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1 Literature review

We sought to collect all the papers published in climate change economics (either in mono-

graphs, edited volumes, journals, or as working papers) that fulfil two criteria: (i) model a

tipping point in the climate system and (ii) evaluate the economic consequences of that tip-

ping point (as opposed to the purely environmental/geophysical consequences). We associate

climate tipping points with the well-known definition of ‘tipping elements’ as “subsystems

of the Earth system that are at least subcontinental in scale and can be switched – under

certain circumstances – into a qualitatively different state by small perturbations” (1). This

broad search yielded 52 articles, listed in Table 1. The cut-off date for our literature search

was 2019.

We then reduced the list by adding a further criterion: (iii) the presence of geophysical

foundations. This yielded 21 articles with what we regard as plausible geophysical dynamics.

This third criterion is admittedly the most subjective to apply, which is reflected in an

additional 4 articles that do contain a geophysical component, albeit still stylized in some

key way (marked ’stylized/geophysical’ in the table). Our selection criterion for geophysical

realism is best illustrated by two examples – both from the same scholar – that together

characterise the spectrum (see the simple schematic below). On the ad hoc end of the

spectrum are arbitrary changes to aggregated damage functions in Integrated Assessment

Models (IAMs), which map the increase in global mean temperature into welfare-equivalent

losses in global GDP per capita. For example, in The Climate Casino, Nordhaus suggested

including tipping points by assuming a “stylized tipping-point damage function”, according to

which damages increase sharply at warming of 3.5°C and become prohibitive beyond 4.5°C

(2). In Nordhaus’ own words: “These assumptions are at the outer limit of what seems

plausible and have no solid basis in empirical estimates of damages” (p213) .
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Table 1: Climate-economic tipping points studies included in present analysis
Paper Integrated assessment model Tipping point (TP) TP module
Anthoff, Estrada, Tol (AER P&P, 2016)(6) FUND version 4.0 AMOC Geophysical
Azar, Lindgren (Climatic Change, 2003)(7) DICE Inspired by AMOC and WAIS collapse Stylized
Bahn et al. (Energy Policy, 2011)(8) MERGE5 AMOC Geophysical
Baranzini, Chesney, Morriset (Energy Policy, 2003)(9) Cline (1992) WAIS collapse and AMOC Stylized
Belaia (Dissertation, 2017)(10) RICE-ISM-AD ISM Geophysical
Belaia, Funke, Glanemann (ERE, 2017)(11) DICE-CJL AMOC Geophysical
Berger, Emmerling, Tavoni (Mgt Sci, 2016)(12) DICE adapted AMOC Stylized
Bickel (Env. Systems & Decisions, 2013)(13) DICE 2007 Not specified Stylized
Cai et al. (PNAS, 2015)(14) DSICE (based on DICE07) Not specified Stylized
Cai, Lenton, Lontzek (NCC, 2016)(15) DSICE (based on DICE-2013R) 5 TPs: AMOC, GIS, WAIS, AMAZ, ENSO Stylized/geophysical
Cai, Lontzek (JPE, 2019)(16) DSICE (based on DICE07) AMOC, GIS, WAIS, AMAZ, ENSO Stylized
Cai, Brock, Xepepadeas (Working paper, 2016)(17) extends DSICE model of Cai et al. 2015 AMOC Stylized/geophysical
Ceronsky, Anthoff, Hepburn, Tol (Working paper, 2011)(18) FUND version 3.6 AMOC, OMH Geophysical
Chao (Risk Analysis, 1995)(19) unique to this paper Inspired by WAIS collapse inter alia Stylized
Diaz and Keller (AER P&P, 2016)(20) DICE - WAIS Potential WAIS collapse Geophysical
Dumas and Ha-Duong (Book chapter, 2005)(21) DIAM 2.3 Inspired by AMOC Stylized
Engstrom, Gars (ERE, 2016)(22) Golosov et al. (2014) 3 TPs: damages, CO2 removal; PCF Stylized
Gjerde, Grepperud and Kverndokk (REE, 1999)(23) from Kverndokk (1994) Inspired by WAIS collapse, AMOC, PCF Stylized
González-Eguino et al. (Earth’s Future, 2017)(24) DICE 2013R SAF-inspired Geophysical
Guillerminet, Tol (Climatic Change, 2008)(25) n/a WAIS collapse Stylized
Heutel, Moreno-Cruz, Shayegh (JEBO, 2016)(26) DICE 2007 3 TPs: climate feedback, carbon sink, economic loss (pre- and post-climate policy) Stylized
Hope, Schaefer (NCC, 2016)(27) PAGE09 PCF Geophysical
Keller et al. (Climatic Change, 2000)(28) DICE 1994 AMOC Geophysical
Keller, Bolker, Bradford (JEEM, 2004)(29) DICE94 AMOC Geophysical
Kessler (Climate Change Economics, 2017)(30) DICE-2013R PCF Geophysical
Lamperti et al. (Ecological Economics, 2018)(31) Dystopian Schumpeter meeting Keynes (DSK) Not applicable Stylized
Lempert, Sanstad, Schlesinger (Energy Economics, 2006)(32) DICE94 AMOC Stylized
Lemoine, Traeger (AEJ:Pol, 2014)(33) 4-stated DICE (based on DICE07) Jump in ECS, drop in CO2 removal Stylized
Lemoine, Traeger (NCC, 2016)(34) 4-stated DICE (based on DICE07) Jump in equilibrium climate sensitivity; fall in CO2 removal; damages Stylized
Lemoine, Traeger (JEBO, 2016)(35) 4-stated DICE (based on DICE07) Jump in ECS, drop in CO2 removal Stylized
Link and Tol (Port Econ J, 2004)(36) FUND version 2.8 AMOC Geophysical
Link and Tol (Climatic Change, 2011)(37) FUND version 2.8n AMOC Geophysical
Lontzek, Narita, Wilms (ERE, 2016)(38) n/a Tropical and boreal forest dieback Geophysical
Lontzek et al. (NCC, 2015)(39) "DSICE" (based on DICE07) AMOC, GIS, WAIS, AMAZ, ENSO Stylized/geophysical
McInerney, Lempert, Keller (Climatic Change, 2012)(40) DICE-07 AMOC Stylized
Naevdal (JEDC, 2006)(41) n/a WAIS Stylized
Naevdal, Oppenheimer (REE, 2007)(42) n/a AMOC Stylized
Nicholls, Tol, Vafeidis (Climatic Change, 2008)(43) FUND version 2.8n WAIS Geophysical
Nordhaus (Book chapter, 1994)(44) DICE-94 Inspired by WAIS, AMOC; PCF, etc. Stylized
Nordhaus (PNAS, 2019)(3) DICE16R2-GIS GIS Geophysical
Nordin (Dissertation, 2014)(45) DICE2013 GIS, WAIS, AMAZ, PCF, OMH Stylizedl
Peck, Teisberg (Climatic Change, 1995)(46) CETA-R None specified Stylized
Pycroft, Vergano, Hope (Global Environmental Change, 2014)(47) PAGE09 Extreme sea-level rise from GIS and WAIS Stylized/geophysical
Schlesinger et al. (Book chapter, 2006)(48) DICE99 AMOC Geophysical
Shayegh, Thomas (Climatic Change, 2015)(49) DICE 2007 Climate sensitivity Stylized
Sims, Finoff (JAERE, 2017)(50) n/a Ice sheet collapse, special case Stylized
van der Ploeg (EER, 2014)(51) n/a OMH Stylized
van der Ploeg, de Zeeuw (JEEA, 2017)(52) n/a None specified Stylized
Whiteman, Hope and Wadhams (Nature, 2013)(53) PAGE09 OMH (Arctic) Geophysical
Wirths, Rathmann, Michaelis (EEPS, 2018)(54) DICE 2013R with PCF PCF Geophysical
Yohe (Global Environmental Change, 1996)(55) CONN Change in equilibrium climate sensitivity Stylized
Yohe, Schlesinger, Andronova (Integrated Assessment Journal, 2006)(56) DICE99 adding a simple ATHC model AMOC Geophysical
Yumashev, et al. (Nature Comms, 2019)(57) PAGE-ICE PCF, SAF Geophysical
Notes: PCF - permafrost carbon feedback; OMH - dissociation of ocean methane hydrates / clathrates; SAF - surface albedo feedback / arctic sea ice; AMAZ - Amazon rainforest dieback;
GIS - Greenland ice sheet disintegration; WAIS - West Antarctic ice sheet disintegration; AMOC - Atlantic meridional overturning circulation slowdown; ISM - Indian summer monsoon variability; ECS - equilibrium climate sensitivity.

At the geophysical end of the spectrum, Nordhaus has recently incorporated a simple,

tractable model of disintegration of the Greenland Ice Sheet (GIS) in his DICE IAM (3).

The GIS module is calibrated on results from the underlying literature on ice-sheet dynamics,

principally (4). Damages are calibrated on a detailed study of the relationship between sea

level rise, coastal defence costs and the costs of coastal flooding and permanent inundation

(5). The result is a more realistic, yet tractable climate-economy IAM.

Figure 1 shows that economic studies into climate tipping points date back to at least

the mid-1990s, with the first paper incorporating geophysical realism appearing around the

turn of the millennium (28).
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Figure 1: Count of papers identified in the literature review by year of publication
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Figure 2 shows that, while a variety of IAMs have been deployed, the clear majority of

those studies aiming for geophysical realism have been based on a version of the three most

popular IAMs: DICE, FUND, and PAGE. DICE has been the overwhelming favourite.

Figure 2: Count of papers identified in the literature review, grouped by the IAM used
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Figure 3 shows the interdisciplinary nature of this literature, which includes publications

in journals in general-interest economics, multi-disciplinary science, as well as environmental

economics and environmental studies.

Figure 3: Count of papers identified in the literature review grouped by the journal/outlet
in which they were published. List of acroynms: NCC = Nature Climate Change; ERE =
Environmental and Resource Economics; REE = Resource and Energy Economics; PNAS =
Proceedings of the National Academy of Sciences; JEBO = Journal of Economic Behavior
and Organization; GEC = Global Environmental Change; AER P&P = American Economic
Review, Papers and Proceedings; JPE = Journal of Political Economy; JEEM = Journal
of Environmental Economics and Management; JEEA = Journal of the European Economic
Association; JEDC = Journal of Economic Dynamics and Control; JAERE = Journal of
the Association of Environmental and Resource Economists; EER = European Economic
Review; AEJ = American Economic Journal.
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2 Model description

This section presents a detailed description of the META (Model for Economic Tipping point

Analysis) model, which is publicly available at https://github.com/openmodels/META-2021.

Figures 4 and 5 provide an overview of the model structure. Figure 4 provides a schematic

diagram of the climate module. The inputs to the climate module are exogenous greenhouse
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gas emissions; the output is the change in global mean surface temperature (GMST). Three

tipping points provide positive feedbacks from the increase in GMST to greenhouse gas

emissions (the permafrost carbon feedback, dissociation of ocean methane hydrates, and

Amazon rainforest dieback), while one provides a positive feedback from the increase in

GMST to radiative forcing (Arctic sea-ice loss/surface albedo feedback).

Figure 5 provides a schematic diagram of the damages/economic module. The input to

the damages/economic module is the change in GMST from the climate module. The output

is discounted utility/social welfare. Slowdown of the Atlantic Meridional Overturning Cir-

culation modulates the relationship between global and national mean temperature change.

Disintegration of the Greenland and West Antarctic Ice Sheets increases sea level rise. Vari-

ability of the Indian Summer Monsoon directly impacts GDP in India due to droughts and

floods.
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Figure 4: Schematic diagram of the climate module. Blue boxes indicate variables; yellow
boxes indicate tipping point modules; orange boxes indicate other modules.
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Figure 5: Schematic diagram of the damages/economic module. Blue boxes indicate vari-
ables; yellow boxes indicate tipping point modules; orange boxes indicate other modules.
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2.1 Tipping point modules

2.1.1 Permafrost carbon feedback

Our model of the permafrost carbon feedback (PCF) is taken from Kessler (30). This is

a tractable model that mimics in reduced form the physical-science literature quantifying

permafrost carbon release by simulating two stages: (i) permafrost thaw as a function of

rising temperatures and (ii) decomposition of thawed permafrost, leading to the release of

CO2 or CH4. Kessler built the model for incorporation in DICE and, although we don’t use

DICE, the level of abstraction from the underlying physical processes is well suited to our

approach. Despite the level of abstraction, however, the model retains enough structure to

be directly calibrated on estimates reported in the underlying literature.

In the first stage, near-surface permafrost thaw is a linear function of warming relative

10



to time zero:

PFextent(t) = 1− βPF
[
∆TAT(t)−∆TAT(0)

]
, (1)

where PFextent(t) ≡ PFarea(t)/PFarea(0), i.e. PFextent(t) is the area of permafrost remaining

at time t relative to time zero, ∆TAT is the global mean surface air temperature relative

to pre-industrial, and βPF is a coefficient representing the sensitivity of permafrost thaw to

temperature, which Kessler calibrated by regressing estimates of thaw on temperature from

the literature. t = 0 in our model is the year 2010.

The amount of carbon in freshly thawed permafrost at time t, CthawedPF, is then the prod-

uct of the total stock of carbon locked in the near-surface northern circumpolar permafrost

region, CPF, and the area of permafrost freshly thawed:

CthawedPF(t) = −CPF [PFextent(t)− PFextent(t− 1)] . (2)

Once thawed, the principal way in which carbon is released to the atmosphere is microbial

decomposition and this happens slowly. Some of the carbon is released as CO2 and some

as CH4. Kessler’s model divides the stock of thawed carbon into a passive reservoir that

releases no carbon and an active reservoir that decomposes exponentially and releases CO2

and CH4 in fixed proportion. Therefore cumulative CO2 emissions to the atmosphere from

thawed permafrost, CCumPF, are given by

CCumPF(t) =
t∑

s=0
CthawedPF(s) (1− propPassive)

(
1− exp−t−s

τ

)
, (3)

where propPassive is the proportion of thawed permafrost in the passive reservoir and τ is the

e-folding time of permafrost decomposition in the active reservoir, which is multiple decades

(see below). The fluxes of CO2 and CH4 are respectively given by

11



Table 2: PCF model parameter values

Kessler main Lower/upper Fit of Hope and Fit of Yumashev
spec. bounds Schaefer (2016) (27) et al. (2019) (57)

β 0.172 0/1 0.066 0.085
CPF (GtC) 1035 885/1185 1160 1066
propPassive 0.40 0.29/0.51 0.37 0.41
τ (years) 70 0/200 31 66

CO2_PF(t) = (1− propCH4) [CCumPF(t)− CCumPF(t− 1)] , (4)

CH4_PF(t) = (propCH4) [CCumPF(t)− CCumPF(t− 1)] , (5)

where propCH4 is the share of CH4 emissions in total carbon emissions.

We can directly reproduce the permafrost carbon emissions estimated by (30) just by

imputing her reported parameter values for βPF, CPF, propPassive, τ and propCH4 into

Equations (1)-(5). In addition, we use this model to fit the results of the two other papers

contributed to the IAM literature on the PCF, namely Hope and Schaefer (27) and Yumashev

et al. (57). (27) coupled the PAGE09 IAM to the SiBCASA model of the PCF. (57) developed

a new version of the PAGE IAM called PAGE-ICE, which includes a representation of the

PCF calibrated both on SiBCASA and another PCF model called JULES. We first obtain

estimates of permafrost CO2 emissions from each paper as a function of temperature, and

then minimise the sum of squared residuals between these papers’ estimates and estimates

from Kessler’s model, using four of the free parameters in Kessler’s model, i.e. βPF, CPF,

propPassive, and τ , each parameter restricted to lie within physically plausible bounds. Table

2 reports the various parameter values. Figure 6 shows the fit to cumulative CO2 emissions

from (27) and (57). CH4 emissions for these two papers are obtained simply by using the

fitted parameters in combination with the fixed value of propCH4 from (30).
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Figure 6: Fit of cumulative permafrost CO2 emissions from Hope and Schaefer (2016) (27),
top panel, and Yumashev et al. (2019) (57), bottom panel
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2.1.2 Ocean methane hydrates

There have been two studies of the economic cost of destabilization of ocean methane

clathrates/hydrates. The first is Whiteman et al. (53), who implemented what-if scenar-

ios in PAGE09, releasing a pulse of CH4 emissions of fixed size and duration into the model

at a given point in time. These scenarios were based on the work of (58) on hydrates locked

within subsea permafrost on the East Siberian Arctic shelf. (53) implemented alternative

scenarios. Most of their scenarios involved injecting 50GtCH4 in total over periods of 10 to

30 years, starting at different times from 2015 to 2035.1 The other study is Ceronsky et al.

(59). They implemented three what-if scenarios, in which pulses of CH4 emissions from the

reservoir of CH4 distributed globally on continental shelves and slopes were released in the

FUND IAM. These emissions pulses all commence in 2050 and comprise permanent flows of

0.2GtCH4 per year, 1.784GtCH4/yr and 7.8GtCH4/yr respectively.

In order to incorporate these studies in our analysis, their what-if scenarios need to

be assigned probabilities. To do this, we use the framework of survival analysis, treating

each emissions pulse as a hazard event and assigning it a hazard rate, i.e. the conditional

probability that the event will occur in a particular year, given the temperature in that year

and that the event has not occurred previously. This is both convenient and conforms with the

way some of the other studies we synthesise treat tipping points, e.g. on Amazon rainforest

dieback (60) and disintegration of the West Antarctic Ice Sheet (61) (see below). Once

triggered, each CH4 emissions pulse of given size lasts its pre-specified amount of time. In

general, we can write the flow of CH4 emissions from dissociation of ocean methane hydrates

at time t, CH4_OMH(t), as

CH4_OMH(t) =
(
CH4_OMH

∆OMH

)
IOMH(t) ⇐⇒

t−1∑
s=0

CH4_OMH(s) < CH4_OMH, (6)

CH4_OMH(t) = 0 ⇐=
t−1∑
s=0

CH4_OMH(s) = CH4_OMH, (7)

1They also injected a smaller pulse of 25GtCH4 between 2015 and 2025 in one scenario.
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where CH4_OMH is the pre-specified total amount of methane released, e.g. 50Gt in the case

of the main specification of (53), and ∆OMH is the duration of the release, e.g. 10 years.

Applying this formalism to (59), CH4_OMH/∆OMH ∈ {0.2, 1.784, 7.8} and total CH4 released

from ocean CH4 hydrates is bounded only by the product of CH4_OMH/∆OMH and the model

horizon, i.e. the inequality constraint in Equations (6) and (7) does not bind. IOMH(t) is

an indicator function taking a value of zero before the hazard event is triggered and one

thereafter. In general, its transition function is

IOMH(t) = f
[
IOMH(t− 1),∆TAT(t), ε(t)

]
, (8)

where ε(t) is an i.i.d. random shock. That is, in each period the value of IOMH depends on

its own value in the previous period, the current atmospheric temperature, and the random

shock. Specifically, the probability transition matrix for IOMH(t) is

 1− pOMH(t) pOMH(t)

0 1

 , (9)

where pOMH(t) is the probability that the CH4 emissions pulse is triggered in year t. This is

given by

pOMH(t) = 1− exp
[
−bOMH∆TAT(t)

]
, (10)

where bOMH is the hazard rate.

In order to calibrate the hazard rate, we use the study of Archer et al. (62), which

presents a global model of CH4 hydrates on continental shelves and slopes and the release

of CH4 as temperatures rise. Their study shows the sensitive dependence of ocean CH4

release on a critical bubble volume fraction threshold. That is, when ocean CH4 hydrates

melt, it is uncertain whether the CH4 escapes the ocean sediment into the ocean.2 Colder
2There is further uncertainty about whether the CH4 that reaches the ocean bottom eventually escapes

into the atmosphere (it depends on aerobic oxidation of CH4 by bacteria in the water column), however this
uncertainty is thought to be smaller.
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temperatures closer to the sea floor and chemical reactions (anaerobic oxidation by bacteria

and archaea) both effectively trap the CH4 from escaping. The more CH4 is in bubbles,

however, the more likely it is to escape. In the model of (62), the bubble volume upon

melting of the hydrates must exceed the critical bubble volume fraction in order for the CH4

to be released. Calibrating the hazard rate on (62) means that we re-interpret (53) in the

context of the global reservoir of CH4 hydrates on continental shelves and slopes, rather than

the reservoir of CH4 locked in subsea permafrost in the Arctic region. This is justified, since

other research suggests a large release of CH4 from the Arctic subsea permafrost within the

next two centuries is extremely unlikely (63).3

According to (62), cumulative CH4 released in very long-run equilibrium upon 1◦C warm-

ing varies hugely from about 10GtCH4 to 541GtCH4 for critical bubble fractions of 10% and

1% respectively.4 Upon 3◦C warming the range increases to about 32-1084Gt. Moreover (62)

report that there is next to no empirical evidence on the critical bubble fraction. In the ab-

sence of such evidence, we try three alternative specifications of the probability distribution

of equilibrium cumulative CH4 release as a function of the critical bubble fraction (Table

3). The uniform distribution is an application of the principle of insufficient reason. The

triangular and especially the beta distribution are more conservative in the sense of assigning

more probability mass to higher critical bubble fractions and in turn lower equilibrium CH4

releases.

Irrespective of the critical bubble fraction, CH4 released from melting ocean hydrates is

thought to take a very long time to reach the atmosphere, much longer than permafrost

carbon. Therefore, in order to convert the equilibrium CH4 release into a transient release,

we conservatively assume a release rate of just 0.2%, implying an e-folding time of 500 years

and approximately 3,000 years for equilibrium to be reached (also see 62).

To give an example of how we then calibrate the hazard rate bOMH, we use a middle
3Indeed, the scenarios in (53) were criticised at the time of publication for being unrealistic in the context

of Arctic subsea processes; see Nature volume 300, p529.
4Based on digitising Figure 7 in their paper.
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Table 3: Calibration of OMH hazard rate, bOMH. Triangular distribution assumes modal
critical bubble fraction of 10%, supports of 1% and zero CH4 release. Beta distribution
assigns cumulative probabilities of 0.67, 0.9, 0.95, 0.99 and 1 to critical bubble fractions of
10%, 7.5%, 5%, 2.5% and 1% respectively.

uniform triangular beta
Whiteman et al. (53) 50GtCH4 by 2035 pOMH 95.3% 90.2% 24.4%

bOMH 1.290 0.977 0.118
Whiteman et al. (53) 50GtCH4 by 2025 pOMH 86.4% 8.9% 12.0%

bOMH 1.457 0.068 0.093
Whiteman et al. (53) 50GtCH4 by 2045 pOMH 97.7% 97.8% 33.0%

bOMH 1.691 1.712 0.178
Ceronsky et al. (59) 0.2GtCH4/yr 2050-2200 pOMH 100% 100% 67.1%

bOMH 2.577 3.987 0.365
Ceronsky et al. (59) 1.784GtCH4/yr 2050-2200 pOMH 99.7% 100% 52.4%

bOMH 1.858 2.550 0.244
Ceronsky et al. (59) 7.8GtCH4/yr 2050-2200 pOMH 98.5% 99.2% 39.1%

bOMH 1.374 1.581 0.1634

scenario from (53) of a cumulative release of 50GtCH4 over 20 years from 2015 to 2035.

According to the mid-range RCP4.5 scenario of the Intergovernmental Panel on Climate

Change (IPCC), fed into our climate module excluding tipping points, GMST in 2035 will

be about 1.6◦C above pre-industrial. Using the approach just described to represent the

modelling results of (62), we estimate a 24.4% probability of a 50GtCH4 cumulative release

by 2035 assuming a beta distribution. This gives bOMH = 0.118. We follow the same procedure

to assign hazard rates using the uniform and triangular distributions, and apply it to different

durations of emissions pulse investigated by (53), as well as the scenarios in (59). Table 3

reports all the estimated hazard rates. We prefer the beta distributions except in sensitivity

analysis, as they are more conservative.

2.1.3 Amazon rainforest dieback

Dieback of the Amazon rainforest was included in the study of Cai et al. (60) as a carbon-cycle

feedback. This is the study we incorporate in our analysis. Naturally a wide range of other
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economically important consequences of Amazon rainforest dieback are thereby excluded,

including those on biodiversity and ecosystems. These have yet to be incorporated in any

economic modelling study, to the best of our knowledge.

As mentioned above, (60) model tipping points through survival analysis. In the case of

Amazon rainforest dieback, 50GtC is released over 50 years upon triggering the hazard event.

Using parallel formalism to ocean methane hydrates, CO2 emissions from Amazon rainforest

dieback at time t, CO2_AMAZ(t), are given by

CO2_AMAZ(t) =
(
CO2_AMAZ

∆AMAZ

)
IAMAZ(t) ⇐⇒

t−1∑
s=0

CO2_AMAZ(s) < CO2_AMAZ, (11)

CO2_AMAZ(t) = 0 ⇐=
t−1∑
s=0

CO2_AMAZ(s) = CO2_AMAZ, (12)

where CO2_AMAZ = 50GtC and ∆AMAZ = 50 years. The probability of the indicator function

IAMAZ(t) transitioning from zero to one is

pAMAZ(t) = 1− exp
[
−bAMAZ∆TAT(t)− 1

]
, (13)

where the hazard rate bAMAZ = 0.00163 in (60) is taken from the expert elicitation study of

(64).

2.1.4 Greenland Ice Sheet

Our model of disintegration of the Greenland Ice Sheet (GIS) is based on (3), which follows

an approach conceptually similar to Kessler’s (30) PCF model by building a simple, reduced-

form process model of GIS disintegration for incorporation in DICE.5 The GIS model is

calibrated on results from the underlying literature modelling ice-sheet dynamics. At the

heart of the GIS model is the very long-run equilibrium relationship between atmospheric
5The resulting model is called DICE-GIS and builds on DICE-2016R2.
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temperature and the volume of the GIS. Assuming this is reversible, (3) specified

∆T ∗GIS(t) = ∆TGIS_MAX [1− VGIS(t)] , (14)

where ∆T ∗GIS(t) is defined as the atmospheric temperature increase relative to initial tem-

perature that is associated with a particular degree of melting of the GIS in equilibrium

and VGIS(t) ∈ [0, 1] is the volume of the GIS expressed as a fraction of the initial volume.6

In Nordhaus’ main specification, Eq. (14) was calibrated on paleoclimatic data from (65),

which gives ∆TGIS_MAX = 3.4 and implies that the GIS is fully melted in equilibrium when

the global mean surface temperature is 3.4◦C above pre-industrial. If Robinson et al. (4) is

used for calibration instead, ∆TGIS_MAX = 1.8.7 An alternative, cubic specification of the

equilibrium temperature-volume relationship allows for hysteretic behaviour. Fitted on (65),

this is given by

∆T ∗GIS(t) = ∆TGIS_MAX − 20.51VGIS(t) + 51.9 [VGIS(t)]2 − 34.79 [VGIS(t)]3 . (15)

Nordhaus (3) showed that the change in specification makes little difference on the optimal

emissions path, which involves relatively limited warming, but can make a difference on

high-emissions scenarios.

The difference equation for VGIS(t), i.e. the GIS melt rate, can be written as

VGIS(t)− VGIS(t− 1) = βGISsgn
[
∆TAT(t− 1)−∆T ∗GIS(t− 1)

]
×

×
[
∆TAT(t− 1)−∆T ∗GIS(t− 1)

]2
VGIS(t− 1)0.2, (16)

where βGIS = −0.0000106 based on regression analysis of estimates from (4).8 The basic

idea embodied in Eq. (16) is that melting of the GIS depends on the difference between the
6(3) also reports runs in which T ∗

GIS(t) = TGIS_MAX [1− VGIS(t)]0.5 and finds the results are very similar.
7Noting that the melt rate coefficient βGIS below also needs to be recalibrated to -0.0000088 to fit (4).
8This corresponds with Nordhaus’ (3) reported value per five years divided by 5 to bring it into line with

our annual time step, then divided by 100 given that we define VGIS(t) as a fraction.
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actual atmospheric temperature and the equilibrium GIS temperature, as well as the volume

of the GIS at the time.

Sea level rises linearly in response to GIS melt,

SLRGIS(t) = 7 [1− VGIS(t)] , (17)

where SLRGIS is defined relative to the year 2000. This implies that complete disintegration

of the GIS would increase global mean sea level by 7 metres.

2.1.5 West Antarctic Ice Sheet

Disintegration of the West Antarctic Ice Sheet (WAIS) was modelled by Diaz and Keller (61).

Like Nordhaus (3), they built a simple model of WAIS melting for incorporation in DICE.

Unlike Nordhaus, who focused on a best estimate around which selected sensitivity analysis

was performed, (61) used the framework of survival analysis. In particular, global mean sea

level rise from WAIS melting, SLRWAIS(t), is given by

SLRWAIS(t) =
t∑

s=0
rWAISIWAIS(s), (18)

where rWAIS is an exogenous parameter determining the annual contribution to global mean

sea level upon triggering disintegration of the ice sheet, assumed lognormally distributed

with a mean of 3.3mm/yr and a standard deviation of 1.65mm/yr. This implies it takes on

average 1000 years for the WAIS to disintegrate completely after its tipping point is crossed.

IWAIS(t) is the indicator function for WAIS disintegration, whose probability of transitioning

from zero to one, conditional on having been zero in year t− 1, is

pWAIS(t) = min
{
bWAIS

[
∆TAT(t)

]2
, 1
}
. (19)

The hazard rate bWAIS = 0.0043 is also based on the expert elicitation exercise of (64).
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2.1.6 Arctic sea-ice loss/surface albedo feedback

Changes in global ice and snow cover also affect the surface albedo feedback (SAF), increasing

net radiative forcing. While these effects are implicitly captured in the equilibrium climate

sensitivity (ECS) parameter in simple climate models, i.e. the steady-state increase in tem-

perature in response to a doubling of the atmospheric CO2 concentration, doing so assumes

that the marginal forcing from an increase in temperature is constant across temperatures.

However, as the area of ice and snow diminishes, the marginal response for further increases

in temperature decreases. This SAF dynamic has been modelled by Yumashev et al. (57)

using PAGE-ICE and we replicate their model here.

(57) use a quadratic fit of the SAF observed across the CMIP5 models, shown in the top

panel of Figure 7. This falling SAF curve describes the weakening feedback loop between

changes in temperature and changes in albedo. For low levels of warming, the SAF is greater

than the constant value represented in the ECS; as sea-ice and land snow diminish, the

feedback effect drops. When sea ice and land snow are absent, the SAF effect is zero. The

total radiative forcing due to albedo, however, always increases with temperature, and reaches

its maximum when sea ice and land snow are absent.

Total SAF forcing is the integral of the SAF feedback effect across the change in tempera-

ture, reaching 2.67 Wm−2 at warming of 10◦C. The ECS follows a non-linear curve calculated

as a function of the ECS in the last period, and accounting for the different level of feedback

compared to a constant level. As a consequence, adding the SAF to the base climate model

can result in lower warming eventually.

The calculations for the SAF correction are shown below. The principle of the SAF

model is to correct temperatures calculated under the process used in PAGE-ICE, so we

first reproduce this temperature calculation. Global PAGE-ICE atmospheric temperature is
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Figure 7: Variation in surface albedo feedback (SAF) effects as a function of GMST. Top:
SAF as a function of temperature, in terms of marginal increases in forcing per degree Kelvin.
Middle: adjusted value of the ECS when SAF forcing is removed. Bottom: cumulative
forcing from the SAF, as a function of temperature, in Wm−2.
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calculated as

∆TATM−PAGE1(t) = ∆TATM−PAGE1(t− 1)

+
(
A(t− 1)− FRTB(t− 1)−∆TATM−PAGE1(t− 1)

) (
1− e−1/FRT

)
+B(t− 1)

where

A(t− 1) = ECS
Fsl ln 2F (t− 1)

B(t− 1) = ECS
Fsl ln 2(F (t− 1)− F (t− 2))

F (t) is the anthropogenic forcing in our model

Fsl is the forcing slope, 5.5 W/m2

FRT is the warming half-life, from a triangular distribution from 10 to 55 with mode of 20

The surface albedo feedback is then calculated using a quadratic approximation, where

SAF decreases more rapidly as temperature increases. The equations are described as an

integral over this quadratic:

SAF(t) = C(∆TATM−PAGE1(t))− FSAF0

∆TATM−PAGE1(t)−∆TATM−PAGE1(2010)
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where

C(∆T ) = β2∆T 3/3 + β1∆T 2/2 + β0∆T + γ∆Tδ

β2 is the T 2 coefficient for the SAF quadratic (W/m2/K3)

β1 is the T 1 coefficient for the SAF quadratic (W/m2/K2)

β0 is the T 0 coefficient for the SAF quadratic (W/m2/K)

γ is the standard deviation of the SAF quadratic (W/m2/K)

δ is the nonlinearity of SAF, drawn from a symmetric triangular distribution from -1 to 1

FSAF0 is the base year SAF forcing (W/m2)

The adjustment to the SAF forcing is given by a two-segment correction

∆FSAF(t) =− SAF(t)∆TATM−PAGE2(t− 1)

+


C(∆TATM−PAGE2(t− 1)) if ∆TATM−PAGE2(t− 1) < 10

D(∆TATM−PAGE2(t− 1)) if ∆TATM−PAGE2(t− 1) ≥ 10

where

D(∆T ) = ψ + α(∆T − 10) + σ(∆T − 10)δ

∆TATM−PAGE2(t) is defined below.

ψ is the integration constant for SAF forcing at the segment switch point

α is the linear SAF segment mean

σ is the linear SAF segment standard deviation
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Also using SAF (t), the adjusted ECS and FRT values are calculated as

ECS′ = ECS
1−

ECS
(
SAF(t)− SAF

)
Fsl ln 2

−1

FRT′ = FRT
1−

ECS
(
SAF(t)− SAF

)
Fsl ln 2

−1

where SAF is the constant approximation to the SAF (0.34959 W/m2/C).

Then ∆TATM−PAGE2(t), the adjusted temperature time-series, is calculated identically to

∆TATM−PAGE1(t), but using ECS′, FRT′, and with the additional forcing ∆FSAF(t). The

temperature adjustment produced by the SAF model, ∆TATM−PAGE2(t)−∆TATM−PAGE1(t),

is then added to the main temperature in the model.

2.1.7 Slowdown of the Atlantic Meridional Overturning Circulation

Weakening of the Atlantic Meridional Overturning Circulation (AMOC) or thermohaline cir-

culation,9 whether partial or full, has inspired a number of numerical modelling studies in

climate economics (6; 66; 11; 59; 29; 32; 36; 67; 48). The majority of these take a stylised ap-

proach. Of those aiming for realism, we choose to incorporate the results of Anthoff et al. (6)

in our model, because of their unique focus on the effects of AMOC slowdown at the national

level. This is arguably central to the economic evaluation of AMOC slowdown, because

its physical effects would vary significantly across the world, from a reduction in regional

temperature of several degrees, all else being equal, to an increase in regional temperature

of a few tenths of a degree (see 6, fig. 1). The basic logic is that the ocean circulation

redistributes heat, rather than creating or destroying it, and countries vary in their exposure

to this heat redistribution, as well as the effects of global warming more broadly, depending

on their physical location. AMOC slowdown is expected to have physical effects other than

temperature change, for instance effects on precipitation and regional sea levels (68), but

these have yet to be incorporated in economic studies.
9We use these two terms interchangeably.
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(6) implement four what-if scenarios known in the context of AMOC slowdown as ‘hosing

experiments’. In these experiments, a large exogenous pulse of freshwater is added to the

representation of the North Atlantic in General Circulation Models – hence the term hosing

– and the consequences for the AMOC are simulated. The four scenarios result in an AMOC

slowdown of 7%, 24%, 27% and 67% respectively. This slowdown is assumed to be reached

in the year 2085, after being phased in linearly from a 2050 starting point. As is by now

familiar, we convert these what-if scenarios into hazard events and assign them probabilities.

The national temperature delta arising from AMOC slowdown is hence given by

∆TAT_AMOC(i, t) = ∆TAT_AMOC(i, t− 1) +
(

∆TAT_AMOC(i)
∆AMOC

)
IAMOC(t)

⇐⇒
t−1∑
s=0

∆TAT_AMOC(i, s) < ∆TAT_AMOC(i), (20)

∆TAT_AMOC(i, t) = ∆TAT_AMOC(i)

⇐⇒
t−1∑
s=0

∆TAT_AMOC(i, s) = ∆TAT_AMOC(i), (21)

where ∆TAT_AMOC(i) is the permanent difference in national annual average temperature as

a result of AMOC slowdown in country i. The data points corresponding to ∆TAT_AMOC(i)

were kindly provided by Anthoff and colleagues for all countries they covered. ∆AMOC is the

time taken for AMOC slowdown to phase in, i.e. 35 years. IAMOC(t) is the indicator function,

whose transition probability from zero to one is

pAMOC(t) = 1− exp
[
−bAMOC∆TAT(t)

]
, (22)

conditional on IAMOC(t− 1) = 0.

To calibrate the hazard rate for each of the four scenarios in (6), we compile likelihoods as

a function of global mean temperature increase for distinct AMOC shutdown events ranging

from a weakening of 11% to a full shutdown. We obtain these from the IPCC Fifth Assessment

Report (69), its Special Report on Global Warming of 1.5◦C (70), and (71). Given the
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limited measurements of AMOC intensity, these numbers reflect a combination of model-

based estimates and expert judgement. We proceed in two steps: (i) we take the convex

combination of the AMOC shutdown events from the literature that most closely resembles

the what-if scenario at hand. To obtain a hazard rate bAMOC, we then (ii) calibrate Equation

(22) by minimizing the sum of squared differences to the likelihoods obtained in step (i). We

estimate bAMOC = 1.6 for a 7% slowdown, 0.611 for a 24% slowdown, 0.54 for 27% and 0.135

for 67%.

2.1.8 Weakening of the Indian Summer Monsoon

The first integrated assessment of the Indian Summer Monsoon (ISM) and its response to

climate change has recently been carried out by Belaia (10). This is based on coupling a

version of Nordhaus’ regionally disaggregated RICE IAM (72) to a model of the ISM (73).

The ISM is driven by greater heating of the land surface relative to the ocean in summer,

which creates a pressure gradient that drives moist ocean air over the Indian subcontinent,

where it rises and condenses. However, ISM rainfall displays important year-to-year variation

and the ISM has the potential to abruptly change regime from wet to dry and vice versa.

Schewe and Levermann’s model generates these dynamics by incorporating reduced-form

representations of two competing feedback processes. The first is the so-called moisture

advection feedback, a positive feedback whereby monsoon rains release latent heat, which

strengthens the monsoon circulation and brings more rainfall in turn. The second is the dry-

subsidence effect, a negative feedback whereby high pressure reduces rainfall, the decreased

rainfall leads to less latent heat being released, which in turn sustains the dry phase. High

pressure also deflects winds away from the monsoon region. In Belaia’s model (10), rainfall

depends on both climate change, through multiple channels, and regional emissions of sulphur

dioxide, which reflect incoming solar radiation, reduce heating over the Indian subcontinent

and weaken the ISM.

The key output of the ISM model that feeds into damages to India (see below) is average
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rainfall over the Indian subcontinent over the summer monsoon season:

P (t) = 1
136

136∑
d=1

P (d, t), (23)

where P (d, t) is rainfall on day d of year t and there are 136 days in each monsoon season.10

Each day is either wet or dry, depending on

P (d, t) =


Pwet(t), P r(d, t) < p(d, t),

Pdry Pr(d, t) ≥ p(d, t),
(24)

where Pr(d, t) = U(0, 1), capturing random variation in day-to-day weather. There is no

rainfall on a dry day, whereas rainfall on a wet day is an increasing function of atmospheric

temperature, since a warmer atmosphere can hold more water:

Pwet(t) = p′′
[
∆TAT(t)−∆TAT(0)

]
+ Pwet(0). (25)

The initial value of Pwet is 9mm per day and it increases by 0.42mm/day/◦C of global warm-

ing.

The probability of a wet day during the first δ days of the season – the onset – is

pinit(t) =


pinit,1(t), Apl(t) < Apl,crit(t),

1− pm, Apl(t) ≥ Apl,crit(t),
(26)

where pm = 0.82 is the maximum probability of a wet day.11 The formulation in Eq. (26)

makes rainfall during the onset of the season a function of albedo Apl(t), in particular its

relation to a critical albedo value Apl,crit(t). If the actual albedo exceeds the critical value,
10For computational reasons, we use a four-day time step, so P (d, t) changes at most once every four days

and there are 136 days in the season, compared with 135 in (10).
11By bounding the probability of a wet day during the onset of the monsoon season, the system does not

become irrevocably locked into either a wet or dry state.
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the probability of a wet day is at its minimum. The critical albedo value is increasing in the

atmospheric concentration of CO2,

Apl,crit(t) = αpl,1 ln
[ 3∑
i=0

Si(t) + S

]
+ αpl,2. (27)

∑3
i=0 Si(t)+S gives the atmospheric CO2 concentration and its derivation is explained in the

following section. The actual albedo is given by

Apl(t) = Apl(0) + 2T 2
pl(1− As)2βplαpl,3BSO4(t), (28)

where Tpl is the fraction of light transmitted by the aerosol layer, As is the present value

of the surface albedo, βpl and αpl,3 are coefficients representing the backscatter fraction and

mass scattering efficiency respectively and BSO4(t) is the regional sulphate burden over the

Indian peninsula. This last quantity depends on SO2 emissions in the region:

BSO4(t) = SO2(t)HSO2V/Ω. (29)

Emissions of SO2 are exogenous and sourced from the Representative Concentration Path-

way (RCP) database (74). The emissions scenarios we use are discussed in greater detail

below. The RCP database only disaggregates SO2 emissions to the level of the Asian conti-

nent/region, so we downscale to the Indian level by assuming a constant ratio of Indian/Asian

emissions, estimated based on 2010 data (75). The parameter HSO2 is the fractional sulphate

yield, V is the atmospheric lifetime of sulphate and Ω is the land area. Thus the dependence

of rainfall on albedo in the model ultimately captures the local cooling effect of SO2 emissions

in the region, which weakens the ISM.

Assuming the actual planetary albedo does not exceed the critical value, the probability
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of a wet day during the first δ days of the season is

pinit,1(t) = p′ [mNINO3.4(t)−m0] + p0, (30)

where mNINO3.4 is the strength of the Walker circulation, i.e. the Pacific Ocean atmospheric

circulation, in May. The subscript NINO indicates that the strength of this circulation

depends on whether there is an El Niño or not. El Niño suppresses the ISM. The parameters

p′, m0 and p0 are used to calibrate the response of pinit,1(t) to mNINO3.4. The strength of the

Walker circulation in May is in turn given by

mNINO3.4(t) = m′
[
∆TAT(t)−∆TAT(0)

]
+mNINO3.4(0). (31)

The probability of a wet day after the first δ days of the season is

p(d, t) = 1/δ∑d−1
i=d−δ P (i, t)− Pdry

Pwet(t)− Pdry
, (32)

where δ = 16 days.12 The probability of a wet day depends positively on how wet the previous

δ days were, a representation of the moisture advection and dry-subsidence feedbacks.

2.1.9 Tipping point interactions

Tipping points can interact with each other in multiple ways (60; 64). Some of these interac-

tions are hardwired into the structure of our model. For example, the PCF increases GMST,

which affects all seven remaining tipping points in our study, because all of them depend on

temperature. However, the structure of our model can only capture a limited subset of all

the possible interactions between tipping points. To increase the number of interactions, we

use the expert elicitation study of Kriegler et al. (64), which attempted to quantify how the

triggering of one tipping point can cause the hazard rates of other tipping points to change,
12With a four-day time step, we set the memory period δ = 16 days, rather than 17 days as in (10).
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with a focus on mechanisms other than temperature.

We apply a hierarchical Bayesian analysis to obtain best estimates of the hazard rate

changes provided by the experts in (64). The hazard rate changes – the interactions –

are represented by a range for expert i from lower bound ui to upper bound ni. Each

change/interaction is a multiplier on the base hazard rate, so a value of 1 means no change.

We posit a true, expert-specific hazard rate change, θi, and further assume that these true

values are drawn from a normal distribution with unknown mean and variance. This allows

the expert opinions to be partially pooled to inform the hyperparameters of the normal

distribution:

θi ∼ N (µ, τ)

θi ∼ U(ui, ni)

We treat cases where experts were uncertain about the lower bound of the hazard rate change

as having a lower bound of 0, and cases where they were uncertain about the upper bound

as an upper bound of 10. Figure 8 presents the results.
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Figure 8: The posterior distribution of µ, the mean of the hyperdistribution, for each in-
teraction. The error bars in each plot show the 95% credible interval on µ for the given
interaction. The light grey lines show each expert’s upper and lower bounds (dots are used if
the upper bound equals the lower bound). Abbreviations are as follows: Atlantic Meridional
Overturning Circulation (AMOC), melt of the Greenland Ice Sheet (GIS), disintegration of
the West Antarctic Ice Sheet (WAIS), and dieback of the Amazon rainforest (AMAZ).
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The set of tipping point interactions included in our study is the union of the set of

interactions hardwired in our model and the set of interactions quantified by (64). To aid

understanding of how many interactions are thereby included, as well as the direction of each

interaction, Table 4 provides a matrix.
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Table 4: Interactions between tipping points included in this study. Each cell indicates the
qualitative effect of the row tipping point on the column tipping point. Where the row
tipping point can increase or decrease the intensity/likelihood of the column tipping point,
depending on time or state, we write +/-. Parentheses indicate the interaction is calibrated
on the expert elicitation study by (64). The absence of parenthesis indicates the interaction
is hardwired in the model structure. Zeros indicate an interaction that is included, but that
has a statistical zero effect according to (64). No int. means the interaction is not included
at all. n.b. ISM affects other tipping points via ENSO, implicit in the expert estimates of
the relevant hazard rate changes.

PCF OMH SAF AMAZ GIS WAIS AMOC ISM

PCF + + + + + + +/-
OMH + + + + + + +/-
SAF +/- +/- +/- +/- +/- +/- +/-

AMAZ + + + + (0) + (0) +
(+/-)

+/-
(+/-)

GIS no int. no int. no int. (+/-) (+) (+) (0)
WAIS no int. no int. no int. (0) (+/-) (+/-) (0)
AMOC no int. no int. no int. (+/-) (-) (+/-) (0)
ISM no int. no int. no int. (+) (0) (0) (+/-)

2.2 Climate module

2.2.1 Emissions

The principal inputs to the climate model are global emissions of CO2 and CH4. There are two

sources of these. The first is anthropogenic emissions from burning fossil fuels, from indus-

trial processes, land use and land-use change, and waste disposal. Anthropogenic emissions

are exogenous and sourced from the RCP database (74),13 giving four emissions scenarios

estimated in order to match prescribed paths for radiative forcing.14 Estimating the SCC

requires a time horizon of several hundred years be considered, due to the long atmospheric

lifetime of CO2. Therefore we use the RCPs extended to 2300 by (76). Other anthropogenic
13http://www.iiasa.ac.at/web-apps/tnt/RcpDb
14RCP2.6 peaks at ~3Wm−2 before 2100 and then declines; RCP4.5 reaches ~4.5Wm−2 at stabilisation

after 2100; RCP6 reaches ~6 Wm−2 at stabilisation after 2100; RCP8.5/baseline exceeds 8.5 Wm−2 in 2100.

33



and natural sources of radiative forcing, both positive and negative, are aggregated into an

exogenous residual radiative forcing series.15 Projections of these sources are also taken from

the extended RCP database. The second source of emissions is the carbon-cycle feedbacks

described in the previous section, i.e. permafrost melting, dissociation of ocean methane

hydrates, and Amazon rainforest dieback.

2.2.2 CO2 and CH4 cycles

CO2 emissions are fed into the FAIR model of the carbon cycle (77). FAIR builds on the

model of (78), which was designed to emulate a diverse set of carbon-cycle models of different

complexity for an inter-comparison project. FAIR adds to this a reduced-form representation

of positive carbon-cycle feedbacks, whereby the rate of CO2 uptake by ocean and terrestrial

carbon sinks is decreasing in cumulative CO2 uptake by those sinks, and in temperature.

The most important of these feedbacks is saturation of the ocean carbon sink.

In the model, the atmospheric stock of carbon is partitioned into four boxes, each of

which decays at a different rate:

Si(t) = ai
∑

CO2(t− 1) + (1− δi)
α(t) Si(t− 1), i ∈ {0, 1, 2, 3} , (33)

where Si(t) is the stock of carbon in box i and ∑CO2(t) = CO2_EX(t) + CO2_PF(t) +

CO2_AMAZ(t). CO2_EX(t) stands for exogenous, anthropogenic emissions from the RCPs.

The coefficients ai determine the fraction of emissions entering each box; ∑3
i=0 ai = 1. To

emulate the behaviour of the representative carbon-cycle model in (78), i.e. the multi-model

average, it so happens that the allocation between the four boxes is of the order of 25%

each (more precisely, 22-28%). The coefficients δi are the decay rates, which range from

approximately zero, loosely corresponding to the time taken for CO2 to be sequestered by
15This is the sum of forcing from: (i) N2O; (ii) flourinated gases controlled under the Kyoto Protocol; (iii)

ozone-depleting substances controlled under the Montreal Protocol; (iv) total direct aerosol forcing; (v) the
cloud albedo effect; (vi) stratospheric and tropospheric ozone forcing; (vii) stratospheric water vapour from
methane oxidisation; (viii) land-use albedo; (ix) black carbon on snow.
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geological sedimentation, to around 23%, corresponding to rapid removal of atmospheric CO2

by the biosphere and upper oceans (77).

The coefficients α(t) represent the positive carbon-cycle feedbacks, slowing down the rate

of removal of atmospheric CO2 from each box. In turn, α(t) is a function of the integrated

CO2 impulse response function in FAIR over 100 years (iIRF100). In other words, iIRF100

is the average airborne fraction of the CO2 impulse over a period of time (in this case 100

years), multiplied by that period of time. In FAIR, iIRF100 is modelled in reduced form as

a linear function of temperature and cumulative emissions absorbed by carbon sinks:

iIRF100(t) = rpre + rT∆TAT(t) + rC

[
t∑

s=pre

∑
CO2(t)−

3∑
i=0

(Si(s)− S)
]
, (34)

where rpre = 34.4 years is the estimated pre-industrial value of iIRF100,16 rT = 4.165

years/◦C, rC = 0.019 years/GtC, and S is the pre-industrial concentration of atmospheric

CO2, 278ppm. iIRF100 can take a maximum value of 96.6, otherwise the model becomes

unstable (77).17

The relationship between α(t) and iIRF100(t) has no analytical solution. We estimate

α(t) by fitting an exponential function,18 which gives

α(t) = χ1 exp[χ2iIRF100(t)] (35)

where χ1 = 0.0107 and χ2 = 0.0866.

CH4 has a much shorter atmospheric residence time than CO2 and its decay can be

adequately represented by a simple one-box model:

M(t) = M + (1− %)(M(t− 1)−M) +
∑

CH4(t− 1), (36)
16We use a constant of 34.4 instead of 32.4 as per the original FAIR model (77) in order to obtain a better

fit under current and future conditions. A value of 32.4 better fits decay under pre-industrial conditions (77,
table 2).

17If iIRF100 > 100, the atmospheric concentration of CO2 grows without bound in response to an emissions
impulse.

18With thanks to Frank Venmans.
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where M(t) is the atmospheric CH4 concentration, M is the pre-industrial atmospheric CH4

concentration and ∑CH4(t) = CH4_EX(t) + CH4_PF(t) + CH4_OMH(t). We assume CH4 has

an atmospheric lifetime of 12.4 years (79), implying a decay rate % = 8.1%.

2.2.3 Radiative forcing and temperature

We specify Arrhenius’ logarithmic relationship between radiative forcing and atmospheric

CO2:

FCO2(t) = F2×CO2

(
log2

∑3
i=0 Si(t) + S

S

)
, (37)

where F2×CO2 is the radiative forcing resulting from a doubling of atmospheric CO2.

For radiative forcing from atmospheric CH4, we use IPCC’s simplified expression (79):

FCH4(t) = α
[√
M(t)−

√
M
]
− [f [M(t), N(0)]− f [M,N(0)]] , (38)

There is significant overlap between some of the infrared absorption bands of CH4 and nitrous

oxide (80), which means that radiative forcing from atmospheric CH4 is not independent of

the atmospheric concentration of nitrous oxide. That is why atmospheric nitrous oxide

appears in (38), both via the initial concentration N(0) and

f [M(t), N(t)] = 0.47 ln
[
1 + 2.01E−5 [M(t)N(t)]0.75 + 5.31E−5M(t) [M(t)N(t)]1.52

]
. (39)

Overall radiative forcing is the sum of the contributions from atmospheric CO2 and CH4, as

well as the residual forcing from other greenhouse gases and drivers:

F (t) = FCO2(t) + FCH4(t) + FEX(t). (40)

From forcing, the increase in GMST is governed by a model comprising two heat boxes,

one for the atmosphere, land surface and upper oceans ∆TAT and one for the lower/deep

oceans ∆TLO. This is the same model structure used by Nordhaus in DICE and it has
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separately been shown to emulate well the temperature response to emissions of a wide range

of General Circulation Models (81), albeit with a different parameterisation than Nordhaus.

The equations of motion for ∆TAT and ∆TLO are

∆TAT(t) = ∆TAT(t− 1) + (41)
1

CUP

[
F (t)− F2×CO2

ς
∆TAT(t− 1)− γ

[
∆TAT(t− 1)−∆TLO(t− 1)

]]
,

∆TLO(t) = ∆TLO(t− 1) + γ

CLO

[
∆TAT(t− 1)−∆TLO(t− 1)

]
, (42)

where CUP and CLO are the effective heat capacities of the upper and lower oceans per unit

area, respectively, ς is the equilibrium climate sensitivity or ECS and γ is a coefficient of heat

exchange between the upper and lower oceans.

Figure 11 in the Supplementary Results section compares the RCP temperature projec-

tions of our climate module with the corresponding projections of the CMIP5 ensemble and

shows that they are in close agreement.

2.3 Damages/economic module

2.3.1 Sea level rise

Sea level rise comprises a contribution from thermal expansion and melt from glaciers and

small ice caps, SLRTHERM(t), as well as a contribution from disintegration of the GIS and

WAIS: ∑
SLR(t) = SLRTHERM(t) + SLRGIS(t) + SLRWAIS(t). (43)

Sea level rise is defined relative to the year 2000 and ∑SLR(0) = 0.04m (82). To model the

contribution from thermal expansion and melt from glaciers and small ice caps, we follow

(61) in specifying SLR as a linear function of warming:

SLRTHERM(t) = (rTE + rGSIC) ∆TAT(t) + SLRTHERM(t− 1), (44)
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where rTE = 0.00078 and rGSIC = 0.00081 parameterise the rates of SLR from thermal

expansion and melt from glaciers and small ice caps respectively. Sea level rise from thermal

expansion is parameterised such that 1◦C warming results in a very long-term equilibrium

increase of 0.5m (i.e. over the course of approximately 1000 years).

2.3.2 National temperature

We want to implement climate damages at the national level, both to make best use of

available empirical damage estimates, which are now at the national level, and to accurately

model the impacts of AMOC slowdown in particular, which vary from country to country.

We use the damage estimates of (83). In order to use these, we need to convert the increase

in GMST relative to pre-industrial into the level of national mean surface temperature. We

do this by means of statistical downscaling, before subsequently adding the effect on the

level of national mean surface temperature of AMOC slowdown. For country i, statistical

downscaling involves estimating the ratio of national mean surface temperature to global

mean surface temperature λ(i, t) using the following equation:

λ(i, t) = α(i) + β(i) ln
[
TAT(0)− TAT(pre) + ∆TAT(t)−∆TAT(0)

]
, (45)

where TAT(0) is the level of global mean surface temperature at t = 0, i.e. 2010, and TAT(pre)

is an estimate of the pre-industrial GMST. The estimating equation therefore follows the

logic that each country’s mean temperature converges to a long-term equilibrium difference

with respect to the global mean. The country-level coefficients α(i) and β(i) are estimated

by OLS according to the expression above, pooling data for RCP 4.5 and 8.5.

National mean surface temperature is estimated by applying the coefficients λ(i, t) to the

level of GMST at time t and adding the change in national mean surface temperature due

to AMOC slowdown:

TAT(i, t) = λ(i, t)
[
TAT(0) + ∆TAT(t)−∆TAT(0)

]
+ ∆TAT_AMOC(i, t) (46)
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2.3.3 Damages and national income per capita

Income growth depends on exogenous drivers, as well as damages from changing temperatures

and from sea level rise (and from the summer monsoon in India, only). Post-damage income

per capita in country i, y(i, t), grows according to

y(i, t) = y(i, t− 1) [1 + gEX(i, t) +DTEMP(i, t)] [1−DSLR(i, t)] , (47)

where gEX(i, t) is an exogenous, country- and time-specific growth rate that is taken from the

Shared Socio-Economic Pathway (SSP) database (84).19 The SSPs were designed as a flexible

accompaniment to the RCP emissions scenarios.20 The SSP scenarios are only defined until

2100. To extend these scenarios until 2300, we follow a procedure described in Section 2.4.1.

DTEMP(i, t) are temperature damages and DSLR(i, t) are SLR damages.

The level of income per capita in the previous year, on which damages in the current year

work,

y(i, t− 1) = ϕyEX(i, t− 1) + (1− ϕ) y(i, t− 1), (48)

where yEX(i, t − 1) is counterfactual income per capita, also taken from the SSP database,

y(i, t− 1) is the actual post-damage income per capita experienced, and ϕ parameterises the

weight given to each. This specification enables us to explore two different interpretations

of the empirical evidence on temperature damages. The first interpretation is that tempera-

tures impact the level of income in each year, in effect driving a wedge between what output

is feasible given implicit factors of production and productivity, and what output is actually

achieved. This has been the traditional approach in climate economics, e.g. in Nordhaus’

DICE model. The production possibilities frontier is assumed to evolve exogenously. Such

‘levels’ damages correspond with ϕ = 1. The second interpretation is that temperatures
19https://tntcat.iiasa.ac.at/SspDb
20Different SSPs can be matched with different RCPs, though not all combinations are plausible, and

some combinations might be regarded as most likely. We match SSP1 (sometimes called the ‘Sustainability’
scenario) with RCP3-PD/2.6. SSP2 (‘Middle of the Road’) is matched with RCP4.5, SSP4 (‘Inequality’) is
matched with RCP6 and SSP5 (‘Fossil-fueled development’) is matched with both RCP4.5 and RCP8.5.
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impact the growth rate of income by directly impacting the accumulation of factors of pro-

duction and/or by impacting productivity growth (85). Such ‘growth’ damages correspond

with ϕ = 0. Our main specification is an intermediate value of ϕ = 0.5.

Temperature damages themselves are given by

DTEMP(i, t) = β1i [TAT(i, t)− TAT(i, 1990)] + β2i [TAT(i, t)− TAT(i, 1990)]2 , (49)

where the coefficients β1i and β2i are calibrated on the empirical results of (83). The procedure

is described in Section 2.4.2.

SLR damages are given by

DSLR(i, t) = θ(i)
∑

SLR(t), (50)

where θ(i) parameterises the cost to country i per unit SLR. Like (3), we obtain SLR damages

from Diaz’s CIAMmodel (5), but we preserve the country resolution. We run CIAM to obtain

estimates of national coastal damage/adaptation costs as a function of SLR in two scenarios,

(i) no adaptation and (ii) optimal adaptation. We treat each country’s adaptation decisions

as uncertain and obtain a symmetrical triangular distribution for each θ(i) with a minimum

corresponding to costs in (i) and a maximum corresponding to costs in (ii). We use costs/SLR

in 2050 for the calibration, a simple approach facilitated by the fact that the relationship

between the two is approximately linear over the 21st century (5).

In India, there is an additional damage multiplier DISM(IND, t), so that national income

per capita is given by

y(IND, t) = y(IND, t− 1) [1 + gEX(IND, t) +DTEMP(IND, t)]×

× [1−DSLR(IND, t)] [1−DISM(IND, t)] . (51)

40



Following (10), the ISM damage multiplier is given by

DISM(t) =



Ddrought, P (t) ≤ P drought,

0, P drought < P (t) < P flood,

Dflood, P (t) ≥ P flood.

(52)

This structure implies that only extremely wet monsoon seasons and extremely dry monsoon

seasons affect income in India, with the measure of precipitation being average rainfall for the

monsoon season P (t) from Eq. (23). The drought threshold P drought = 2.8667mm/day, while

the equivalent flood threshold P flood = 7.6667mm/day. Drought-related damages Ddrought =

3.5% of GDP, while flood-related damages Dflood = 0.85%. All these parameter values are

taken from (10).

2.3.4 Utility and welfare

Post-damage national income per capita is first converted into consumption per capita using

a country-specific but time-invariant savings rate,

c(i, t) = [1− s(i)] y(i, t), (53)

where the country savings rates s(i) are calibrated on observed national savings rates averaged

over the period 2005-2015, using World Bank data. Savings data are missing for many

countries, in which case we impute the global average, also obtained from the World Bank.

This specification assumes savings are exogenous and do not respond to changing income

prospects. Fully endogenous savings are computationally infeasible in a model with this

much complexity and detail. The limitations of assuming constant/exogenous savings have

been discussed in the literature, e.g. (86). Small to moderate climate damages do not appear

to shift savings rates measurably. Large damages can do so, however. In Section 3, we report

a sensitivity analysis, in which we shift all countries’ savings rates up and down by a fixed
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amount.

Consumption is converted into utility using a standard, constant-elasticity-of-substitution

representation,

u(i, t) = c(i, t)1−η

1− η , (54)

where η is the elasticity of marginal utility of consumption.

To compute overall welfare, we specify a discounted classical/total utilitarian social wel-

fare functional. We begin by calculating welfare for each country i:

W (i) =
T∑

t=2020
(1 + ρ)−t u(i, t)L(i, t), (55)

where ρ is the utility discount rate, a.k.a. the pure rate of time preference. Discounted,

population-adjusted current period utility is then summed over the whole modelling horizon

to obtain total welfare. Population data are exogenous and taken from the SSP scenarios.

Global welfare follows naturally as the sum of welfare across all countries i:

W =
∑
i

W (i) (56)

2.3.5 Computing the social cost of carbon

The social cost of carbon along a particular scenario of emissions, income and population is

the difference in welfare caused by a marginal emission of CO2, normalised by the marginal

welfare value of a unit of consumption in the base year:

SCC(t) = ∂W/∂E(t)
∂W/∂c(t) . (57)

To calculate the numerator, we run the model twice with identical assumptions, the second

time with an additional pulse of emissions. Let θm represent a vector of parameter values

from the model as described in the preceding sections. These are in most cases random draws
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from a distribution, including individual tipping event realisations. Then we calculate

[
∂W

∂E(t)

]
m

= W [E(t) + ∆E(t), θm]−W [E(t), θm]
∆E(t) , (58)

where ∆E is the emissions pulse. We focus on an emissions pulse in 2020.

The denominator of (57), ∂W/∂c(t), depends on the consumption level of the normalising

agent. We define this as the global average individual, i.e. global mean consumption per

capita:

c̄(t, θm) =
∑
i c(i, t, θm)L(i, t)∑

i L(i, t) . (59)

Note that this is also uncertain and depends on the vector of random parameters. Differen-

tiating the utility function, we then have

[
∂W

∂c(t)

]
m

= c̄(i, t, θm)−η. (60)

We focus on a base year of 2020.

We then calculate the negative of the ratio of equations (58) and (60) for each draw of

random parameters m and take expectations over all draws.

Below in Section 3.2 we present a range of sensitivity analyses. To implement these, we

take the relevant subset of model parameters and vary either their fixed values or distri-

butions, holding all other parameters or parameter distributions constant. We also look at

different emissions/socio-economic scenarios. For these sensitivity analyses, all the model pa-

rameters and parameter distributions are held constant – only the exogenous emissions/socio-

economic variables are varied.

The numeraire in the model is year 2010 US dollars, corresponding to the year in which

GDP is initialised. We inflate our reported SCC values to year 2020 US dollars using a factor

of 1.2, based on data from (87).21

21The inflation factor is 1.2 whether one uses the Consumer Price Index or the GDP deflator.
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2.3.6 Non-market damages

The above damages from temperature, SLR and the ISM can be regarded as ‘market’ dam-

ages. They do not include estimates of the welfare cost of climate change outside markets, for

example damages to ecosystems that can be priced at people’s willingness to pay (WTP) to

preserve those ecosystems’ existence. ‘Non-market’ damages are more uncertain than their

market counterparts, but in many IAMs they occupy a substantial share of total welfare

damages from climate change (e.g. 88), so we add an estimate of them as a sensitivity check.

We use the non-market damage module of the MERGE IAM (89). The MERGE model

places particular emphasis on the representation of non-market damages, with a willingness-

to-pay (WTP) measure that depends on both income and temperature. While the parameters

of the MERGE non-market damages are speculative, its use of an S-shaped elasticity of

income seems like a sensible starting point. The WTP to avoid warming as a function of

income is shown in figure 9.
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Figure 9: Willingness to pay to avoid 1.5, 2.5, and 4 C, as a function of income, as described
by the MERGE model.
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We calculate this WTP measure at a national level. The non-market damage multiplier,

or economic loss function, is

DNM(i, t) =
[
1− (TAT(t)/∆Tcat)2

]h(i,t)
. (61)

This is a hockey-stick function embodying the assumption that non-market damages can

increase rapidly as temperatures become more extreme. ∆Tcat is a catastrophic warming

parameter set to 17.68◦C, which people are assumed to be willing to avoid at any cost22.

h(i, t) is the hockey-stick parameter, which depends on country income per capita:

h(i, t) = min
 log [1− Dref/1+100 exp [−WTPref·y(i,t)]]

log
[
1− (∆Tref/∆Tcat)2

] , 1
, (62)

where

WTPref = 0.184206807 WTP 1% of GDP to avoid reference warming at $25k/capita

Dref = 0.02 WTP loss at reference warming

∆Tref = 2.5 C WTP reference warming

As income increases above $25k/capita, the WTP to avoid 2.5 C warming increases from 2%.

The non-market damage multiplier is applied to country-level utility:

u(i, t) = u (DNM(i, t)c(i, t))

for utility function u(·) as specified above.
22The catastrophic warming temperature is derived from the assumption that economic losses rise quadrat-

ically, and are calibrated to a loss of 2% at 2.5C warming.
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2.4 Supporting analysis

2.4.1 Extending the SSP scenarios beyond 2100

To estimate post-2100 income and population along the SSP scenarios, we fit a model to

the available pre-2100 SSP scenario data and use the fitted model to extrapolate. The same

model is applied to both income and population and is defined in terms of growth rates. The

model postulates that changes in pre-2100 income and population growth rates are explained

by a rate of convergence and a rate of decay.

The model is as follows:

Growth(i, t) = (1− β − δ)Growth(i, t− 1) + δMeanGrowth(t− 1), (63)

where δ is the rate of convergence, β is the decay rate and

MeanGrowth(t− 1) =
∑
i

Population(i, 2015)∑
j Population(j, 2015)Growth(i, t− 1). (64)

Below, we write this as Growth(·, t− 1) ·w, where w is the vector of global population shares

for each country.

SSP data are not available in every year, so fitting Eq. (63) requires a model with dy-

namics. We use a two-step approach, fitting the model using Stan, a computational Bayes

system. The first step uses the available data directly, fitting

Growth(i, s) ∼ N ([1−∆t(β + δ)]Growth(i, s− 1) + ∆tδMeanGrowth(s− 1), σi) , (65)

where s is a time step, ∆t is the number of years between time steps, and country i has

uncertainty σi. We apply a prior that both β and δ are between 0 and 0.5.

Next, we fit the full model, using the results of the simplified model to improve the

Bayesian model convergence. In this case, for a given Markov chain Monte Carlo draw of β
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and δ, we calculate the entire time series:

̂Growth(i, t) ∼ N
(
(1− β − δ) ̂Growth(i, t− 1) + δ

[ ̂Growth(·, t− 1) · w·
]
, σi
)

(66)

starting with ̂Growth(i, 2015) as reported in the SSP dataset.

The probability evaluation is over both the performance of the fit and the priors:

Growth(i, s) ∼ N
( ̂Growth(i, t(s)), σi

)
β ∼ N (µβ, σβ)

δ ∼ N (µδ, σδ)

log σi ∼ N (µσ,i, σσ,i)

where µ is the mean estimate of the corresponding parameter and σ is the standard deviation

across its uncertainty. The prior for σi is defined as a log-normal, centered on the mean of

the estimates of log σi. The estimates for each SSP are shown in Table 5.

Table 5: Estimated convergence and decay rates for extrapolation of growth of GDP per
capita and population in the SSP socio-economic scenarios beyond 2100

SSP Variable δ β

1 GDP per capita 0.006205028 0.005930520
1 Population 0.008967453 0.005215835
2 GDP per capita 0.004190444 0.007228942
2 Population 0.001276993 0.011064426
3 GDP per capita 0.006273030 0.009597363
3 Population 0.001064697 0.007688331
4 GDP per capita 0.006895296 0.009651277
4 Population 0.001867587 0.003461600
5 GDP per capita 0.007766807 0.003843256
5 Population 0.003470952 0.004305310
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2.4.2 Calibration of country-specific damage functions

We develop damage functions based on the econometric estimates of Burke et al. (83) (pooled

global estimates without lags). Since the independent variable used in the estimation process

of (83) is annual average temperature, a few steps are necessary to develop functions indexed

to climatic average temperature, as produced by our model. These steps follow the basic

procedure described in (90):

1. Using the replication materials provided for (83), estimate their standard model coef-

ficients, along with their associated variance-covariance matrix.

2. Generate annual average temperatures for each country, as projected by a range of

bias-corrected, statistically-downscaled GCMs. Temperature averages are population

weighted, according to gridded population data from (91). We use the set of downscaled

models from (92), supplemented by surrogate pattern-scaled models representing the

tails of the GMST probability distribution as described in (90).

3. Estimate growth impacts for each country, year, GCM, and RCP. We take 3000 random

Monte Carlo draws from the uncertainty in the coefficients, using a multivariate normal

distribution with the variance-covariance matrix estimated above. The growth impacts

are reported as changes in the log of country-specific GDP per capita, and we do not

accumulate growth impacts over time.

4. Compute the difference between the estimated, un-normalized growth rate in each

year and the average of the estimated growth rates from 1981-2000. We call this

∆ log y(i, r, t), where r stands for the RCP.

5. Calculate the average changes in growth rates across all GCMs and Monte Carlo runs,

for each RCP, year and country, and the standard deviation across growth rates. We

weight GCMs as done in (90).
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6. Calculate the climatic temperature TAT(i, r, t) as the weighted average across all GCMs

of its area-weighted average temperature. The GCMs are weighted as above.

7. For each country, pool the results for all years and RCPs. Use these data to estimate

the following regression model:

∆ log y(i, r, t) = α + β1 [TAT(i, r, t)− TAT(i, r, 1990)]

+β2 [TAT(i, r, t)− TAT(i, r, 1990)]2 + ε(i, r, t)

where TAT(i, r, 1990) is the average climatic temperature from 1981 to 2000. The re-

gression observations are weighed by inverse variance.

Figure 10 compares the marginal effect of temperature on growth rates using this method

with the marginal effect obtained by applying the coefficients from (83) directly. On average,

these values are lower, due to Jensen’s inequality, but the mismatch between population-

weighted and area-weighted temperatures can result in marginal effects above the untrans-

formed rate.
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Figure 10: Comparison between the marginal effect of temperature on growth rates for each
country (red) and using the coefficients from (83) directly (blue).
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3 Supplementary results

3.1 Climate model comparison

Figure 11 compares the 21st century GMST increase projected by our climate model – tipping

point modules turned off – with the corresponding multi-model mean projection from the

CMIP5 ensemble (69), for consistent forcing from the RCP scenarios. We set our climate

model parameters to their central estimates.

The projections are almost identical for RCP3-PD/2.6. For the remaining three higher-

emissions scenarios, our model projects slightly higher temperatures, though in all cases our

model projection is well within the 90% confidence interval of CMIP5 models (see 69, figure

TS.15).
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Figure 11: Comparison between temperature projections of our climate model and the multi-
model mean projection from the CMIP5 ensemble as reported in (69).
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Figure 12 compares 21st century SLR projected by our model with the corresponding

multi-model median projection from the IPCC Fifth Assessment Report (93). The IPCC

projection is based on the set of process-based models. For a like-for-like comparison, our

projection is based on the median of a 5,000 run Monte Carlo simulation. The forcing scenario

is RCP4.5.

The projections of total SLR from all sources – including thermal expansion, melting of

glaciers and small ice sheets, and melting of the GIS and WAIS – are similar. Our model

projects 0.009m less SLR in 2020, but 0.06m more in 2100. The difference is well within

the 67% confidence interval (93, Figure 13.11). Both the GIS model of (3) and the WAIS
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model of (61) project lower SLR contributions than their median IPCC counterparts. The

difference is larger for the GIS. The extra SLR projected towards the end of the century in

our model compared with the median IPCC model is therefore due to thermal expansion and

melting of glaciers and small ice sheets.

Figure 12: Comparison between SLR projections of our model and the median process-based
model as reported in (93) for RCP4.5.
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3.2 Sensitivity analysis on SCC

3.2.1 Permafrost carbon feedback

Table 6 and Figure 13 report the change in the SCC due to the permafrost carbon feed-

back across different scenarios reported in the literature. The central estimates of the three

published studies are in relatively close agreement about the percentage increase in the ex-

pected SCC, ranging from 6.3% in (57) to 12.4% in (30). In the stochastic implementation

of Kessler’s (30) model, the distribution of percentage increases in the SCC spreads, but the

change in the expected SCC is not much higher than in Kessler’s deterministic implementa-

tion, at 13.5%.

Table 6: The expected SCC (2020 US$) and the percentage change in the expected SCC due
to the permafrost carbon feedback. The expected SCC is computed over 10,000 Monte Carlo
draws with 0.1% trimmed. Emissions and GDP/population growth are from RCP4.5-SSP2.

PCF scenario Without PCF With PCF % increase
None 52.03 - -

Hope and Schaefer (2016) - 56.01 8.4
Kessler (2017) central value - 58.48 12.4
Kessler (2017) stochastic - 59.06 13.5
Yumashev et al. (2019) - 55.31 6.3
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Figure 13: The percentage change in the SCC due to the permafrost carbon feedback. Boxes
show median and interquartile range; whiskers show 95% confidence interval; crosses mark
the average change (0.1% trimmed); triangles mark the 0.5 percentile; squares mark the 99.5
percentile. Y-axis is truncated. Emissions and GDP/population growth are from RCP4.5-
SSP2. Monte Carlo sample size is 10,000.

3.2.2 Ocean methane hydrates

Table 7 and Figure 14 report the change in the SCC due to dissociation of ocean methane

hydrates across different scenarios reported in the literature. The main scenario explored in

(53) and the three scenarios explored in (59) involve very different cumulative CH4 releases,

which is reflected in a wide range of values of the expected SCC, ranging from 4.1% higher

than without the tipping point, to 49.2% higher. Conversely the increase in the SCC in

the (53) scenario (50GtCH4 cumulative release) appears very robust to the specification of

the hazard rate, as well as the duration of the 50GtCH4 release (see Section 2.1.2). In
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particular, although the hazard rate is much higher under the uniform distribution, the

percentage increase in the SCC is only fractionally higher. This reflects the fact that the

50GtCH4 release is relatively likely before 2200 under all specifications and the difference in

the expected timing of the release due to differences in the hazard rate has a relatively small

effect on the SCC, as do differences in the duration of the release between 10 and 30 years

(default specification is 20 years). This is consistent with the sensitivity analysis performed

by (53) using the PAGE2002 IAM.

Table 7: The expected SCC (2020 US$) and the percentage change in the expected SCC
due to dissociation of ocean methane hydrates. The expected SCC is computed over 10,000
Monte Carlo draws with 0.1% trimmed. Emissions and GDP/population growth are from
RCP4.5-SSP2. The hazard rate bOMH is beta distributed unless otherwise specified.

OMH scenario Without OMH With OMH % increase
None 52.03 - -

Whiteman et al. (2013) - 58.85 13.1
Ceronsky et al. (2011) 0.2Gt/yr - 54.14 4.1
Ceronsky et al. (2011) 1.8Gt/yr - 63.40 21.9
Ceronsky et al. (2011) 7.8Gt/yr - 77.62 49.2
Whiteman et al. (2013) uniform - 59.57 14.5
Whiteman et al. (2013) triangular - 59.57 14.5
Whiteman et al. (2013) 10 years - 58.68 12.8
Whiteman et al. (2013) 30 years - 58.61 12.6
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Figure 14: The percentage change in the SCC due to dissociation of ocean methane hydrates.
Boxes show median and interquartile range; whiskers show 95% confidence interval; crosses
mark the average change (0.1% trimmed); triangles mark the 0.5 percentile; squares mark
the 99.5 percentile. Y-axis is truncated. Emissions and GDP/population growth are from
RCP4.5-SSP2. The hazard rate bOMH is beta distributed unless otherwise specified. Monte
Carlo sample size is 10,000.

3.2.3 Slowdown of the Atlantic Meridional Overturning Circulation

Table 8 and Figure 15 report the change in the SCC due to slowdown of the AMOC across

the four hosing scenarios explored in (6). The SCC is lower across all quantiles in all four

scenarios. (6) similarly found an increase in welfare in all four scenarios, using both damage

functions fitted on the literature, and the FUND IAM. The decrease in the expected SCC is

much larger in the ‘Hadley 67%’ scenario than in the other scenarios, at -5.4%. This reflects

the much larger, two-thirds slowdown of the AMOC in this scenario. Notice that the decrease

in the expected SCC is greater in the ‘HADCM 7% scenario’ than the ‘BCM 24%’ scenario,
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despite a smaller slowdown of the circulation. In general, the ordering of temperature effects

of the three milder hosing scenarios varies across countries, so while the slowdown is smallest

overall under ‘HADCM 7%’, the cooling effect is larger in some countries (see 6, Fig. 1).

Table 8: The expected SCC (2020 US$) and the percentage change in the expected SCC due
to slowdown of the Atlantic Meridional Overturning Circulation. The expected SCC is com-
puted over 10,000 Monte Carlo draws with 0.1% trimmed. Emissions and GDP/population
growth are from RCP4.5-SSP2.

Hosing scenario Without AMOC With AMOC % increase
None 52.03 - -

BCM 24% - 51.65 -0.7
HADCM 7% - 51.59 -0.8
IPSL 27% - 51.28 -1.4
Hadley 67% - 49.06 -5.7
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Figure 15: The percentage change in the SCC due to slowdown of the Atlantic Meridional
Overturning Circulation. Boxes show median and interquartile range; whiskers show 95%
confidence interval; crosses mark the average change (0.1% trimmed); triangles mark the 0.5
percentile; squares mark the 99.5 percentile. Emissions and GDP/population growth are
from RCP4.5-SSP2. Monte Carlo sample size is 10,000.

3.2.4 Emissions/socio-economic scenario

Table 9 and Figure 16 report the change in the SCC due to tipping points in five different

paired RCP/SSP emissions/socio-economic scenarios. Overall, the increase in the expected

SCC ranges from 15.4% to 33.8%. The expected SCC is highest in the RCP6-SSP4 scenario,

which has the second highest GHG emissions from the middle of the 21st century onwards,

and is characterised by rapid population growth and low income per capita in currently poor

regions, amplifying the welfare costs of climate change. The effect of tipping points on the

expected SCC is highest in the RCP3-PD/2.6-SSP1 scenario, which is the lowest emissions
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scenario, consistent with limiting global warming to below 2◦C in the absence of tipping

points (see Section 3.1). This is paired with SSP1, which is characterised by generally low

population growth and rapid growth in incomes.

The role of income and population projections is evident when comparing RCP4.5-SSP2

with RCP4.5-SSP5. This comparison holds emissions constant while varying income and

population. SSP5 has higher income per capita than SSP2, and lower population. The

expected SCC is hence lower on RCP4.5-SSP5, in fact it is lowest of all. The effect of tipping

points on the SCC is about the same, however. Comparing RCP4.5-SSP5 with RCP8.5-SSP5

holds income and population constant while varying emissions. The expected SCC is hence

higher on the high emissions RCP8.5 scenario.23

Table 9: The expected SCC (2020 US$) and the percentage change in the expected SCC due
to all tipping points combined in four different paired RCP/SSP emissions/socio-economic
scenarios. The expected SCC is computed over 10,000 Monte Carlo draws with 0.1% trimmed.
Specification comprises: Hope and Schaefer PCF; Whiteman et al. beta OMH; IPSL AMOC
hosing.

RCP-SSP Without TPs With all TPs % increase
RCP3-PD/2.6, SSP1 33.96 45.42 33.8

RCP4.5, SSP2 52.03 64.80 24.5
RCP6, SSP4 80.55 92.91 15.4
RCP8.5, SSP5 32.85 39.23 19.4
RCP4.5, SSP5 23.12 28.90 25.0

23Not all combinations of RCP and SSP are considered possible. In particular, RCP8.5 is only considered
compatible with SSP5 (94).

60



Figure 16: The percentage change in the SCC due to all tipping points combined in four
different paired RCP/SSP emissions/socio-economic scenarios. Boxes show median and in-
terquartile range; whiskers show 95% confidence interval; crosses mark the average change
(0.1% trimmed); triangles mark the 0.5 percentile; squares mark the 99.5 percentile. Y-axis
is truncated. Specification comprises: Hope and Schaefer PCF; Whiteman et al. beta OMH;
IPSL AMOC hosing. Monte Carlo sample size is 10,000.

3.2.5 Levels versus growth damages

Table 10 and Figure 17 report the change in the SCC due to tipping points for different

values of the parameter ϕ that determines whether climate damages work on the level or

growth rate of income. Our main specification is an intermediate value of ϕ = 0.5. When

ϕ = 1, representing pure levels damages, the expected SCC is lower at $26.94/tCO2, while

the percentage increase in the expected SCC is slightly higher at 26.0%. As ϕ is increased

across its range, the SCC increases, but the percentage increase in the expected SCC due to
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tipping points exhibits a small decrease. However, with a pure growth damages specification

(ϕ = 0), the expected SCC is nearly a factor of 100 higher and the percentage increase in the

expected SCC is also much higher, at 87.0%. Thus both the expected SCC and the effect of

tipping points on it are highly sensitive to ϕ as it approaches its lower limit value of zero.

The high value of the expected SCC when ϕ = 0 is in the ballpark of those values reported

by (95), who also used a pure growth damages specification.

Table 10: The expected SCC (2020 US$) and the percentage change in the expected SCC
due to all tipping points combined for different values of the parameter ϕ. The expected SCC
is computed over 10,000 Monte Carlo draws with 0.1% trimmed. Specification comprises:
RCP4.5-SSP2 emissions and GDP/population growth; Hope and Schaefer PCF; Whiteman
et al. beta OMH; IPSL AMOC hosing.

ϕ Without TPs With all TPs % increase
0, pure growth damages 3468.74 6488.19 87.0

0.1 219.29 267.36 21.9
0.2 121.16 149.00 23.0
0.3 83.84 103.67 23.7
0.4 64.17 79.67 24.1

0.5, main spec. 52.03 64.80 24.5
0.6 43.79 54.69 24.9
0.7 37.83 47.36 25.2
0.8 33.32 41.81 25.5
0.9 29.78 37.45 25.7

1, pure levels damages 26.94 33.94 26.0
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Figure 17: The percentage change in the SCC due to all tipping points combined for different
values of the parameter ϕ. Boxes show median and interquartile range; whiskers show 95%
confidence interval; crosses mark the average change (0.1% trimmed); triangles mark the 0.5
percentile; squares mark the 99.5 percentile. Y-axis is truncated. Specification comprises:
RCP4.5-SSP2 emissions and GDP/population growth; Hope and Schaefer PCF; Whiteman
et al. beta OMH; IPSL AMOC hosing. Monte Carlo sample size is 10,000.

3.2.6 Pure rate of time preference

Table 11 and Figure 18 report the change in the SCC due to tipping points for different values

of the pure rate of time preference. A low pure rate of time preference of 0.1%, assumed by

(96) for instance, results in a significantly higher expected SCC, but tipping points have a

similar effect on the expected SCC compared with our main specification. A high pure rate

of time preference of 2% results in a smaller expected SCC, but tipping points again have a

similar effect on the expected SCC.

63



Table 11: The expected SCC (2020 US$) and the percentage change in the expected SCC due
to all tipping points combined for different values of the pure rate of time preference. The
expected SCC is computed over 10,000 Monte Carlo draws with 0.1% trimmed. Specification
comprises: RCP4.5-SSP2 emissions and GDP/population growth; Hope and Schaefer PCF;
Whiteman et al. beta OMH; IPSL AMOC hosing.

Pure rate of Without TPs With all TPs % increase
time preference (%)

0.1 92.388 113.02 22.3
1, main spec. 52.03 70.20 24.5

2 32.67 41.26 26.3

Figure 18: The percentage change in the SCC due to all tipping points combined for different
values of the pure rate of time preference. Boxes show median and interquartile range;
whiskers show 95% confidence interval; crosses mark the average change (0.1% trimmed);
triangles mark the 0.5 percentile; squares mark the 99.5 percentile. Y-axis is truncated.
Specification comprises: RCP4.5-SSP2 emissions and GDP/population growth; Hope and
Schaefer PCF; Whiteman et al. beta OMH; IPSL AMOC hosing. Monte Carlo sample size
is 10,000.
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3.2.7 Elasticity of marginal utility of consumption

Table 12 and Figure 19 report the change in the SCC due to tipping points for different values

of the elasticity of marginal utility of consumption. Varying the elasticity of marginal utility

has three separate effects in models like ours that have not only (i) a time dimension, but

(ii) are also spatially disaggregated and (iii) incorporate risk. By determining the value of

consumption per capita in each country i at time t in different states of nature, the elasticity

of marginal utility modulates (i) temporal inequality aversion, (ii) spatial inequality aversion

and (iii) risk aversion. This explains why the elasticity of marginal utility has non-monotonic

effects on the expected SCC, as Table 12 shows. That is, the expected SCC is higher both

when the elasticity parameter is lower than our main specification and when it is higher. The

effect of tipping points on the expected SCC is similar when the elasticity parameter is set to

a very low value of 0.5, however when it is set to 2 the effect of tipping points is much larger,

at 55.8%. Further inspection of Figure 19 shows that this large percentage difference in the

expected SCC when the elasticity of marginal utility is 2 is driven by a few runs in the tail of

the distribution, since the median percentage difference in the SCC due to tipping points is

just 22.0%. The sensitivity of welfare estimates to the elasticity of marginal utility in cases

where consumption per capita can be driven to near-subsistence levels is well known, having

been identified by Weitzman as part of his ‘Dismal Theorem’ (97; 98; 99).

Table 12: The expected SCC (2020 US$) and the percentage change in the expected SCC
due to all tipping points combined for different values of the elasticity of marginal utility
of consumption. The expected SCC is computed over 10,000 Monte Carlo draws with 0.1%
trimmed. Specification comprises: RCP4.5-SSP2 emissions and GDP/population growth;
Hope and Schaefer PCF; Whiteman et al. beta OMH; IPSL AMOC hosing.

Elasticity of marginal Without TPs With all TPs % increase
utility of consumption

0.5 105.14 128.27 22.0
1.5, main spec. 52.03 64.80 24.5

2 98.98 156.59 58.2
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Figure 19: The percentage change in the SCC due to all tipping points combined for dif-
ferent values of the elasticity of marginal utility of consumption. Boxes show median and
interquartile range; whiskers show 95% confidence interval; crosses mark the average change
(0.1% trimmed); triangles mark the 0.5 percentile; squares mark the 99.5 percentile. Y-axis
is truncated. Specification comprises: RCP4.5-SSP2 emissions and GDP/population growth;
Hope and Schaefer PCF; Whiteman et al. beta OMH; IPSL AMOC hosing. Monte Carlo
sample size is 10,000.

3.2.8 Non-market damages

Table 13 and Figure 20 report the change in the SCC due to tipping points when a glob-

ally aggregated, non-market damage function is added to the model, and compares it with

the main specification that excludes non-market damages. The expected SCC increases to

$72.76/tCO2 in the absence of tipping points. The effect of switching on the tipping points

is to increase the expected SCC by 26.9%, which constitutes a slight increase compared with

market damages only. The figure illustrates that adding non-market damages condenses the
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distribution of percentage increases, although both distributions have a positive skew.

Table 13: The expected SCC (2020 US$) and the percentage change in the expected SCC due
to all tipping points combined, with and without non-market damages. The expected SCC
is computed over 10,000 Monte Carlo draws with 0.1% trimmed. Specification comprises:
RCP4.5-SSP2 emissions and GDP/population growth; Hope and Schaefer PCF; Whiteman
et al. beta OMH; IPSL AMOC hosing.

Damages Without TPs With all TPs % increase
Without non-market 52.03 64.80 24.5
With non-market 72.76 92.35 26.9

Figure 20: The percentage change in the SCC due to all tipping points combined, with and
without non-market damages. Boxes show median and interquartile range; whiskers show
95% confidence interval; crosses mark the average change (0.1% trimmed); triangles mark the
0.5 percentile; squares mark the 99.5 percentile. Y-axis is truncated. Specification comprises:
RCP4.5-SSP2 emissions and GDP/population growth; Hope and Schaefer PCF; Whiteman
et al. beta OMH; IPSL AMOC hosing. Monte Carlo sample size is 10,000.
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3.2.9 Estimating a confidence interval for the effect of tipping points on the

SCC

We would like to estimate the expected change in the SCC and an accompanying confidence

interval, which encompass all the different parameter and scenario variations discussed in this

section. In order to do so, we take two steps. First, we specify probability distributions for

the scalar parameters ϕ, the pure rate of time preference and the elasticity of marginal utility

of consumption.24 Similarly, to capture uncertainty about the PCF, we adopt Kessler’s (30)

stochastic settings. Second, we pool Monte Carlo simulations undertaken under each of a

large number of combinations of the remaining scenarios that cannot be modelled probabilis-

tically due to the model structure. However, there are too many scenarios for us to be able

to explore all scenario combinations. The full factorial combination of all four main OMH

scenarios (i.e. the first four rows of Table 7), four AMOC scenarios, four emissions/socio-

economic scenarios and two non-market damages scenarios (off/on) comprises 128 Monte

Carlo simulations. In order to reduce the number of combinations to a manageable level,

while obtaining unbiased estimates of the expected change in the SCC and the confidence

interval, we make use of a fractional factorial design. In particular, we use the software pack-

age SPSS to draw an orthogonal fraction of resolution IV, which reduces the full factorial

problem to 16 scenario combinations, while still being able to capture not only the main

effects of each uncertainty dimension but also all two-way interactions between them. For

each combination, we run a Monte Carlo simulation with 2000 draws, resulting in a pooled

sample of 32,000 draws.

Figure 21 plots the frequency distribution of percentage changes in the SCC across the

pooled sample and reports summary statistics including the average, i.e. the expected change.

The distribution has a large positive skew. Most draws return a percentage change of between

0% and +50%, but a long tail of draws returns increases of 200% or more. The 95% confidence
24ϕ is uniformly distributed between 0 and 1, the pure rate of time preference is triangular distributed

with a minimum of 0.1%, a mode of 1% and a maximum of 2%, and the elasticity of marginal utility is also
triangular distributed with a minimum of 0.5, mode of 1.5 and maximum of 2.
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interval is -0.3-186.0%. Eleven per cent of draws result in the SCC at least doubling. The

expected change in the SCC is 42.8%.

Figure 21: Frequency distribution of percentage changes in the SCC due to all tipping points
combined, based on pooled sample of 32,000 Monte Carlo draws from a fractional factorial
design.

3.2.10 Savings rates

Table 14 and Figure 22 report the change in the SCC due to tipping points for different

country savings rates. Recall that savings rates are exogenous and time-invariant, and in

our main specification they are calibrated on mean country-specific savings rates between

2005 and 2015 according to World Bank data. As a simple sensitivity analysis, we shift

each country’s (time-invariant) savings rate up and down by two percentage points. Two

percentage points represents roughly two standard deviations of the global average savings
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rate between 2005 and 2015. The expected SCC is lower in both cases. The effect of tipping

points on the expected SCC is close to our main specification.

Table 14: The expected SCC (2020 US$) and the percentage change in the expected SCC
due to all tipping points combined for different country savings rates. The expected SCC
is computed over 10,000 Monte Carlo draws with 0.1% trimmed. Specification comprises:
RCP4.5-SSP2 emissions and GDP/population growth; Hope and Schaefer PCF; Whiteman
et al. beta OMH; IPSL AMOC hosing.

Country savings rates Without TPs With all TPs % increase
-2 percentage points 38.27 46.92 22.6

main spec. 52.03 64.80 24.5
+2 percentage points 36.14 44.31 22.6
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Figure 22: The percentage change in the SCC due to all tipping points combined for differ-
ent country savings rates. Boxes show median and interquartile range; whiskers show 95%
confidence interval; crosses mark the average change (0.1% trimmed); triangles mark the 0.5
percentile; squares mark the 99.5 percentile. Y-axis is truncated. Specification comprises:
RCP4.5-SSP2 emissions and GDP/population growth; Hope and Schaefer PCF; Whiteman
et al. beta OMH; IPSL AMOC hosing. Monte Carlo sample size is 10,000.
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3.3 Spatial impacts of tipping points

This section maps how each individual tipping point affects the country-level SCC. For each

figure, we normalise welfare changes to global mean consumption per capita to enable com-

parison with other SCC estimates in the literature. The specification further comprises

RCP4.5-SSP2 emissions and GDP/population growth, and relies on a Monte Carlo sample

size of 10,000. As before, we trim 0.1% of runs to ensure consistency.

There is a broad North-South divide in the effect of the PCF (Figure 23), reflecting

whether the country experiencing an increase in temperature due to this tipping point is

below or above the inflection point in its quadratic temperature-damages relationship (83).

Some countries in the North do experience a large increase in their SCC, however, due to

the effect of the PCF on SLR (e.g. France and the UK). Dissociation of OMH gives rise

to a larger and more immediate increase in temperature, which pushes almost all countries

beyond their inflection point resulting in a more uniform pattern (Figure 24). The effects of

disintegration of the GIS and WAIS are similar (Figures 26 and 27 respectively), reflecting

patterns of country exposure to SLR. These relative effects are not associated with latitude.

The SAF has almost the inverse effect on country SCCs to the PCF (Figure 28), reflecting

its negative effect on warming relative to constant equilibrium climate sensitivity (see below,

Section 3.4). AMOC slowdown reduces the SCC in most, but not all, countries. The negative

effect is strongest in Europe (Figure 29). The effects of the variability of the Indian Summer

Monsoon are felt in India by construction of the model.
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Figure 23: Percentage change in the expected country-level SCC due to the permafrost carbon
feedback (specification: Hope and Schaefer).

Figure 24: Percentage change in the expected country-level SCC due to the dissociation of
ocean methane hydrates (specification: Whiteman et al. beta).
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Figure 25: Percentage change in the expected country-level SCC due to Amazon dieback.

Figure 26: Percentage change in the expected country-level SCC due to disintegration of the
Greenland Ice Sheet.
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Figure 27: Percentage change in the expected country-level SCC due to disintegration of the
West Antarctic Ice Sheet.

Figure 28: Percentage change in the expected country-level SCC due to the Surface Albedo
Feedback.
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Figure 29: Percentage change in the expected country-level SCC due to weakening of the
Atlantic Meridional Overturning Circulation (specification: IPSL hosing).

Figure 30: Percentage change in the expected country-level SCC due to variability in the
Indian Summer Monsoon.
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3.4 Effect of tipping points on inequality

As discussed in the main text, tipping points affect inequality only marginally. Figure 31

plots the Lorenz curve with and without all tipping points, normalised to the global SCC for

comparability. As can be seen, there is little change to how unequally climate impacts are

distributed across the world population.

Figure 31: Lorenz curve illustrating inequality in country-level SCC with and without tipping
points, normalised to the respective cumulative global SCC for comparability. Specification
comprises: RCP4.5-SSP2 emissions and GDP/population growth; Hope and Schaefer PCF;
Whiteman et al. beta OMH; IPSL AMOC hosing. Monte Carlo sample size is 10,000. Welfare
changes are normalised to global mean consumption per capita to enable comparison with
other SCC estimates in the literature.
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3.5 Effect of tipping points on warming and sea level rise

Figures 32-39 plot the effect of each tipping point individually on warming and SLR. Each

scatter plot shows the relationship between warming/SLR in the absence of tipping points

and when each tipping point is activated. We fit the data with polynomials, including second-

and third-order terms when significant.

Figure 32: Scatter plots of warming (top panel) and SLR (bottom panel) with and without
the permafrost carbon feedback (calibrated on 27). Data are sampled on a decadal interval
(2020, 2030,...,2200), using 1000 Monte Carlo simulations under each of the RCP4.5 and
RCP8.5 emissions scenarios. Both relationships are linear.

78



Figure 33: Scatter plots of warming (top panel) and SLR (bottom panel) with and without
the dissociation of ocean methane hydrates (calibrated on 53). Data are sampled on a decadal
interval (2020, 2030,...,2200), using 1000 Monte Carlo simulations under each of the RCP4.5
and RCP8.5 emissions scenarios. The temperature relationship is well approximated by a
third-order polynomial. The SLR relationship is linear.
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Figure 34: Scatter plots of warming (top panel) and SLR (bottom panel) with and without
Amazon rainforest dieback. Data are sampled on a decadal interval (2020, 2030,...,2200), us-
ing 1000 Monte Carlo simulations under each of the RCP4.5 and RCP8.5 emissions scenarios.
Both relationships are linear.
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Figure 35: Scatter plots of warming (top panel) and SLR (bottom panel) with and without
disintegration of the Greenland Ice Sheet. Data are sampled on a decadal interval (2020,
2030,...,2200), using 1000 Monte Carlo simulations under each of the RCP4.5 and RCP8.5
emissions scenarios. GIS disintegration has no effect on temperature in our model. The SLR
relationship is non-linear and well approximated by a second-order polynomial.
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Figure 36: Scatter plots of warming (top panel) and SLR (bottom panel) with and without
disintegration of the West Antarctic Ice Sheet. Data are sampled on a decadal interval (2020,
2030,...,2200), using 1000 Monte Carlo simulations under each of the RCP4.5 and RCP8.5
emissions scenarios. WAIS disintegration has no effect on temperature in our model. The
SLR relationship is linear with a comparatively large scatter.
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Figure 37: Scatter plots of warming (top panel) and SLR (bottom panel) with and without
slowdown of the Atlantic Meridional Overturning Circulation. Data are sampled on a decadal
interval (2020, 2030,...,2200), using 1000 Monte Carlo simulations under each of the RCP4.5
and RCP8.5 emissions scenarios. AMOC slowdown has no effect on temperature or SLR in
our model.
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Figure 38: Scatter plots of warming (top panel) and SLR (bottom panel) with and without
weakening of the Indian Summer Monsoon. Data are sampled on a decadal interval (2020,
2030,...,2200), using 1000 Monte Carlo simulations under each of the RCP4.5 and RCP8.5
emissions scenarios. ISM weakening has no effect on temperature or SLR in our model.
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Figure 39: Scatter plots of warming (top panel) and SLR (bottom panel) with and without the
surface albedo feedback. Data are sampled on a decadal interval (2020, 2030,...,2200), using
1000 Monte Carlo simulations under each of the RCP4.5 and RCP8.5 emissions scenarios. The
temperature relationship is non-linear and well approximated by a second-order polynomial.
The SLR relationship is linear.
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3.6 Analysis of Monte Carlo sample size and trimming the SCC

distribution

Most of our results are obtained from a sample of size 10,000. Table 15 shows variation

in some of our main output variables – the SCC, consumption/capita (mean and standard

deviation), temperature and SLR – over 10 x 10,000 samples. By combining samples, we also

show results for samples of size 20,000, 50,000 and 100,000.

The results exhibit a high degree of consistency across samples. Mean consumption per

capita in 2100 has a standard deviation of 42 cents without tipping points and 83 cents

with tipping points (i.e. this is the standard deviation of the sample means, rather than the

within-sample standard deviation, which is also reported). The mean effect of tipping points

on 2100 temperature varies by much less than 0.001◦C across samples and the mean effect

of tipping points on 2100 SLR varies by much less than 1cm. The standard deviation of

the expected SCC (0.1% trimmed) without tipping points is two cents across samples; with

tipping points it is 27 cents. The difference in the expected SCC due to tipping points has a

standard deviation of 0.8 percentage points across samples.

Lastly, Table 16 reports the difference in the expected SCC for different degrees of trim-

ming/truncation of the SCC distribution. We trim the distribution of SCCs as a pragmatic

way to discard implausible values, which can be the result of implausible combinations of

input variables. Ideally one would truncate the input distributions, however there are so

many that it is too difficult to establish which combinations are implausible a priori. As

Table 16 shows, the change in the expected SCC from the inclusion of tipping points rises

the less the distribution is trimmed, which reflects the skew in the SCC distribution, albeit

the effect is not large. In our judgement, all but a handful of runs are legitimate, therefore

we seek to trim the distribution as little as possible. From trial and error, we established

that trimming 0.1% of the distribution (i.e. 10 runs out of 10,000) excluded large negative

values of the SCC and some extremely large positive values.
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Table 16: The percentage change in the expected SCC due to all tipping points combined,
for different degrees of trimming the SCC distribution. Specification comprises: RCP4.5-
SSP2 emissions and GDP/population growth; Hope and Schaefer PCF; Whiteman et al.
beta OMH; IPSL AMOC hosing.

% increase due to TPs
1% trimmed 20.3
0.5% trimmed 21.9
0.1% trimmed 24.5
untrimmed 25.6
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