		Chromosome X		Chromosome 2		Chromosome 3	
Season	Line	Normal	Desiccation	Normal	Desiccation	Normal	Desiccation
		conditions	hardening	conditions	hardening	conditions	hardening
Autumn	A1	251	266	234	261	223	230
	A2	256	239	258	232	244	248
	A3	244	262	240	247	238	235
	A ₄	283	269	269	262	254	253
	A ₅	272	236	238	239	233	234
	A6	263	241	225	245	247	230
	A7	251	239	303	230	246	257
Winter	W1	238	254	246	240	258	229
	W ₂	257	237	239	238	246	251
	W ₃	272	271	260	265	241	241
	W4	262	245	268	248	260	236
	W ₅	249	263	238	250	237	231
	W6	254	250	280	247	230	222
	W7	265	237	272	238	225	239

Table S1 Number of individuals in the test-cross progeny by seasons, line, rearing regimes, and chromosome

Text S2 Statistical analysis of crossover interference

Crossover interference was analyzed using a restricted maximum-likelihood approach. Recombination rates were estimated in the single-interval analysis and then handled as known parameters during the estimation of the coefficients of coincidence (*C*). Such an approach simplifies inference about the effects of season, treatment, and line on crossover interference. Thus, four vectors of parameters were estimated and compared:

$$
\Theta_{ac} = (C_{ac1}, ..., C_{ac7}), \Theta_{at} = (C_{at1}, ..., C_{at7}), \Theta_{wc} = (C_{wc1}, ..., C_{wc7}), \text{ and } \Theta_{wt} = (C_{wt1}, ..., C_{wt7}),
$$

where the indices ac, at, wc and wt stand for autumn-control, autumn-treatment, winter-control, and winter-treatment combinations, respectively. In general, for a pair of consequent intervals flanked by three markers (m1–m2–m3), the log-likelihood function for a sample from test-cross progeny can be presented as

$$
L(r_1, r_2, C) = n_{00} \cdot \ln(1 - r_1 - r_2 + r_1 \cdot r_2 \cdot C) + n_{11} \cdot \ln(r_1 \cdot r_2 \cdot C) + n_{10} \cdot \ln(r_1 - r_1 \cdot r_2 \cdot C) + n_{01} \cdot \ln(r_2 - r_1 \cdot r_2 \cdot C),
$$

where r_1 and r_2 are the recombination rates in m1–m2 and m2–m3 intervals; *C* is the coefficient of coincidence; *n*⁰⁰ is the observed number of non-recombinants for both intervals; *n*10, *n*⁰¹ and *n*¹¹ are the numbers of recombinants for the first, the second, and both intervals, respectively. As indicated above, in our estimation of parameter *C*, we maximize the likelihood function $L(r_1, r_2, C)$ under the restriction that the values of r_1 and r_2 are already estimated in single-interval analysis. This allows avoiding situations when the estimate of recombination rate in a certain interval, obtained in three-locus analysis, depends on the second interval.

To estimate the effect of *season*, the log-likelihood functions were assumed dependent on vectors of seven variables, $\Theta_{ac} = (C_{ac1}, ..., C_{ac7})$ and $\Theta_{wc} = (C_{wc1}, ..., C_{wc7})$. H₀-hypothesis was that *C* does not depend on season or line within season, i.e., $C_{\text{ac1}} = ... = C_{\text{ac2}} = C_{\text{wc1}} = ... = C_{\text{wc2}}$. H₁-hypothesis implied that *C* depends only on season: $C_{\text{acl}} = ... = C_{\text{ca7}}$ and $C_{\text{wcl}} = ... = C_{\text{wc7}}$. H₂-hypothesis implied that *C* depends on both season and line, so that all 14 parameters are needed in the general case. The estimates of *C* vectors for H_0 , H_1 , and H_2 required optimization of likelihood functions with one, two, and 14 parameters, respectively. To discriminate between the hypotheses, we used the likelihood-ratio test with df=1, 12, and 13 for the pairs H_0-H_1 , H_1-H_2 , and H_0-H_2 , respectively.

The effect of *treatment* was estimated given the effects of season and line. Here, H_0 -hypothesis assumed no difference in *C* between control and treatment for each of seven lines within each season (implying seven model parameters per season). H_1 -hypothesis assumed that *C* changes under treatment (implying 14 model parameters per season). The standard likelihood-ratio test with $df=14-7=7$ was used to discriminate between H₀ and H₁. However, the standard test is not sensitive to the direction of induced changes in *C*. As a result, if changes in all lines are pronounced but oppositely directed, then H_0 will be rejected even in the absence of an overall directed effect of treatment. To overcome this problem, the following test was used. Let

 $Y = \sum Y_l/\sqrt{7}$, where $Y_l = \sqrt{X_l^2} \cdot \text{sign}(C_{t,l} - C_{c,l})$, $X_l^2 = 2[\text{log}L(H_1) - \text{log}L(H_0)]$, and index *l* stands for line.

Under H₀, X_l^2 has χ^2 -distribution with df=1. When the effect of treatment has no consistent direction (i.e. when the treatment-control differences across lines within season have symmetric distribution), Y_1 has an asymptotically normal distribution. Hence, under H_0 and the mentioned symmetry, Y is also normally distributed. If the absolute value of *Y* is lower than a critical value (even if X_{total}^2 is higher than the critical value), we conclude that the significance of heterogeneity of stress response of *C* values is caused by the heterogeneity of lines' response direction rather than the overall direction of response.

Table S3 The effect of season on crossover rates (based on the Student's *t*-test for independent samples)

FDR-corrected significances *p*(FDR)<0.1 are bolded

Table S5 Modulation of the effect of treatment (desiccation stress) on crossover rate by desiccation tolerance (based on the repeated-measure ANCOVA with treatment as the major factor and desiccation tolerance as the covariate)

FDR-corrected significances *p*(FDR)<0.1 are bolded

