Supplementary Material for:

Hydroxyurea induces a stress response that alters DNA replication and nucleotide metabolism in *Bacillus subtilis*

Katherine J. Wozniak and Lyle A. Simmons*

Department of Molecular, Cellular, and Developmental Biology, University of Michigan,

Ann Arbor, MI 48109, United States.

*Corresponding author LAS: Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1055, United States. Phone: (734) 763-7142, Fax: (734) 647-0884, E-mail: <u>lasimm@umich.edu</u>

Running title: Metabolic stress response to hydroxyurea

Key words: Hydroxyurea, Tn-seq, *Bacillus subtilis*, Ribonucleotide reductase, genome instability

Figure S1. Differential gene expression after 1 hour in hydroxyurea.

Figure S3. Tn-seq and RNA-seq hits confer a range of phenotypes on

hydroxyurea. Top hits from Tn-seq (growth 2 and 3) and RNA-seq were deleted and tested for sensitivity on HU. First row of plates were top hits from Tn-seq (growth 2 and 3), the second row of plates were top hits from Tn-seq (growth 2 or 3) and RNA-seq (either hour 1 or 2), and the third row of plates are from RNA-seq.

Figure S4. Hydroxyurea causes slowed DNA replication fork progression. Left panels show WT grown with vehicle control at one and two hours. The right panels show the replication profile of cells following challenge with HU for one or two hours. One-hour data are shown in blue and the two-hour are shown in red. The data presented here represents the two independent replicates combined in the experiment shown in Figure 4. Replicate #1 is represented by A and B and replicate #2 by C and D.

Figure S5. Insertion maps for top validated genes in control treated (left) and HU treated (right)

 Table S1. RNA-seq results growth 1 hour (excel spreadsheet)

 Table S2. RNA-seq results growth 2 hours (excel spreadsheet)

Table S3. Tn-seq growth period 2 (excel spreadsheet)

 Table S4. Tn-seq growth period 3 (excel spreadsheet)

Gene	Deletion phenotype	Relevance	Putative function	Category
ackA::erm	sensitive	Tn-seq growth 2 & 3	Acetate kinase	ATP generation
gltC::erm	WT	Tn-seq growth 2 & 3	Transcriptional regulator of glutamate synthesis	Regulator (carbohydrate metabolism)
∆ykuK	sensitive	Tn-seq growth 2 & 3	Unknown, possibly related to RNase H	Unknown
ymaB::erm	WT	Tn-seq growth 2 & 3	Nudix hydrolase	mRNA cleavage
ynaF::erm	WT	Tn-seq growth 2 & 3	Unknown	Unknown
yngHB::erm	WT	Tn-seq growth 2 & 3	Acyl-CoA carboxylase	Leucine utilization
yoyF::erm	WT	Tn-seq growth 2 & 3	Unknown	Unknown
yqfL::erm	WT	Tn-seq growth 2 & 3	Modulator of CcpN	Regulator (Carbohydrate metabolism)
∆ytol	sensitive	Tn-seq growth 2 & 3	Transcriptional regulator	Regulator (unknown)
csaA::erm	WT	Tn-seq growth 2	Protein-secretion chaperone	Protein secretion
proJ::erm	WT	Tn-seq growth 2	Glutamate 5-kinase	Osmotic stress
recJ::erm	WT	Tn-seq growth 2	Exonuclease	DNA replication
hemC::erm	WT	Tn-seq growth 3	Hydroxymethylbilane synthase	Heme synthesis
∆cheA	WT	Tn-seq growth 2 & 3, RNA-seq hour 1 (up)	Two-component sensor kinase for chemotaxis	Chemotaxis
∆cheD	WT	Tn-seq growth 2 & 3, RNA-seq hour 1 (up)	Chemoreceptor Chemotaxis deaminase	
xynD::erm	WT	Tn-seq growth 2 & 3, RNA-seq hour 1 (up)	Arabinoxylan arabinofuranohydrol ase	Catabolism

 Table S5. Summary of Tn-seq and RNA-seq gene hits evaluated

∆yaaA	sensitive	Tn-seq growth 2 & 3, RNA-seq hour 1 (down)	Ribosome assembly factor	Ribosomal
comEB::erm	sensitive	Tn-seq growth 2 & 3, RNA-seq hour 2 (down)	dCMP deaminase, late competence	Nucleotide synthesis
∆ybbP	sensitive	Tn-seq growth 3, RNA-seq hour 1 (down)	Diadenylate cyclase	Second messenger synthesis
yoaE::erm	WT	Tn-seq growth 2, RNA-seq hour 2 (up)	Formate dehydrogenase	ATP generation
citB::erm	resistant	Tn-seq growth 2, RNA-seq hour 1, 2 (down)	Aconitase	TCA cycle
ylbQ::erm	resistant	Tn-seq growth 2, RNA-seq hour 1, 2 (down)	2-dehydropantoate 2-reductase	Antimicrobial peptide synthesis
∆ddcA	sensitive	Tn-seq growth 3, RNA-seq hour 1, 2 (down)	DNA damage checkpoint agonist	DNA repair
bgIP::erm	resistant	RNA-seq hour 1, 2 (down)	Beta-glucoside permease	Phosphotransferase system
licH::erm	WT	RNA-seq hour 1, 2 (down)	6-phospho-beta- glucosidase	Phosphotransferase system
purD::erm	resistant	RNA-seq hour 1, 2 (up)	Phosphoribosylglyci namide synthetase	Purine synthesis
pyrAA::erm	WT	RNA-seq hour 1, 2 (up)	Carbamoyl- phosphate synthetase	Pyrimidine biosynthesis
rbsB::erm	WT	RNA-seq hour 1, 2 (down)	Ribose ATP transporter	Phosphotransferase system
sboA::erm	WT	RNA-seq hour 1, 2 (up)	Subtilosin A	Antimicrobial peptide synthesis
yjdF::erm	WT	RNA-seq hour 1, 2 (down)	Unknown	Unknown

Strain	Genotype	Origin or construction
KJW1	PY79	(1)
KJW5	recA::recA-GFP (spec ^R)	(2)
KJW7	<i>tagC::tagC-GFP</i> (spec ^R)	(3)
KJW41	comEB::erm	BKE25580 into PY79
KJW47	∆уааА	BKE00030 into PY79, erm removed
KJW49	∆ytol	BKE29270 into PY79, erm removed
KJW51	ΔykuK	BKE14110 into PY79, erm removed
KJW53	ΔcheA	BKE16430 into PY79, erm removed
KJW55	∆cheD	BKE16460 into PY79, erm removed
KJW71	ΔrnhC	JRR84(5-7)
KJW125	proJ::erm	BKE18470 into PY79
KJW127	yoaE::erm	BKE18570 into PY79
KJW129	citB::erm	BKE18000 into PY79
KJW131	hemC::erm	BKE28150 into PY79
KJW133	ybbP::erm	BKE01750 into PY79
KJW135	ddcA::erm	BKE28540 into PY79
KJW137	ymaB::erm	BKE17400 into PY79
KJW139	yqfL::erm	BKE25240 into PY79
KJW141	recJ::erm	BKE27620 into PY79
KJW143	gltC::erm	BKE18460 into PY79
KJW145	yoyF::erm	BKE19669 into PY79
KJW147	yngHB::erm	BKE18239 into PY79
KJW149	ynaF::erm	BKE17540 into PY79
KJW268	ΔροΙΑ	(4, 5)
KJW325	ΔuvrA	PEB307 (4)

Table S6. Strains used in this work

Strain	Genotype	Origin or construction
KJW329	ylbQ::erm	BKE 15110 into PY79
KJW350	csaA::erm	BKE19040 into PY79
KJW353	ackA::erm	BKE29470 into PY79
KJW355	xynD::erm	BKE18160 into PY79
KJW396	purD::erm	BKE06530 into PY79
KJW398	yjdF::erm	BKE12030 into PY79
KJW402	rbsB::erm	BKE35960 into PY79
KJW404	sboA::erm	BKE37350 into PY79
KJW406	licH::erm	BKE38560 into PY79
KJW407	bgIP::erm	BKE39270 into PY79
KJW494	recU::erm	PEB125 (6)
KJW495	ΔrecA	PEB214 (6)
KJW541	amyE::Pspac-nrdIEF-ymaB (spec ^R)	(8)
KJW548	amyE::Pspac-nrdIEF-ymaB (spec ^R), ΔpoIA	gDNA from KJW541
		transformed into KJW268
KJW550	amyE::Pspac-nrdIEF-ymaB (spec ^R), ∆uvrA	gDNA from KJW541
		transformed into KJW325
KJW552	amyE::Pspac-nrdIEF-ymaB (spec ^R), ΔrnhC	gDNA from KJW541
		transformed into KJW71
KJW554	amyE::Pspac-nrdIEF-ymaB (spec ^R),	gDNA from KJW541
	recU::erm	transformed into KJW494
KJW738	ΔybbP	Cre-lox cure of erm cassette by
		pDR244 transformation into
		KJW133
KJW740	$\Delta ddcA$	Cre-lox cure of erm cassette by
		pDR244 transformation into
		KJW135

Table S6. Continued Strains used in this work

REFERENCES

- 1. Youngman P, Perkins JB, Losick R. 1984. Construction of a cloning site near one end of Tn917 into which foreign DNA may be inserted without affecting transposition in Bacillus subtilis or expression of the transposon-borne erm gene. Plasmid 12:1-9.
- 2. Simmons LA, Grossman AD, Walker GC. 2007. Replication is required for the RecA localization response to DNA damage in Bacillus subtilis. Proc Natl Acad Sci U S A 104:1360-5.
- 3. Simmons LA, Goranov AI, Kobayashi H, Davies BW, Yuan DS, Grossman AD, Walker GC. 2009. Comparison of responses to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction. J Bacteriol 191:1152-61.
- 4. Schroeder JW, Randall JR, Hirst WG, O'Donnell ME, Simmons LA. 2017. Mutagenic cost of ribonucleotides in bacterial DNA. Proc Natl Acad Sci U S A 114:11733-11738.
- 5. Randall JR, Nye TM, Wozniak KJ, Simmons LA. 2019. RNase HIII Is Important for Okazaki Fragment Processing in Bacillus subtilis. J Bacteriol 201: pii: e00686-18.
- 6. Burby PE, Simmons LA. 2016. MutS2 promotes homologous recombination in Bacillus subtilis. J Bacteriol doi:10.1128/JB.00682-16.
- Randall JR, Hirst WG, Simmons LA. 2017. Substrate specificity for bacterial RNase HII and HIII is influenced by metal availability. J Bacteriol 200:pii: e00401-17.
- 8. Zhang Y, Stubbe J. 2011. Bacillus subtilis class lb ribonucleotide reductase is a dimanganese(III)-tyrosyl radical enzyme. Biochemistry 50:5615-23.