each can reproduce. The “+1” in the last276

term accounts for the fact that the reproducing individual dies.277

The master equation can be solved using generating functions. We denote the generating functions for pn and qk by P278

and Q respectively:279

P (t, z) =
∞∑
n=0

znpn(t), [38]280
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Q(z) =
∞∑
k=0

zkqk. [39]281

Upon differentiating Eq. (38) with time and using Eq. (37), we obtain282

∂P

∂t
= [Q(z)− z]∂P

∂z
, [40]283

which can be solved using the method of characteristics. Assuming that we start with one individual, P (0, z) = z, and the284

implicit solution of Eq. (40) reads285

t =
∫ P (t,z)

z

ds

Q(s)− s . [41]286

This equation serves as the basis of our analysis in the rest of this summary.287

Before proceeding with the analysis, however, we point out that many references study branching processes from a different288

starting point. Consider how the population can change in a short time dt at the start of the process when there is only one289

individual (similar to the backward Kolmogorov equation). With probability 1 − dt, nothing happens and the generating290

function remains unchanged. With probability dt the organism reproduces and leaves k descendants with probability qk. After291

that we also have a branching process that lasts time t, but starts with k individuals. Since individuals are independent the292

generating function for the sum of their progenies is the product of the generating functions for each starting organism. In293

other words, we obtain294

P (t+ dt, z) = (1− dt)P (t, z) + dt

∞∑
k=0

qkP (t, z)k, [42]295

which simplifies to296

∂P (t, z)
∂t

= Q[P (t, z)]− P (t, z). [43]297

It is easy to see by direct substitution that the implicit solution from Eq. (41) satisfies Eq. (43). The direct analysis of298

Eq. (43) and its discrete-time analog involves functional equations and recurrences, which are more cumbersome than the299

implicit solution obtained above.300

C. Asymptotic analysis. When the integral in Eq. (41) can be evaluated one can obtain P (t, z) directly. For a general Q(z), we301

focus on long time limit. In this limit, t→ +∞ and the integral must diverge. Therefore, the long time behavior of P (t, z) is302

controlled by the smallest root zc of Q(zc) = zc and the behavior of Q(z) around zc (15, 20).303

It is easy to show that zc > 1 when the mean number of descendants 〈k〉 = Q′(1) < 1. In this case, P (t, z) approaches 1304

exponentially fast, which corresponds to guaranteed extinction. Note that any generating function needs to be less or equal to305

one for |z| ≤ 1.306

When 〈k〉 = Q′(1) > 1, zc < 1. In this case, the process has a finite probability to survive, which is given by 1− zc. The307

population size of surviving realizations grows exponentially with time at a rate given by 〈k〉 − 1. More refined results can be308

obtained by expanding Q(z) in Taylor series around zc.309

When 〈k〉 = Q′(1) = 1, we have a critical branching process. This is the case that we will focus on in the following. In310

this case zc = 1 and the behavior of P (t, z) depends on the behavior of Q(z) around z = 1. If 〈k2〉 exists, Q(z) has a second311

derivative at z = 1 and can be approximated by Q(z) = z + [1/2Q′′(1)](1 − z)2. If the variance is infinite, then Q(z) is312

not analytic around z = 1. We argue below that, when the number of descendants is distributed according to a power law,313

Q(z) = z + g(1− z)1+α with α ∈ (0, 1].314

In the next two sections, we evaluate the integral in Eq. (41) using the approximations for Q(z) to obtain the long time315

asymptotics of P (t, z).316

D. Critical branching process with finite variance. Upon substituting Q(z) = z + Q′′(1)
2 (1− z)2 into Eq. (41) and evaluating317

the integral, we obtain318

P (t, z) = 1− 1− z
1 + Q′′(1)t

2 (1− z)
. [44]319

The survival probability is given by320

S(t) = 1− P (t, 0) = 1
1 +Q′′(1)t/2 ∼

2
Q′′(1)t . [45]321

The average size of a surviving clone 〈n(t)〉+ should be such that 〈n(t)〉 = 1. Therefore322
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〈n(t)〉+ = 1
S(t) = 1 + Q′′(1)t

2 . [46]323

To obtain pn(t), we expand P (t, z) in Taylor series around z = 0. The result for n > 0 reads324

pn(t) = Sn+1(t) ∼
(

2
Q′′(1)t

)2

e
− 2n

Q′′(1)t . [47]325

The above expression can be recast in a simpler form by normalizing the population size by the expected population size326

of surviving realizations. Specifically, we let y = n(t)/〈n(t)〉+, which also affects the normalization constant, and divide pn327

by S(t) since we consider only surviving realizations. The distribution of scaled population sizes is then described by the328

following probability density function:329

p+(y) = e−y, [48]330

where we use the p+(·) to denote the probability distribution function (PDF) conditioned on non-extinction and have omitted331

the time variable since the equation corresponds to the limit t→ +∞. This relationship can also be derived in a more formal332

and general way that we describe below.333

E. Continuum limit from generating function. As shown in the previous subsection, when the offspring distribution has a finite334

variance, we can obtain a simple expression for the clone size at t→∞ by treating y = n/〈n(t)〉+ as a continuous variable. In335

this subsection we give a more precise definition for p+(y) from Eq. (48) and show how to calculate the distribution function of336

y from the generating function P (t, z) defined in Eq. (38).337

We begin by formally defining p+(t, y) as the probability density function of y(t) = n/〈n(t)〉+ at time t, conditioned on338

non-extinction. First, notice that339

Pr(n(t) ≤M |n(t) > 0) = 1
S(t)

M∑
k=1

pk(t) ≈ 1
S(t)

∫ M

1
pk(t)dk ≈

∫ M/〈n(t)〉+

1
p+(t, y)dy. [49]340

Therefore341

p+(t, y)dy ≈ pk(t)
S(t) . [50]342

Note that at long times 〈n(t)〉+ � 1, and thus dy = 1/〈n(t)〉+ � 1, justifying our treatment of y as a continuous variable.343

Substituting the previous expression into Eq. (50) and using the definition of 〈n(t)〉+ from Eq. (46) we obtain the following344

expression for the PDF of y(t):345

p+(t, y) ≈ pn(t)
S2(t) . [51]346

Then, we can relate the generating function P (t, z) to the moment generating function of p+(t, y):347

M(t, σ) = E{e−σy} =
∫ +∞

0
p+(t, y)e−σydy ≈

+∞∑
n=1

pn(t)
S(t) e

−σn/〈n(t)〉+

= 1
S(t)

[
P (t, z = e−σ/〈n(t)〉+ )− p0(t)

]
= 1− 1− P (t, z = e−σ/〈n(t)〉+ )

S(t) ,

[52]348

where we used p0(t) = 1− S(t). One can then obtain p+(t, y) via an inverse Laplace transform of M(t, σ). Note that for the349

critical branching process 〈n(t)〉+ = 1/S(t).350

Since it is convenient to summarize simulation results in terms of the complementary (reverse) cumulative distribution c(t, y),351

we also derive the connection between P (t, z) and the Laplace transform of c(t, y):352

C(t, σ) = 1−M(t, σ)
σ

= 1− P (t, z = e−σ/〈n(t)〉+ )
S(t)σ . [53]353

As a check, we can apply this result to the branching process with finite variance to obtain the long time limit of c(t, y) as354

follows:355

C(σ) = lim
t→+∞

C(t, σ) = 1
1 + σ

, [54]356

c(y) = 1
2πi

∫ i∞

−i∞
eσyC(σ)dσ = e−y, [55]357

which indeed describes the CCDF for p+(y).358

Gabriel Birzu, Oskar Hallatschek, Kirill S. Korolev 9 of 20



F. Power-law tails and the behavior of the generating function. Before repeating the analysis above for distributions of the359

number of descendants qk with diverging variance, we briefly discuss the connection between the power law tail of qk and the360

singularity of Q(z) at z = 1. As a reminder, we focus only on critical branching processes with 〈k〉 = 1 and only on qk ∼ k−2−α
361

for large k. Under these assumptions,362

Q(z) ≈ z + g(1− z)1+α [56]363

around z = 1.364

The simplest way to show that Eq. (56) is the generating function for a broad offspring distribution is to perform a binomial365

expansion of the second term and identify the coefficients with the probabilities qk. After the expansion we have366

Q(z) = z + g

∞∑
k=0

(−1)k
(

1 + α

k

)
zk, [57]367

where
(1+α
k

)
= 1

k!
∏k

j=0(1 − j + α). Note that for k ≥ 2 all of the factors in the binomial coefficient are negative. We can368

simplify the expression by separating the first two factors. For the kth term in the series this gives
∏k

j=0(1 − j + α) =369

(−1)k−2α(1 + α)
∏k−1
j=1 (j − α). Introducing this expression into Eq. (57) gives370

Q(z) = g + [1− g(1 + α)]z + gα(1 + α)
∞∑
k=2

Γ(k − 1− α)
Γ(1− α)Γ(k + 1)z

k, [58]371

where we have expressed the products over j in terms of Gamma functions. Note that the “−1” factors cancel out as372

required for qk to be positive. From Eq. (58) we can simply read off the values of qk, which for k ≥ 2 have the form373

qk = gα(1 + α) Γ(k−1−α)
Γ(1−α)Γ(k+1) . To see the scaling of qk when k is large, we use Stirling’s approximation for the Gamma functions374

and find the following expression:375

qk ≈
gα(1 + α)
Γ(1− α) k

−2−α. [59]376

Another way to derive the relationship is to choose a specific form of qk. A convenient choice is qk = k−(2+α)/ζ(1 + α)377

for k > 0 and q0 = 1− ζ(2 + α)/ζ(1 + α), where ζ(·) is the Riemann zeta function. Note that this choice satisfies both the378

normalization condition and the requirement that the average number of descendants equals to one. It is easy to show via a379

Taylor expansion around z = 0 that the corresponding generating function is given by380

Q(z) = 1− ζ(2 + α)
ζ(1 + α) + z

ζ(1 + α)Γ(2 + α)

∫ +∞

0

e−pp1+α

1− ze−p dp, [60]381

where the last term without the zeta function is known as Li2+α(·), polylogarithm of order 2 + α. The asymptotics of Q(z)382

can be directly extracted from this integral representation by extending it in the complex plane, or from the asymptotics of the383

polylogarithm.384

G. Critical branching process with diverging variance. To find P (t, z), we substitute the approximation for Q(z) (Eq. (56))385

into the implicit solution given by Eq. (41). The result reads386

P (t, z) = 1− 1− z
(1 + αgt(1− z)α)1/α . [61]387

This expression contains all the information that we need. In particular, one can pass to a continuum limit and obtain C(t, σ)388

and c(t, y). Inverse Laplace transform can be evaluated by moving the integration contour to hug the branch cut (−∞, 0).389

Below, we consider a few special cases where the calculations are particularly simple and provide additional insight.390

The survival probability and the average size of the surviving population are given by391

S(t) = 1
〈n(t)〉+

= (1 + αgt)−1/α ∼ t−1/α. [62]392

Note that the relevant time scale is 1/(αg), which becomes ζ(1 + α)(1 + α)/Γ(1− α). The latter expression scales as 1/α393

for α→ 0. Thus, one should expect very long transient dynamics for small α.394

The long time limit for C(t, σ) is given by395

C(σ) = 1
(1 + σα)1/α . [63]396

The inverse Laplace transform yields the following asymptotics397

10 of 20 Gabriel Birzu, Oskar Hallatschek, Kirill S. Korolev



c(y) ∼


1− yα

αΓ(1 + α) , y � 1,

y−1−α

Γ(1− α) , y � 1.
[64]398

The asymptotics for p+(y) are obtained by differentiation with respect to y.399

For the special case of α = 1/2, one can obtain an analytic expression for c(y):400

c(y) = (1 + 2y)ey erfc(√y)− 2
√
y

π
∼


1− 4√

π

√
y, y � 1,

y−3/2
√
π
, y � 1.

[65]401

The small y asymptotics can also be derived directy from the generating function by expanding it in Taylor series around402

z = 0. This yields403

pn(t) = (αgt)−1−1/α Γ(n+ α)
Γ(1 + α)Γ(n+ 1) ∼ (αgt)−1−1/αn−1+α. [66]404

H. Allele frequency distributions. The results from the previous subsection allow us to derive the properties of the allele405

frequency distribution (AFD) shown in Fig. 5 in the main text. Below we derive the AFD for semi-pushed and fully pushed406

waves (α > 0). Due to the slow relaxation to the quasi-stationary regime shown in the previous section, the pulled case407

(corresponding to α = 0) is more difficult to analyze in this framework. Interested readers are invited to consult Refs. (26) and408

(5) for more details on this regime.409

To calculate the AFD for the two-allele model we used in the main text, we approximate the sizes of the two alleles by410

independent branching processes n1(t) and n2(t), with identical distributions of reproductive values given by Eq. (2) in the411

main text. Note that in the full model the total population size of the front is kept constant, which induces correlations412

between the number of offspring of the two alleles. But our solution should still capture the shape of the distribution close to413

the edges of frequency range, where the size of one allele is small and the correlations weak. Using this approximation, we414

define the AFD A(z) as the PDF of the ratio Zt = n1(t)
n1(t)+n2(t) conditioned on both n1(t) and n2(t) surviving. The distribution415

can be expressed in terms of the complementary cumulative distributions derived earlier as follows:416

Pr {Zt > z} = Pr
{

n1(t)
n1(t) + n2(t) > z

}
= Pr

{
n1(t) > z

1− z n2(t)
}

=
∫ ∞

0
dy p+(y)

∫ ∞
zy

1−z

dx p+(x), [67]417

where we defined x = n1(t)/〈n1(t)〉+ and y = n2(t)/〈n2(t)〉+ and used 〈n1(t)〉+ = 〈n2(t)〉+ = 1/S(t) to express the probability418

in terms of the PDF defined in Eq. (51). Using the definition of the CCDF from Eq. (55) we find the following expression for419

the allele frequency distribution420

Pr {Zt > z} =
∫ ∞

0
dy p+(y)c

(
z

1− z y
)
. [68]421

We first consider the case where the variance is finite, when both p+(y) and c(y) are exponential. The calculation is422

straightforward and gives423

Pr {Zt > z} =
∫ ∞

0
dy exp

(
−y − z

1− z y
)

= 1− z. [69]424

Thus, for branching processes with finite variance Zt is uniformly distributed on the interval [0, 1].425

For the general branching process with infinite variance Eq. (68) cannot be evaluated exactly since there are no closed426

form expressions for the clone size distribution. Nevertheless, we can use the asymptotic expressions from Eq. (64) to obtain427

the scaling of the allele frequency distribution close to z = 0 and z = 1. We begin by differentiating Eq. (64) to find the428

asymptotics for p+(y). The result reads429

p+(y) ∼


yα−1

Γ(1 + α) , y � 1,

1 + α

Γ(1− α)y
−2−α, y � 1.

[70]430

We now show that for z very small or close to 1, the asymptotic scalings from Eq. (64) and Eq. (70) are enough to find431

the leading behavior. Note that since n1(t) and n2(t) have identical distributions, the distribution of z will be symmetric432

about z = 1/2. Thus, we focus on z � 1 in the following for simplicity. To simplify the calculations we use the notation433

u(z) = z/(1− z), which we will substitute back at the end to obtain the distribution in terms of z. Denoting the integrand by434
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f(y, u) = p+(y)c(uy), there are three regions of y where we can use the asymptotic relations derived previously to find the435

dependence of f on y and u:436

f(y, u) ∼



yα−1

Γ(1 + α) −
uα

αΓ2(1 + α)y
2α−1, y � 1,

1 + α

Γ(1− α)y
−2−α − (1 + α)uα

αΓ(1− α)Γ(1 + α)y
−2, 1� y � u−1,

(1 + α)u−1−α

Γ2(1− α) y−3−2α, uy � 1.

[71]437

From the above expression we immediately see that the leading order for small u comes from the two regions where y � u−1
438

and scales as uα. Substituting z from the definition of u and noting that Pr {Zt > 0} = 1 by definition, we find the following439

asymptotic scaling for the distribution of Zt:440

Pr {Zt > z} ∼ 1− Cαzα. [72]441

The constant Cα will in general depend on the crossover between three regimes in Eq. (71) and acts as a fitting parameter442

in our simulations. A similar calculation in the limit of u� 1 confirms that Pr {Zt > z} ∼ (1− z)α for 1− z � 1, as expected443

from the symmetry argument. Differentiating with respect to z then gives the expression for the allele frequency distribution444

near the boundaries:445

A(z) ∼

{
αCαz

α−1, z � 1,
αCα(1− z)α−1, 1− z � 1.

[73]446

For fitting Eq. (73) to the simulations in Figs. 5 from the main text and S3 we used A(z) = Czα(1− z)α and set C such447

that the integral
∫ 1−z0
z0

dzA(z) = 1. This then leaves z0 as a fitting parameter, which we chose such that the distribution448

approximately matched the height of the bins at the edges of the histograms in the figures.449

3. Summary statistics of ancestral trees450

In this section we present other summary statistics we used to infer the topology of the ancestral trees obtained from simulations.451

A. Theoretical background. Our analysis of the genealogies is based on the coalescent theory. The coalescent provides a model452

for the backward-in-time dynamics of lineages in a population without any internal structure ¶. Generally, such a model453

is completely described by the rates λb,k at which k out of b lineages merge. An important result shows that λb,k for any454

coalescent‖ can be written in the following form:455

λb,k =
∫ 1

0
dxxk(1− x)b−kΛ(x)

x2 , [74]456

where Λ(x)/x2 is the distribution of the merger sizes (8). A few special choices of Λ(x) are worth noting. First, Λ(x) = δ(x)457

gives λb,2 = 1 and λb,k = 0 for k > 2. This is the standard Kingman coalescent, where only pairwise mergers are allowed and458

their rate is constant. Another important model is the Bolthausen–Sznitman coalescent and is given by Λ(x) = 1. The merger459

rates in this case are λb,k = (b−1)!
(k−2)!(b−k)! , which implies that k = 2 and k = b mergers are equally likely and the most likely460

merger size is close to b
2 . Such large merger events have been used to describe genealogies of populations under strong selection461

(26, 32). Finally, one can interpolate between the two by using462

Λ(x) = x1−β(1− x)β−1

Γ(2− β)Γ(β) . [75]463

From Eq. (75), it is easy to show that β = 1 gives the Bolthausen–Sznitman coalescent and β = 2 gives the Kingman464

coalescent. The coalescent described by Eq. (75) is known as the Beta-coalescent and many of its properties have been studied465

previously (8). For our purposes, it is important to note that the Beta-coalescent describes the genealogies of highly fecund466

populations, in which the offspring distribution P (W ) (which is equivalent to our distribution of reproductive values P (u)) has467

a power law tail P (W ) ∼ W−(1+β) (4). In Sec. 1, we demonstrated that the distribution of reproductive values indeed has468

such a power law tail in range expansions, when coarse-grained over the mixing time. We make use of this fact to argue that469

genealogies in range expansions can generically be described by a Beta-coalescent.470

¶Mathematically, this property is referred to as exchangeability and is an underlying premise in coalescent theory.
‖This result applies to all Λ-coalescents, in which any number of lineages can merge at the same time, but merger events happen in succession. An even more general class, known as the Ξ-coalescent,

allows for multiple simultaneous merger events as well. Such models have mainly been used to describe genealogies of diploid populations (27–29), but also populations under strong selection in the
presence of recombination (30, 31).
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B. One- and two-site frequency spectra. The most convenient way to characterize the statistical properties of genealogical471

trees is the site frequency spectrum (SFS), which corresponds to the set of lengths of branches ξk subtending k leaves, for all472

values of k ∈ [1, n− 1]. The exact SFS can be obtained recursively for small n (33). Asymptotic results for large n are also473

known for Eq. (75), but they converge slowly with sample size (33) and we will not use them here. Similar results can be474

obtained for 2-SFS, which represents the covariances between branch lengths (33).475

While the SFS of the Beta- and Kingman coalescents are quite different as we have shown, relaxing the assumption of476

constant population size in the Kingman coalescent can lead to the site frequency spectra becoming more similar. Recently, it477

has been proposed that the two-site frequency spectrum (2-SFS) is a more robust measure to distinguish between Kingman478

and non-Kingman coalescents (34). Empirically, one can estimate the 2-SFS pn(k, l) from a sample of size n sequences by479

counting the number of pairs of sites which have allele counts k and l. For constant mutation rates, the 2-SFS can be derived480

from the genealogical tree—in this case pn(k, l) is proportional to the second moment of the length of branches that subtend k481

and l leaves. In the case of the Kingman coalescent, the long branches near the common ancestor lead to a large number of482

sites which co-occur or split the tree in half. This explains the high values of the 2-SFS seen on the diagonals. In addition,483

pairwise branching of ancestral lineages constrain the topology further down tree, leading to anticorrelations between rare484

alleles (Fig. S1a). In contrast, coalescents with multiple mergers have shorter branches near the common ancestor, decreasing485

the density along the diagonal of the 2-SFS. The tree topology of coalescents with multiple mergers is also less constrained486

by early mergers, resulting in less pronounced negative correlations between rare alleles in the Beta-coalescent, and positive487

correlations in the Bolthausen–Sznitman coalescent (Fig. S1b, c).488

We used the trees generated from simulations of fully pushed, semi-pushed, and pulled expansions to test 2-SFS against the489

theoretical predictions. We found that the patterns in the 2-SFS qualitatively matched the theoretical predictions for Kingman,490

Beta-, and Bolthausen–Sznitman coalescents (Fig. S1). In particular, fully pushed waves showed negative correlations outside491

of the main diagonals as expected, with correlations below the main diagonal smaller in absolute value than those above the492

main diagonal. Semi-pushed and pulled expansions, on the other hand, showed signatures of multiple mergers in the form of an493

increase of correlations below the main diagonal, and higher positive correlations on the off-diagonal, especially in the case of494

pulled expansions. We have attempted to capture these patterns of variation using different summary statistics presented in Fig.495

S2 and found that the change in these statistics as the coalescent transition from the Kingman to the Bolthausen–Sznitman496

coalescent in simulations qualitatively agrees with the theory.497

4. Simulations498

In this section we explain the details of our expansion simulations and the data collection and processing pipelines.499

A. Stochastic front simulations. We simulated the expansion of a population in a one-dimensional habitat modeled by an array500

of patches (demes), separated by a distance ∆x. Demes contain individuals, which are labeled using integers. We denote501

by Ii(t, x) the label of the ith individual in deme x, with 1 ≤ x ≤ L and 1 ≤ i ≤ N . To allow for demes with less than N502

individuals, we use vacancies, which are labeled by Iv = 0.503

The population is initially localized on L/2 = 150 demes. Each deme is filled with N individually labeled members of the504

population. Individuals are labeled sequentially, starting with the first individual in the leftmost deme and moving to the right505

of the population. Thus,506

Ii(0, x) = (x− 1)N + i+ 1, x ≤ L/2
Ii(0, x) = 0, x > L/2.

[76]507

Each generation is updated in two steps. First, a migration step, in which demes are updated sequentially, starting508

from x = 1. For each deme, the number of migrants exchanged with the next deme is drawn from a binomial distribution:509

nmigrants
x = Binomial(nx,m/2), [77]510

where m is the migration probability. To choose the migrants, the order of individuals in demes x and x+ 1 is randomized,511

and the first nmigrants
x from the demes are exchanged.512

Second, we perform a growth step. Following Ref. (3), the growth of the population was modeled by introducing a fitness513

difference between the vacancies and the actual species. Specifically, the fitness of the species was set to ws
x = 1 and the fitness514

of the vacancies was set to wv
x = 1− r(nx)/(1− nx/N), where515

r(n) = r0(1− n/N)(1 +Bn/N), [78]516

nx(t) =
N∑
j=1

(1− δ0,Ij(t,x)), [79]517

and δlm is the Kronecker delta. The next generation is constructed by sampling, with replacement, a new set of labels Ii(t+1, x)518

from the set of previous labels {I1(t, x), I2(t, x), ..., IN (t, x)} for each i ≤ N . The probability to sample the ancestor Ii(t, x) is519

proportional to the ratio of wix to the mean fitness of the population in the deme: w̄x = nx/N + wv
x(N − nx)/N = 1− r(nx).520
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The parameters for the simulations in each of the three regimes were chosen so as to provide the clearest differences between521

the coalescents. Specifically, we used purely logistic growth for pulled expansions (B = 0 in Eq. 4 in the main text) and a high522

value of the cooperativity (B = 10) for the fully pushed expansions. The cooperativity in the semi-pushed regime (B = 3.33)523

was chosen close to the middle of the semi-pushed regime, where we expected the leading behavior for the coalescence time∗∗
524

predicted by theory to be a good approximation to the simulations. As shown in Ref. (1), for B in this region, the predicted525

exponents for the scaling of Tc with N in both deterministic and stochastic fronts match the theoretical predictions exactly.526

Note that while our theoretical predictions are valid to leading order for all expansions, close to the transitions between the527

different classes we expect subleading corrections to play an important role in the dynamics at the front, which can lead to528

substantial changes in both the coalescence time and the genealogies for the values of N accessible in simulations.529

B. Deterministic front simulations. Simulations with deterministic fronts were performed using the same algorithm as in Ref.530

(1). Briefly, in these simulations, only two genotypes were considered, whose densities are n(i)
x (t), where x is the index of the531

deme, and i = 1, 2 denotes the genotype. The total population for each deme after an update, nx(t+1) = n
(1)
x (t+1)+n(2)

x (t+1),532

was determined using a similar idea of introducing vacancies in demes of size N as in the stochastic model. Specifically, we533

calculate the expected population densities following migration534

ñ(i)
x

(
t+ 1

2

)
= (1−m)n(i)

x (t) + m

2 n
(i)
x−1(t) + m

2 n
(i)
x+1(t) [80]535

and growth536

n̂(i)
x (t+ 1) = [1 + r(ñx)]ñ(i)

x

(
t+ 1

2

)
, [81]537

where we defined ñx = ñ
(1)
x (t+ 1/2) + ñ

(2)
x (t+ 1/2). We then determine the total population density at deme x in the next538

generation as the closest integer to n̂x(t+ 1) = n̂
(1)
x (t+ 1) + n̂

(2)
x (t+ 1). Finally, denoting the updated population density by539

nx(t+ 1), we calculate the frequency of each genotype using binomial sampling:540

n(1)
x (t+ 1) = Binom (nx(t+ 1), fx) ,

n(2)
x (t+ 1) = nx(t+ 1)− n(1)

x (t+ 1),
[82]541

where542

fx = n̂
(1)
x (t+ 1)
nx(t+ 1) . [83]543

C. Recording genealogies. The genealogy of the population is recorded in a custom tree class, in which all individuals in the544

simulation box are stored as nodes. Each node is assigned a unique parent node, and a set of child nodes, except for the most545

recent generation, which have no children—we will refer to these nodes as the leaves of the tree. The tree is initialized with546

one node, which is designated as the root of the tree, and is continuously updated as follows. At the start of the simulation,547

all individuals at the front are assigned as leaves with the root as their parent. As the population expands, many labels548

become extinct and the average clone size of the surviving labels grows. After a fixed number of generations ∆t, we relabel all549

individuals and add them as new nodes on the tree. Each individual is assigned as a child node to one of the leaves of the tree,550

which is designated as its parent according to the previous label of the child node. After every individual is assigned to the551

tree, the newly added nodes are designated as the new leaves of the tree. At the end of this process, we prune the tree by552

removing all nodes which have no leaves among their descendants. The process is repeated until either the whole population553

has one common ancestor or a maximum number of generations Tmax for the simulation is reached.554

5. Data analysis555

In this section we explain how we analyze the data from simulations to obtain the figures in the main text and the SI.556

A. Estimating the mixing time. We used the following procedure to determine the spatial distribution of ancestors in Fig. 2 in557

the main text. We ran 1000 simulations of a fully pushed expansion, for which we estimated the coalescence time Tc ≈ 103,558

using the following parameters: N = 350, B = 10, r0 = 0.01, m = 0.4, ∆t = 20. For each simulation we recorded the ancestry as559

described in Sec. 4. In order to determine the location of each ancestor from the population, we modified the label assignment560

algorithm by using the following equation:561

Ii(t, x) = NL(t− 1) +Nx+ i+ 1, [84]562

where Ii(t, x) is the label of individual i from deme x in generation t. Using this equation, each label uniquely specifies the563

position of the individual.564

∗∗Note that the coalescence time is defined as Tc = Λ−1 , where Λ is the rate of diversity loss, as defined in Ref. (1).
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Because fronts are stochastic it is difficult to compare ancestral distributions across simulations. To minimize the variance in565

the ancestral distribution due to variations in the final sampling location, we used the following procedure. We first determined566

the midpoint of the front, given by the deme closest to the mean position x along the front, weighted by the population size at567

x. Next, we determined the bulk and leading edge of the front, which we defined as least advanced location with population568

size below the carrying capacity and the most advanced location with a non-zero population size, respectively. Finally, the569

sampling location from the bulk and the front were chosen as the closest demes to the halfway distance between midpoint of570

the front, and the bulk edge and the front edge, respectively.571

We then collect the labels of all individuals from the two sampling locations. Using the ancestral trees, we traced back the572

labels of the ancestors of all the sampled individuals. Finally, we recorded the locations of these ancestors by solving for x in573

Eq. (84) and plotted the distribution of these locations across all simulations. The mixing time was determined approximately574

as the time at which the two ancestor distributions visually overlapped. During testing, we also tried more quantitative ways of575

measuring the overlap between the distributions, but ultimately did not find that they were more useful than the simple visual576

test.577

B. Sampling and analysis of SFS and 2-SFS. We used the following procedure to sample and analyze the SFS and 2-SFS from578

the ancestral trees in our simulations. We first subsampled a number of individuals n from close to the edge of the front in the579

final population. As discussed in the main text, far from the front the effects of spatial structure become important and our580

well-mixed approximation breaks down. Empirically, we observed that sampling individuals from the farthest advanced 20581

demes minimized the effects of spatial structure on both the SFS and the clone size distributions shown in Fig. S4. The value582

of n was chosen small enough to allow for comparison with the exact predictions for the different colescent classes described583

below. Each ancestral tree was sampled independently 10 times in order to obtain better estimates for the averaged quantities584

we calculated.585

The simulations used to generate the ancestral trees were performed choosing three values of B (10, 3.33, and 0, respectively)586

in Eq. 4 from the main text for each class of waves. Using Eq. 3 from the main text, the values of α for each of these expansions587

are approximately 1, 0.67, and 0, respectively. The coalescents for well-mixed populations with these descendant distributions588

are described by the Beta-coalescent from Eq. (75) with the paramter β equal to 2, 1.67, and 1, respectively. To calculate the589

theoretical predictions for the SFS and 2-SFS we adapted a numerical implementation of the exact recurrence relations for the590

SFS and 2-SFS from Ref. (34), which was originally developed in Ref. (33).591
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Fig. S1. Comparison of two-site frequency spectra reveal signatures of multiple mergers in semi-pushed and pulled expansions. Matrices show the correlation
function between tree branches subtending different number of leaves for both the expected coalescents (top) and expansion simulations (bottom) for each expansion regime.
The averaged 2-SFS from simulations were generated using the same sampling procedure used for the SFS (SI, Sec. 4).
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Fig. S2. Summary statistics of 2-SFS show qualitative agreement with theoretical predictions. (Top) Mean values and standard deviation of entries in the 2-SFS for
the Kingman (blue), Beta- with β = 0.5 (green), and Bolthausen–Sznitman (red) coalescents. For all three coalescents a sample size of n = 20 was used. The four
bins are defined as follows: upper diagonal = {(i, i) : bn/2c < i < n}, off diagonal = {(i, n − i) : 1 ≤ i < bn/2c or bn/2c < i < n}, lower triangle
= {(i, j) : i+ j < n− 1, i 6= j}, upper triangle = {(i, j) : i + j > n− 1, i 6= j}. (Bottom) Same as upper panel, but using 2-SFS from simulations of fully pushed
(blue), semi-pushed (green) and pulled (red) expansions. All simulation parameters are identical to those for Fig. S1.
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Fig. S3. Allele frequency distributions quantitatively agree with theoretical predictions in both stochastic and deterministic regimes. Shows the same data as Fig.
5 in the main text as a cumulative distribution for better quantitative comparison between theoretical prediction and simulations. Simulations were carried out using the following
parameters: N = 106, r0 = 0.01, m = 0.4, B = 10 (fully pushed), B = 3.33 (semi-pushed), and B = 0 (pulled). All simulations were started with equal frequency
of the two alleles across the front. Distributions here and in Fig. 5 (main text) are shown after 3, 980, 000 (fully pushed), 1, 527, 315 (semi-pushed), and 98, 827 (pulled)
generations from the start for stochastic waves and after 4, 980, 000 (fully pushed), 1, 507, 719 (semi-pushed), and 531, 529 (pulled) generations for deterministic waves.
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Fig. S4. Pulled expansions have broader clone size distribution compared to fully pushed expansions. The complementary cumulative distribution function of the
normalized clone size s (where the normalization is with respect to the mean clone size) for fully pushed and pulled expansions. A total of 100 simulations were run without
relabeling individuals and the sizes of distinct clones at the edge of the front were recorded every 500 generations. The front was defined as the first 25 demes starting from
the most advanced occupied deme. The growth function used is given by Eq. 4 from the main text, with B = 10 (fully pushed) and B = 0 (pulled) and all other parameters
kept constant. The values of the other simulation parameters were N = 9600, r0 = 0.01, m = 0.4.
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