Supporting Information

for

Isothermal Titration Calorimetry of Be²⁺ and Ca²⁺ with Phosphatidylserine Models Guides All-Atom Force Field Development for Lipid-Ion Interactions

Alison N. Leonard,^{a,b} Jeffery B. Klauda,^{a,c*} and Sergei Sukharev^{a,d*}

 ^a Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
^b Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda Maryland 20892, United States
^c Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
^d Department of Biology, University of Maryland, College Park, Maryland 20742, United States

Email address of corresponding author: jbklauda@umd.edu, sukharev@umd.edu

Phone number of corresponding author: 301-405-1320, 301-405-6923

Contents

Figure S1. Figure S5. Be ²⁺ coordination by acetate, lipid FF	S2
Figure S2. Be ²⁺ coordination by acetate, revised CGENFF	S2
Figure S3. Figure S5. Be ²⁺ coordination by dimethyl phosphate	S3
Figure S4. ITC data for Be ²⁺ with dimethyl phosphate (DMP)	S4
Figure S5. ITC data for Be ²⁺ with Na ⁺¹ -acetate.	S4
Table S1. Values of $2r_{ij}^{\min}$ used in FEP simulations	S5
Figure S6. Be ²⁺ in solution with acetate	S6
Figure S7. Equilibration of DOPS monolayer surface tension (γ_m)	S7
Figure S8. Pair correlation functions of K ⁺ with various oxygens	S7
Figure S9. Histogram of Be ²⁺ -phosphate association times	S8

Appendix S1. Soluble acetate model for lipid FF	S	9
---	---	---

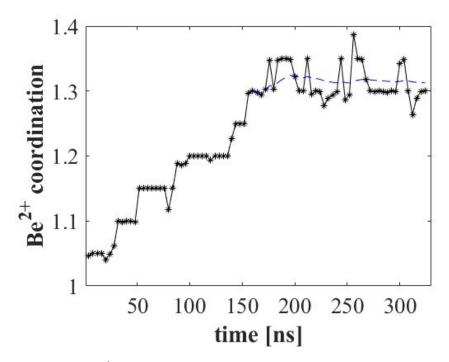


Figure S1. Be²⁺ coordination by dimethyl phosphate. Each point represents $N_{\text{ion} - O_{dp}}$ averaged over 4-ns blocks. Equilibration is seen around 100 ns, and tight binding restricts fluctuations.

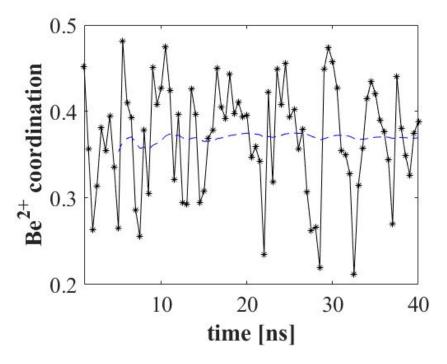
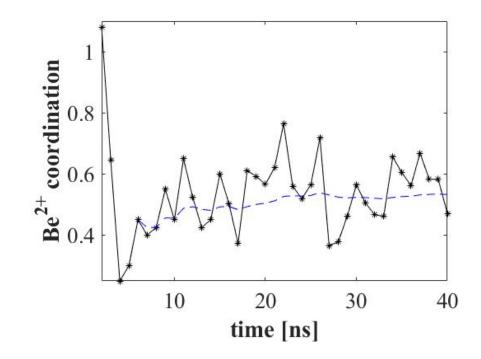
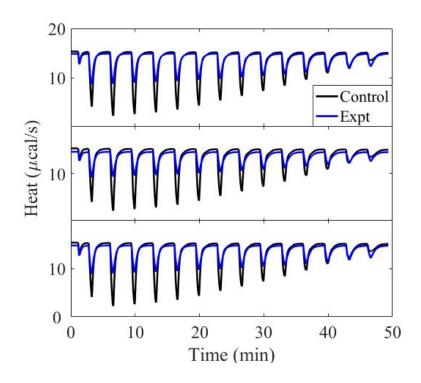
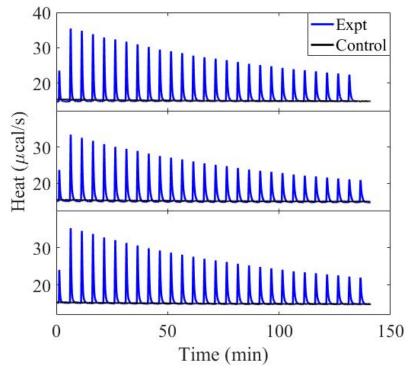
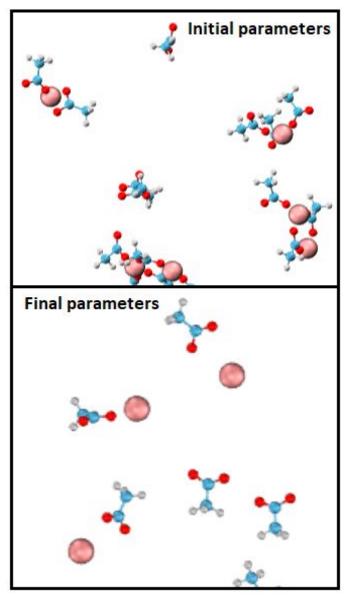




Figure S2. Be²⁺ coordination by acetate, revised lipid FF. Each point represents $N_{\text{ion} - O_{dp}}$ averaged over 0.5-ns blocks. Blue dashed line is the accumulated average as a function of time from 5 ns forward.

Figure S3. Be²⁺ coordination by acetate, revised CGENFF. Each point represents $N_{\text{ion} - 0_{dp}}$ averaged over 2-ns blocks. Equilibration is seen around 5 ns, after which coordination fluctuates. Blue dashed line is the accumulated average as a function of time from 5 ns forward.

Figure S4. ITC data for Be²⁺ with dimethyl phosphate (DMP). Concentrations were 4 mM DMP in the syringe and 2 mM Be²⁺ in the cell.




Figure S5. ITC data for Be^{2+} with Na^{+1} -acetate. Concentrations were 20 mM Na^{+1} -acetate in the syringe and 5 mM Be^{2+} in the cell.

Small	CHARMM	r ^{min} Tested/
Molecule	Atom Types	# of Trials
DMP	O2L	2.51*/2
Lipid FF		2.8/2
		2.82/2
		2.84/4
		2.86/3
		2.88/3
		2.9/3
		2.92/3
		2.95/3
		3.0/1
acetate	OG2D2	2.51*/2
CGEN FF		2.6/2
		2.8/2
		3.0/2
		3.20/3
		3.23/2
		3.25/2
acetate	OCL	2.51*/2
Lipid FF**		3.0/3
		3.07/3
		3.1/4
		3.2/3

Table S1. Values of r_{ij}^{\min} [Å] used in FEP simulations to calculate free energy of association ΔG_{c} .

*Default values for r_{ij}^{\min} , calculated using Eq. [6] and Be²⁺ LJ parameters developed in this study.

**New soluble acetate model for Lipid FF. See supplemental information section S2.

Figure S6. Be²⁺ in solution with acetate. Default (top) and adjusted (bottom) LJ interaction parameters for Lipid FF. Colors: Be²⁺, pink; O, red; C, blue; H, gray. Water and Na⁺ ions not shown.

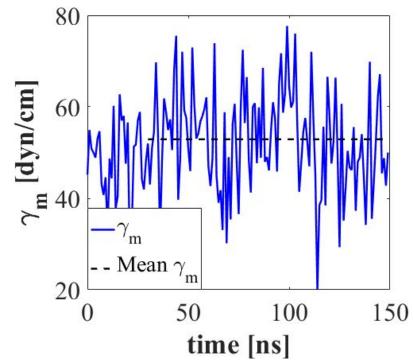


Figure S7. Equilibration of DOPS monolayer surface tension (γ_m). γ_m of Be²⁺-bound DOPS monolayer, $A_l = 65.3$ Å², as a function of simulation time, calculated in 1-ns blocks. Mean computed from 30 – 150 ns.

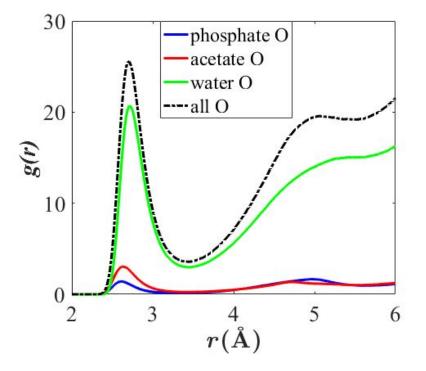


Figure S8. Pair correlation functions of K⁺ with various oxygens. $A_l = 65.3 \text{ Å}^2/\text{lipid}$. For comparison, g(r) are not normalized. See Fig. 11 to compare with Be²⁺.

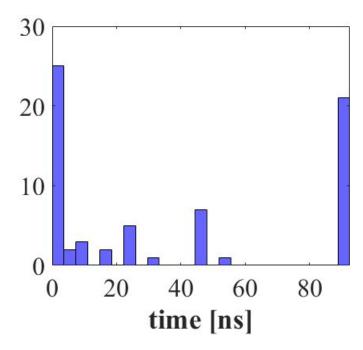


Figure S9. Histogram of Be²⁺-phosphate association times. $A_l = 65.3$ Å², computed from 30 – 120 ns. Associations < 20 ps not shown.

S2. Soluble acetate models. Residue "ACE" below is compatible with the C36 lipid FF.¹ Partial charges (column 4) were borrowed from residue DOPS. Atom names and types are columns 2 and 3, respectively. Where necessary, additional parameters listed were adapted from methyl acetate¹ and are also listed below. Parameters not listed were not changed.

Residue "ACET" is part of the CGEN FF.² Only partial charges are shown.

RESI ACE -1.00 ! GROUP I ATOM C2 CCL 0.34 ! Η1 01 (-) -0.67 ! ATOM 01 0CL / I H2--C1--C2 ATOM C1 CTL3 -0.27 ! ATOM 02 0CL -0.67 ! I $\boldsymbol{1}$ ATOM H1 HAL3 0.09 ! H3 02 ATOM H2 0.09 ! HAL3 ATOM H3 HAL3 0.09 ! BOND C1 H1 C1 H2 C1 H3 BOND C1 C2 C2 O1 DOUBLE C2 O2 IMPR C2 02 01 C1 Additional parameters for "ACE": BONDS CTL3 CCL 200.0 1.522 ANGLES OCL CCL CTL3 55.0 109.0 20.00 2.3260 HAL3 CTL3 CCL 33.00 109.50 30.00 2.163 DIHEDRDALS OCL CCL CTL3 HAL3 0.00 6 180.0 **IMPROPERS** CCL OCL OCL CTL3 96.00 0 0.00 RESI ACET -1.00 ! C2H3O2 acetate, K. Kuczera GROUP ATOM C1 -0.37 CG331 0.62 ! 01 (-) ATOM C2 CG203 Η1 HGA3 0.09 ! ATOM Η1 L ATOM H2 HGA3 0.09 ! H2--C1--C2 ATOM H3 HGA3 0.09 ! // ATOM 01 0G2D2 -0.76 ! H3 02 0G2D2 -0.76 ATOM 02 BOND C1 H1 C1 H2 C1 H3 BOND C1 C2 C2 O1 DOUBLE C2 O2 IMPR C2 02 01 C1