Cohort of 1215 pediatric cancers by subtype

Brain tumors, n = 219

Heamatological malignancies, n = 217

% of RAS/MAPK mutant tumors by subtype

% of RAS/MAPK mutant tumors by subtype

Supplemental Figure 1: Major subtypes in 1215 pediatric cancers (Ages 0-18). Colored bar charts display age distribution per subtype and grey barcharts display frequency of RAS/MAPK pathway mutations

Supplemental Figure 2: Bar plot displaying frequency of protein coding point mutations resulting in a single amino acid change or truncation in 1215 pediatric tumors. Genes with less than 3 occurrences in the cohort were excluded.

* = RAS/MAPK pathway actors

lodify Quer	ry Que	erying	1825 sar	ples in 3	3 studies	0				Gene Set / Pathway is altered in 788 (43.2%) of queries
ncoPrint	Cancer	Types	Summar	/ Mut	ual Exclusi	vity	Expression	Mutations	Download	Bookmark
Case Set: l	Jser-defir	ned Pat	ient List	(1790 pa	tients / 18	325 sam	ples) Show	all samples		
Altered in 7	778 (43%) of 17	90 seque	nced car	ses/patien	ts (1790	total)			
tudy of o	rigin		ļ							
F1	3	69	6	_						
RAS		39	%			-				
enetic Alte	eration			Inframe Missoner	Autation (pu	Itative dri	ver) <mark>=</mark> Infra	ame Mutation (unknown signific	nce) Missense Mutation (putative driver)
				Fusion	Amplific	ation	Deep Deleti	ion No alt	erations	ve unver) = fruncaling indualion (unknown significance)
			1			oinomo (l	DECL Cell Re	ports 2016)	Colorectal Ad	nocarcinoma (Genentech, Nature 2012)
Study of orig	gin			Colorecta	al Adenocar	cinoma (i		108 - ESH 2028, DOM 0	MUMPER 20120 / MULPSOTTEM	(continued), realize 2012)

В

Altered in 174 (10%) of 1764 sequenced cases/patients (1764 total)

Study of origin	2.9.0		
NF1	***	9%	
KRAS		1%	
Genetic Alteration			Inframe Mutation (unknown significance) Missense Mutation (putative driver) Missense Mutation (unknown significance) Truncating Mutation (putative driver) Amplification Deep Deletion No alterations
Study of origin			Brain Lower Grade Giloma (TCGA, Provisional) Glioblastoma (TCGA, Cell 2013) Glioblastoma (TCGA, Nature 2008) Glioblastoma Multiforme (TCGA, Provisional) Low-Grade Gilomas (UCSF, Science 2014).
			Merged Cohort of LGG and GBM (TCGA, Cell 2016)
			NGS in Anaplastic Oligodendroglioma and Anaplastic Oligoastrocytomas tumors (MSK, Neuro Oncol 2017)

Supplemental Figure 3: Confirmatory tissue specific preferences for MAPK pathway mutations in 1825 colorectal cancers (A) and 1764 gliomas (B). KRAS dominance is observed in GI vs. NF1 dominance in CNS tumors, mimicking pediatric data.

Supplemental Figure 4: A) Multidimensional scaling plot demonstrating clustering of CMMRD tumors, normal fetal brain, and normal adult brain based on RNA sequencing count data. CMMRD tumors cluster distinctly from normal fetal and adult brain. Normal fetal brain and adult brain also show distinct expression patterns. B) Unsupervised clustering of CMMRD tumors (n=22), normal fetal brains (n=4), and normal adult brains (n=5) based on expression of PROGENy 100 MAPK pathway transcriptional output signature genes. C) Control clustering for all tumors based on expression of a set of randomly selected housekeeping genes demonstrates that clustering distinctly does not occur nonspecifically.

1. Patient ID: MMR138 Tumor Type: Anaplastic Astrocytoma Germline: *POLE* P436R mutation Mutation burden: 191 mut/mb

RAS/MAPK Gene	AA Change	VAF
NRAS	S106A	0.08
NRAS	E98K	0.08
MAP3K1	S418Y	0.05
MAP2K1	D67N	0.07
NF1	T1843A	0.1

 Patient ID: MMR142 Tumor Type: Anaplastic Oligodendrioglioma Germline: MSH2 Exon 1-6 deletion Mutation Burden: 194 mut/mb

RAS/MAPK Gene	AA Change	VAF
MAP3K1	P1115Q	0.07
MAP3K1	P1493H	0.06

3. Patient ID: MMR101 Tumor Type: Glioblastoma Germline: Biallelic *PMS2* deletion Mutation Burden: 541 mut/mb

RAS/MAPK Gene	AA Change	VAF
NF1 NF1 NF1 RAF1 RAF1 MAP2K2	A463T G2003X A2753T S413X A628T N140T R371W	0.39 0.14 0.11 0.06 0.25 0.12 0.06

4. Patient ID: MMR100 Tumor Type: Glioblastoma Multiforme Germline: Biallelic *PMS2* deletion Mutation burden: 496 mut/mb

RAS/MAPK Gene	AA Change	VAF
NF1	A198S	0.42
NF1	R1416M	0.42
NF1	R2237X	0.38
NF1	R720Q	0.37
NF1	T1013M	0.05
NF1	L121I	0.04
MAP3K2	Q429H	0.53
MAP2K2	R164M	0.42
MAPK1	P268S	0.39
BRAF	D213N	0.11
KRAS	T50I	0.07
MAPK3	D192N	0.05

5. Patient ID: MMR190 Tumor Type: Glioblastoma Multiforme Germline: Biallelic *PMS2* mutation Mutation burden: 183 mut/mb

RAS/MAPK Gene	AA Change	VAF
NF1	I1679V	0.51
NF1	R156H	0.47
NF1	E152*	0.44
NF1	A422T	0.411
NF1	R652H	0.25
NF1	Q1775*	0.14
NF1	M747I	0.08
NF1	R816*	0.07
NF1	A548D	0.07
NF1	A887T	0.04
HRAS	V109M	0.33
HRAS	D105Y	0.08
HRAS	R68W	0.02
MAP3K1	D806N	0.49
MAP3K1	V906I	0.49
MAP3K1	R1368K	0.12
MAP3K1	R306H	0.04

6. Patient ID: MMR152 Tumor Type: Glioblastoma Multiforme Germline: Biallelic MMR Mutation burden: 182 mut/mb

RAS/MAPK Gene	AA Change	VAF
NRAS	E63K	0.34
NF1	A2737V	0.18

7. Patient ID: MMR134 Tumor Type: Glioblastoma Multiforme Germline: Biallelic *PMS2* mutation Mutation burden: 50 mut/mb

AA Change	VAF
R1554M	0.48
G1692E	0.48
A2603T	0.47
P301T	0.44
L639M	0.45
G104R	0.42
E333D	0.48
	AA Change R1554M G1692E A2603T P301T L639M G104R E333D

- pERK+
- 8. Patient ID: MMR1293 Tumor Type: Glioblastoma Multiforme Germline: Biallelic MMR Mutation burden: 161 mut/mb

RAS/MAPK Gene	AA Change	VAF
NF1	G2024X	0.28
NF1	T1546I	0.26
NF1	S2817P	0.22
МАРК1	A352V	0.54

9. Patient ID: MMR1273 Tumor Type: Glioblastoma Multiforme Germline: Biallelic PMS2 mutations, *DICER1* mutation Mutation burden: 121 mut/mb

RAS/MAPK Gene	AA Change	VAF
NF1	V1212I	0.345

Patient ID: MMR109 Tumor Type: Glioblastoma Multiforme Germline: Biallelic *MSH2* mutations Mutation burden: Not available

RAS/MAPK Gene AA Change VAF

Not available

Patient ID: MMR110 Tumor Type: Glioblastoma Multiforme Germline: Biallelic *MSH2* mutations Mutation burden: Not available

RAS/MAPK Gene AA Change VAF

Not available

12. Patient ID: MMR66 Tumor Type: Colorectal Adenocarcinoma Germline: Mutation burden: 99 mut/mb

RAS/MAPK Gene	AA Change	VAF
NRAS	Y137C	0.1
MAP3K1	A660V	0.14

13. Patient ID: MMR138 Tumor Type: Colorectal Adenocarcinoma Germline: *POLE* P436R mutation Mutation burden: 495 mut/mb

AA Change	VAF
S106A	0.28
E98K	0.27
K170T	0.08
Q22H	0.2
S418Y	0.1
D67N	0.25
N45D	0.16
G57S	0.16
C673G	0.18
G949X	0.18
T1843A	0.19
R2083C	0.15
	AA Change S106A E98K K170T Q22H S418Y D67N N45D G57S C673G G949X T1843A R2083C

Supplemental Figure 5: Immunohistochemical staining of 10 hypermutant replication repair deficient gliomas and 1 hypermutant replication repair deficient colorectal cancers. Germline status is shown, along with various mutations in RAS/MAPK pathway genes and their variant allele fractions. Black bars indicate 100µm; white scale bars indicate 50µm.

Supplemental Figure 6: Three established hypermutant colorectal cancer MMR-deficient cell lines (LoVo, HCT116, and HCT15) harbor several RAS/MAPK pathway promoting mutations and COSMIC signatures related to MMR and/or polymerase exonuclease deficiency (*left*). Mutational signatures reflect MMR deficiency as a source of hypermutation. Cell lines were treated with Trametinib concentrations ranging from 1nM - 100 nM and viable cells were measured using a hemocytometer at 24, 48, and 72 hours post treatment (*right*). Cell number percentages were normalized to DMSO. Three technical replicates were analysed and are shown as mean and SD. Statistical significance was assessed by ANOVA (*p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.001).

Α

MMR190 - Glioblastoma multiforme Mutaional Burden = 328 mut/mb

	AA	Allelic
Gene	change	Frequency
NF1	R156H	0.526
NF1	A422T	0.424
NF1	M747I	0.087
NF1	E1582*	0.458
NF1	Q1775*	0.094
MAP3K1	R377fs	0.235
MAP3K2	T293A	0.333
PTPN11	R502W	0.575

Ki67

Supplemental Figure 7: Combination anti-PD1 and MEK inhibition promotes an anti-tumor immune response. A) Mutational burden and RAS/MAPK pathway mutations detected by exome sequencing of GMB tumor from patient MMR190. B) Expression of CD39 on Ki67⁺CD3⁺CD8⁺ PBMCs using flow cytommetry post anti-PD1 treatment alone (left) and combination anti-PD1 + Trametinib treatment (right). * = stopgain mutation; fs = frameshift mutation; ICI = anti-PD1; MEKi = Trametinib.