
Response to reviewers
We reply to the comments point-by-point below, with changes to the manuscript given below
in blue (additions)/red (deletions). Line numbers refer to the manuscript version with highlighted
changes.

Reviewer #1:
This study makes a great case for using spatio-spectral decomposition as a data-driven
referencing technique for iEEG as opposed to using methods such as bipolar or
Laplacian or common-average referencing. The data-driven nature of this strategy is
clearly to its benefit and can be incredibly relevant when signals tend to be spread
simultaneously across multiple electrodes, for example, due to volume conduction.
While I have been convinced of the value of this method and its usefulness for
application to iEEG data, I found aspects of the narrative difficult to follow and several
conclusions to be too broad.

We thank the reviewer for taking the time to evaluate our manuscript thoroughly. Their
comments helped us to clarify the data generating model, the calculation of spatial patterns
and bias and comparisons to other methods in our manuscript.

R1 comment #1
In the Introduction, the paragraph beginning at line 29 appeared to jump between
spatial filtering and source reconstruction. I think reorganizing it in a way that highlights
how source reconstruction is also a form of spatial filtering will help make it clearer
(maybe):

a.  source reconstruction can be reframed as a spatial filtering problem that
depends upon several assumptions
b. past work has built numerous methods that fit into this mold (biophysical
modeling, ICA, etc.)
c.  referencing is a particular instance of spatial filtering, and the common
referencing strategies used, while appearing to have no assumptions makes
strong assumptions about the nature of the sources measured

We thank the reviewer for this suggestion, which helped us clarify the language in the
introduction. We have reorganized the text in order to reflect the relationships between spatial
filtering, referencing and source reconstruction, see page 2, line 23:



Because the coexistence of different types of neural activity leads to superposition on
the signal recorded with electrodes, many different methodological approaches exist to
untangle distinct activity sources from electrode signals. One can leverage the
multivariate structure of iEEG recordings, in which a number of electrodes are placed on
the cortical surface to acquire time series data, toward this end. Each electrode picks
up a mixture of signals from different types of cortical sources, determined by location
and orientation of the generating sources and the biophysical properties of the tissue.
Fig. 1 illustrates the underlying data model for iEEG. This spatial mixing is given by the
forward model and is assumed to be linear here (Parra et al., 2005).

For noninvasive electrophysiological recording techniques such as
electroencephalography (EEG) and magnetoencephalography (MEG), source
reconstruction techniques are commonly used to extract independent activity sources
from sensor space data (Jas et al., 2018). Many approaches can be framed as the
estimation of spatial filters that satisfy pre-defined optimization criteria, taking into
account either biophysical constraints given by cortex morphology or statistical
properties of the signals, which for instance are considered when computing principal
or independent component analysis. A spatial filter allows computation of a new, filtered
signal trace using a weighted sum of all other electrodes. For each time point, the dot
product of the electrode data with the spatial filter is taken to yield the corresponding
entry for the source trace. The spatial filter vector is the same for all time points and this
operation can be performed efficiently by matrix multiplication.

For iEEG recordings, source reconstruction has mostly been employed in the context of
localizing epileptic seizure focus, both with biophysical modeling (Pascarella et al.,2016;
Dümpelmann et al., 2012; Fuchs et al., 2007, Chintaluri and Wojcik, 2015) and
approaches using independent component analysis  (Hindriks et al., 2018; Fahimi
Hnazaee et al., 2020; Dümpelmann et al., 2012; Hu et al., 2007; Whitmer et al., 2010).
But in contrast to non-invasive electrophysiological methods, data referencing
techniques dominate for iEEG.

Data referencing can be viewed as the application of a particularly simple spatial filter.
For instance, in the case of a bipolar filter, the spatial filter is a vector with as many
entries as electrodes, containing weights -1 and +1 for two selected electrodes and
zero for all other electrodes. The two most prevalent methods for referencing iEEG data
are to apply either a common average reference, with the aim to minimize common
noise or distal activity, or to use bipolar reference, with the aim to extract locally
generated signals. Source reconstruction for iEEG recordings has mostly employed in
the context of localizing epileptic seizure focus. The main techniques used here are
biophysical modeling (Pascarella et al., 2016; Dümpelmann et al., 2012;



63 Fuchs et al.,2007; Chintaluri and Wojcik, 2015) and approaches using independent
component analysis (Hindriks et al., 2018; Michelmann et al., 2018; Fahimi Hnazaee et
al., 2020; Dümpelmann et al.,2012; Hu et al.,2007; Whitmer et al., 2010). While a
referencing approach is computationally simpler than an approach involving
biophysically or statistically constrained source reconstruction, the referencing choice
will highly impact the dynamics present in the resulting signal (Liu et al., 2015; Li et al.,
2018; Arnulfo et al., 2015; Shirhatti et al., 2016).

For examining high-frequency activity, an electrode-based approach (using a standard
common average or bipolar reference) seems to be justified because of limited spatial
spread of high-frequency signal content not exceeding inter-electrode distance (Dubey
and Ray, 2019; Crone et al., 1998b), with sub-centimeter functional specificity (Flinker et
al., 2011). In contrast to that, activity in lower frequency ranges displays an increased
spatial spread, showing a high degree of correlation between neighboring electrode
locations depending on oscillation frequency (Muller et al., 2016; Crone et al., 1998a).
Because of the spatial spread, it is expected that different rhythms contribute to activity
of several electrodes due to spatial superposition. Therefore, multivariate separation
techniques may improve measurement of cortical rhythms also in iEEG, as for instance
was examined using independent component analysis in Michelmann et al. (2018).

Here, we explore a data-driven spatial filtering method, spatio-spectral decomposition
(SSD) for specifically extracting oscillatory sources in iEEG data. This technique, based
on generalized eigenvalue decomposition, has been shown to be superior to for
instance independent component analysis in EEG for extraction of oscillatory sources
(Nikulin et al., 2011). Fig. 1 shows the underlying linear model of iEEG data and
illustrates bipolar and common average referencing.
For recording iEEG data, a number of electrodes are placed on the cortical surface to
acquire time series data. Each electrode picks up a mixture of signals from different
types of cortical sources, determined by location and orientation of the generating
sources and the biophysical properties of the tissue. This spatial mixing is
given by the forward model and is assumed to be linear here (Parra et al., 2005).
The SSD approach helps in recovering distinct estimates distinct putative neuronal
sources from the summation activity recorded via the electrodes, i.e., it estimates a
backward model in the form of spatial filters with the optimization constraint focussed
on a specific frequency band of interest, in order to best measure the temporal
dynamics of oscillations in that band and their associated features of interest. Data
referencing can be viewed as the application of a spatial filter, in which the trace of each
electrode is multiplied with a specific weight. For instance, in the case of a bipolar filter,
the spatial filter is a vector with as many entries as electrodes, containing weights -1
and +1 for two selected electrodes and zero for all other electrodes. For each time



point, the dot product of the electrode data with the spatial filter is taken to yield the
corresponding entry for the component trace. The spatial filter vector is the same for all
time points and this operation can be performed efficiently by matrix multiplication. The
focus of this approach here is primarily on estimating the source time series. The
estimated source time series are subsequently referred to as components. Information
about the location of a source is only indirectly provided through the computation of
spatial patterns.

R1 comment #2
Referencing has a clear physical basis: that we are estimating voltage gradients. Note
also in source reconstruction we are identifying dipole sources, so that the ‘filter’
applied there leads to clear physical intuition about the outcome. As such, I felt
confusion about the physical intuition offered by application of SSD due to the
confounding of (i) spatial mixing of multiple independent sources due to volume
conduction with (ii) multiple, independent sources all coordinated at/near zero phase. I
don’t think the two cases can be separated under SSD unless the sources have unique
waveforms/unique sources of noise or the results under a Laplacian/Bipolar referencing
scheme are compared to SSD. If there is no consistent rhythmic activity in the
Laplacian/bipolar but we see weights across multiple electrodes in the SSD this is
evidence suggesting that there is a common source.

(a) Lines 46-47: While the idea of spatial superposition of multiple rhythms is
relevant to when multiple independent (potentially coherent) rhythms contribute
to multiple electrodes, spatial superposition needs to be differentiated from the
idea that any single low frequency band contributes to multiple electrodes due
to volume conduction (which could equally well happen at low and high
frequency bands). The high correlation of low frequency bands may well be due
to independent sources becoming coherent rather than a single source that
shows up at multiple electrodes. This interpretation is present in lines 77-79,
While the first part of the line speaks to rhythms becoming coherent over some
spatial area, the second part (‘spatial mixing’) seems to be speaking to when
volume conduction plays a part in what electrodes record, but it is spoken of as
though they are the same phenomenon.

In general, the physical intuition regarding the data generating model is the same as for
independent component analysis, that the data X is generated by a linear combination of
sources S which map onto the electrodes with different loadings: X = AS, as illustrated in Fig. 1.
The lines referenced by the reviewer reflect predominantly the superposition of different



rhythms (“spatial mixing of rhythms”) for us, which also involves volume conduction (“activity
spread of individual rhythms”).

To clarify our manuscript in that respect, we extended this paragraph to distinguish between
those scenarios more clearly in page 5, line 121:

In this article, we use spatial filters to investigate rhythms present in mainly the alpha
and beta-frequency bands in human iEEG recordings. We illustrate two aspects of
measuring oscillations in iEEG data. First, that the activity spread of individual rhythms
can exceed inter-electrode distance, with single rhythms contributing to several
electrodes. Second, and show that spatial mixing of rhythms in intracranial recordings
can affect the oscillatory power of a given rhythm as detected on the electrodes and
alter its non-sinusoidal waveform shape when sources are mixed.

(b) Lines 58-59: I think the expectation that SSD extracts ‘distinct neural
sources’ is not borne out by what the method sets out to do. We simply cannot
distinguish between the cases described in (1a) above, so we may have distinct
neural sources, but we may not. SSD does appear to summarize the possible
sources into a small number.

As SSD works solely using statistical properties, the reviewer is right that two different sources
that have phase lag of zero in the majority of time, the covariance matrix will not be
decomposable to separate these two rhythms, as mentioned in the limitations section of the
discussion. We checked for occurrences of the word ‘recover’ and rephrased in page 3, line 84
(copied from above reply to comment #1) and also see below reply to R1 comment #4:

The SSD approach helps in recovering estimates distinct neuronal sources from the
summation activity recorded via the electrodes, i.e., it estimates a backward model in
the form of spatial filters with the optimization constraint focussed on a specific
frequency band of interest, in order to best measure the temporal dynamics of
oscillations in that band and their associated features of interest.

The reviewer is right that SSD yields a small number of sources, and we have a comment
regarding that in the discussion (line 523), looking forward to comparison to higher density
electrode setups in the future. It remains to be seen what the limits of resolution are. We have
performed some explorations in mouse LFP data, which hint at the fact that source separation
techniques will need to incorporate traveling wave like phenomena, to which we have referred
to in the limitation section (page 26, line 860), so we hope to contribute future work in this
direction.



(c) As such, I think Figure 1 should suggest this more clearly that the sources
extracted under SSD are representative, or perhaps equivalent, rather than
genuine sources (see Nunez, Nunez, and Srinivasan, 2019, Brain Topogaphy).
Line 78-79 also falls prey to this given that SSD can’t distinguish between the
case of multiple coherent independent sources and the same source spreading
to multiple electrodes so really the presence of non-zero weights across multiple
electrodes only reveals a consistent rhythm measured across all of them without
it necessarily being the same rhythm.

In our view, all sources in EEG/ECoG are equivalent sources, in the terminology of the linked
reference. We reflected on our current presentation of Fig. 1, where on the left ‘ground truth’
sources are depicted and the signals obtained with SSD are labeled ‘estimated sources’. We
feel that this is an accurate reflection of our conceptual understanding, which stays agnostic to
the nature of the sources. We welcome any suggestions on how to modify this figure if the
reviewer does not deem this sufficient. We now cite the Nunez et al. reference for a reflection
on the word ‘source’ in the limitation section of the discussion, see page 25, line 808.

Specific limitations of an approach for estimating spatial filters utilizing eigenvalue
decomposition are detailed below. First, there is no automatic one-to-one mapping
from estimated components onto physiological entities (but neither can this be done
from electrode-based activity). In terms of clarifying what these components represent,
Nunez et al. (2019) have proposed a distinction between genuine, equivalent and
representative sources. Within this framework, the components returned by SSD can be
seen as representative sources, not directly reflecting e.g. synaptic activity as in the
case of genuine sources, but rather presenting one possibility of many, similar to source
estimates returned by independent component analysis. In the case of distinct, but
highly co-fluctuating neuronal sources, they will not necessarily be separable on the
basis of their covariance. An indication of this are spatial patterns that deviate from the
spatial pattern expected for a dipolar source, e.g., by showing several spatially
distributed maxima.

R1 comment #3
There are multiple times that source reconstruction is referenced however, this is
confusing as it sets up two different goal posts that are alternatively targeted
(data-driven referencing vs. agnostically identifying a putative set of representative
neural sources). Further, if the goal is to have an approach that approximates a small
number of sources from the activity at the electrodes, then multiple alternative
approaches should also be demonstrated and compared here akin to Cohen (2017).
Additionally, given that source reconstruction involves determining location information



while incorporating tissue conductivity details, the suggestion that this method
identifies sources akin to source reconstruction (as suggested in Figure 1) is a
misnomer. I think adding in the caveat that they are representative sources potentially
might help with this as well.

As we understand this reviewer comment, it relates to three different aspects:

1) Data-driven referencing & agnostic identification of sources as 2 different goal posts:
In our understanding, data-driven referencing and agnostically identifying neural sources are
intrinsically linked and cannot be viewed as separate goal posts. Typically, the choice of
reference is highly influenced by the type of activity one aims to extract (e.g. focus on local
activity for bipolar referencing, or highlighting radial sources for common average referencing).
In that sense, our approach aims to amplify a specific type of activity (oscillatory) without
preselection of spatial search radius. We searched for the occurrence of the term ‘source
reconstruction’ in the manuscript and it appears in the introduction contrasting anatomically
and statistical constrained source analysis approaches for M/EEG and iEEG, so we think the
term is sufficiently clear in this context. Additionally, we checked for each occurrence of the
term ‘source’ and substituted ‘source time series’ or ‘source estimates’ where this seemed to
be more appropriate, and included a note about what we mean with the word component, see
the paragraph in point 2) of the reply to this comment. We also hope that the restructuring of
the introduction improved the clarity regarding referencing and source reconstruction (see R1
comment #1).

2) Misnomer “source reconstruction”: We disagree that it is a misnomer to label statistical
methods as source reconstruction. In our understanding, source reconstruction is a term that is
mainly related to retrieving source time series, which is definitely the goal of SSD.  We changed
the label Figure 1 ‘estimated sources’ to ‘estimated source time series’, which we feel captures
this goal in retrieving the time series. Whereas source localization aims to pinpoint the exact
spatial location of the respective source, which is an aspect that is not at the center stage here,
and achieved indirectly via the spatial patterns. For EEG, a dipole fit often performed on the
spatial patterns to achieve this (Haufe et al. 2014, On the interpretation of weight vectors of
linear models in multivariate neuroimaging, Neuroimage), which we did not perform here, as the
current dipole approximation is not valid in the light of the ECoG electrode proximity to the
tissue. We aim to clarify the distinctions between those two different goals relating to source
reconstruction and localization by extending the paragraph in page 3, line 84:

The SSD approach helps in recovering distinct estimates distinct putative neuronal
sources from the summation activity recorded via the electrodes, i.e., it estimates a
backward model in the form of spatial filters with the optimization constraint focussed
on a specific frequency band of interest, in order to best measure the temporal



dynamics of oscillations in that band and their associated features of interest. The focus
of this approach here is primarily on estimating the source time series. The estimated
source time series are subsequently referred to as components. Information about the
location of a source is only indirectly provided through the computation of spatial
patterns.

3) Comparing SSD to other similar methods: Regarding comparison to other methods, we
think that a simulation based comparison of different methods is outside of the scope of the
article, since our goal is not to specifically argue that a certain method is better than another,
rather it is focused on introducing this particular class of methods to the iEEG community.
Conceptually, SSD is similar to the GEDb method in the Cohen (2017) paper. These two
methods are very similar, and we do not expect them to yield different results for the mostly
qualitative investigations we performed. Please note that in Cohen (2017), SSD was compared
to the other approaches in a peculiar way, by only using the band-pass filtered activity in the
respective narrow-band (e.g. alpha) after estimation of spatial filters. In that way all
non-sinusoidal properties of the rhythms are lost. This is not how we use SSD in this
manuscript here, and SSD will compare very similarly to those approaches, when the spatial
filters are applied on broadband data.

We extended the paragraph referencing other methods (page 22, line 681):
While we chose SSD as a spatial filtering technique for our illustrations, other types of
generalized eigenvalue decomposition algorithms are available to solve specific
objectives. For enhancing specifically oscillatory SNR, there are variants that maximize
the spectral power in a frequency band of interest, compared to the total spectral power
(Cheveigné and Arzounian, 2015), which are benchmarked for EEG in (Cohen, 2017),
with demonstrations for MEG/EEG as well as monkey ECoG and optical imaging given
in (Cheveigné and Parra, 2014) and which are benchmarked for EEG in (Cohen, 2017).
Note that in the latter, the benchmark test for SSD only used the band-pass filtered
activity for evaluation after application of spatial filters; in this way, many of the
non-sinusoidal properties are lost. In our study, we compare the output of SSD using
broadband filtered data to preserve nonsinusoidal waveform shape, and we expect
other generalized eigenvalue decomposition methods aimed at amplifying oscillatory
SNR to perform similarly to SSD when evaluated on broadband (versus narrowband
filtered) data. The main aspect we want to highlight here is that generalized eigenvalue
decomposition methods are highly flexible and permit interesting contrasts for
maximizing/minimizing SNR along specific dimensions. For instance, in the case of
task-based data, Common Spatial Patterns (Koles, 1991) maximizes differences
between conditions, for instance to investigate main contributions to task-related
modulation. [...]



R1 comment #4
In several places I note that there is a desire to draw conclusions about both the data
and the benefits of the algorithm at the same time. This, to me, is a difficult inference to
perform since ground truth in data is unknown.

In Section 3.1 the conclusion is drawn that since different components from SSD
have different spatial patterns (different weights at the same electrode) and
slightly different spectra (primarily differing in the 1/f), there are different rhythms
at the same electrode. Does past simulation work back this up? Can SSD
components be interpreted in this way? I am unclear why this is necessarily true,
and why it could be the same rhythm with slightly different noise profiles say.
Perhaps a deeper discussion of the implications of the generalized eigenvalue
decomposition and what components mean under it (in Section 2.2.2) would
clarify this immediately.

This question relates to the underlying data generating model. In general, the simulation work
performed, for instance in the original SSD paper (Nikulin et al., 2011) places different dipoles
and checks under what circumstances they can be recovered with SSD (result: better than with
ICA type methods). To our knowledge, such a linear data generation model is the dominant
assumption for electrophysiological data and in the light of such a linear data generating
model, we would definitely say that SSD components can be interpreted as arising from
separate sources under this data generating model. As pointed out in the limitations section,
this data generating model may not be sufficient to capture certain phenomena, like traveling
waves.

To follow up on the comment we extended Section 2.2.2 as recommended, regarding the
interpretation and properties of the obtained components, see page 8, line 277. (Note: this is
the same paragraph that has been updated regarding the related R2 comment #2, please also
see this comment, modified paragraph pasted here for convenience).

The number of components returned by SSD is equal to the number of electrodes, with
the components ordered by relative SNR in the frequency band of interest. In contrast
to PCA, the first few SSD components only capture a small fraction of global variance,
as the method is focused on maximizing variance in a specific frequency band. PCA
has strong constraints, and can only return a spatial filter matrix W which is orthogonal,

i.e., for which needs to be satisfied. Therefore , which means𝑊𝑇𝑊 = 𝐼𝑑 𝑊𝑇 = 𝑊−1 = 𝐴
that spatial patterns A are equal to spatial filters for PCA. As this results in spatial filters
with high degree of smoothness between neighboring values, PCA will not be able to
distinguish rhythms in the same subspace. SSD and other generalized eigenvalue



decomposition methods do not have this constraint. There, the following constraint

needs to be satisfied , so the spatial patterns are not generally equal to the𝐴𝑇𝑊 = 𝐼𝑑
spatial filters, as the inverse of a matrix is not generally equal to its transpose. This
allows distinguishing sources in the same subspace, e.g. rhythms coming from the
same cortical area in the same frequency band. In terms of amplitude of the individual
components, they are independent of each other for PCA as well as SSD.

Lines 296-297 suggests that SSD better uses information from the electrodes than
other reference strategies. Yes, this is true as SSD is data-driven, but how do the results
from the data provide evidence towards this?

We tried to be careful, and generally not argue in terms of ‘better’, but in terms of ‘more
flexible’. For instance, our sEEG example in Fig. 3 shows that different fixed referencing will
emphasize different aspects of the data, potentially losing information about rhythms of
interest. If there is a clearly defined frequency of interest, SSD or other data-driven methods
can be of aid here, providing a searchlight to scan for these rhythms specifically.

In line 312, the conclusion that SSD ‘enables recovering of rhythms in a flexible way
regardless of location and dipole orientation’ seems an overextended interpretation of
the results, this seems to be a conclusion we could have only in the presence of a
ground truth (say in a simulation) or a very strong prior. Clearly SSD is agnostic to the
biophysical details involved but I’m unsure whether the data can bear this out.

This conclusion is informed by previous studies as outlined in the response to this comment
above, but to be more cautious here, we adjusted the text in the paragraph (page 12, line 450)

Additionally, all signals were submitted simultaneously to the SSD procedure, without
subselection, making it possible to combine information from multiple leads and
electrode configurations efficiently. Using SSD results in less bias due to fixed reference
choice, as learning the filter coefficients from the data enables recovery of rhythms in a
flexible way regardless of their location and dipole orientation. While standard
referencing techniques tend to enhance signals generated via a specific way, SSD is
agnostic to the biophysical generation, and can be used more flexibly in this regard. For
instance, monopolar and common-average referencing preserve correlation across
channels to a higher degree than bipolar referencing (Li et al., 2018). This will influence
measurement of rhythms, which can have a different spatial spread across subjects,
depending on local cortex anatomy. So, while common average referencing highlights
radial sources, bipolar referencing has a focus on locally generated activity and
emphasizes bipolar sources. SSD will extract components with maximum SNR agnostic



about their spatial spread. In the next section, we further examine the spatial spread
present empirically in iEEG data.

Lines 338-340, this is perhaps something that would be best justified through a
simulation/this is a line that might be better in the Discussion with an additional line
pointing out that research to define the boundaries of what is possible to be discovered
with this method in iEEG through simulations is critical for interpretation of its
application.

We agree with the reviewer that our current approach does not allow us to draw this conclusion
in the results of our work. Therefore, we have modified the text below as follows, moving the
phrase from the results to the discussion, and expanding more on the argument in the
discussion to note how future simulation work might help address this.

We have now modified the paragraph to remove that mentioned line (page 15, line 492):
However, in the case of a rhythm of a large spatial spread across a large number of
electrodes however, this rhythm may be attenuated when using a common average
reference. Thus, the benefit of using data-driven spatial filters is that they may work in
both cases. In addition, using spatial patterns as estimated from the covariance matrix
between channels may be helpful as a tool for data exploration to evaluate this factor,
because the spatial correlations across electrodes for different present rhythms cannot
be known a priori.

And extended the the discussion regarding simulating a ground truth (page 25, line 804):

As a general limitation, the estimation of a backward model will never achieve perfect
accuracy because dozens of electrodes are not enough to capture the thousands of
underlying sources of neuronal activity. One approach for addressing this would be
through incorporating simulated iEEG data, where the ground truth is known, such as
the LFPy toolbox (Hagen et al., 2018). Specific limitations of an approach for estimating
spatial filters utilizing eigenvalue decomposition are detailed below.

For Section 3.4, would adding a figure showing the SNR distribution (w/t thresholding)
for some components within predefined frequency bands (delta/theta/lower beta) be
useful to further emphasize the point that a small set of subjects can drive overall
results? If the SNR distribution has a long tail, this would be evidence in favor of this
hypothesis.



As per suggestion, we also tried to incorporate visualizating SNR by binning according to fixed
bands.

The individual points constitute components for the respective color-coded subjects. It can be
seen that the distribution has a long tail (especially considering that the y-axis is in log-scale)
and some participants dominate the upper tails. As we generally advocate against binning
based on fixed frequency bands, we find such a plot problematic, also given that all these
components originate from very different cortical regions. We therefore did not include this plot
in the manuscript.

R1 comment #5

1. Line 37, ‘used here are’ -> ‘used are’

First fixed, but then this sentence was scraped. :)

R1 comment #6

2. In lines 195/196, it is quite plausible for the covariance matrix to be not full rank
here, so is there some regularization applied? In the code I see that it says it



expands the matrix in this situation, expressing that in the Methods in an equation/a
line seems important.

The reviewer is right, In the case of the covariance matrix not having full rank, the matrix is
expanded. We have added this paragraph in the methods (page 9, line 293):

A technical note: certain preprocessing operations, like removal of ICA components,
can result in a covariance matrix that does not have full rank. To determine whether the
covariance matrices have full rank, the eigenvalue problem involving only the signal
covariance is solved. The rank r is determined by calculating the number of𝐶
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R1 comment #7

3. In line 217, what exactly is being inverted here, C*W?

We apologize for being unclear here and expanded the description methods to accurately
reflect the calculation of the spatial patterns, the spatial patterns A can be calculated in two
ways, either by inverting the spatial filter matrix A=W-1 or by multiplying the spatial filters with
the covariance matrix. As we do the latter in the code, we now describe this method in the
method section. We thank the reviewer for this comment, because we feel that this aspect is
now much clearer, and the formulas appearing in the illustration Fig. 1 are also now also
included in the main text, which should make the approach more accessible (page 9, line 317):

Spatial patterns for interpretation of the spatial origin of the extracted component can𝐴
also be obtained are obtained with aid of covariance matrices by multiplication of
spatial filter matrix with the covariance matrix calculated for the signal component in𝑊
the frequency band of interest and the pseudo-inverse of the spatial filters (Haufe et𝐶

𝑆

al., 2014b): . For appropriate scaling, the patterns are normalized by a𝐴 = 1
𝑍 𝑊𝑇𝐶

𝑆

scaling factor , with denoting the Moore-Penrose pseudoinverse, such𝑍 = (𝑊𝑇𝐶
𝑆
)+𝑊  +

that the product of spatial patterns and spatial filters will yield the identity matrix



. This is required in order for the product of the patterns and source estimates𝐴𝑇𝑊 = 𝐼𝑑

to yield the electrode measurements .𝑆
^

𝑋

R1 comment #8

In lines 220 to 222, it’s unclear why a subset of electrodes based on a distance
metric from the maximum location are chosen.

The idea of choosing a subset of electrodes based on the distance was to quantify the spatial
spread fall-off using a Gaussian ‘full width at half maximum’-type metric. In the cited simulation
work by Muller et al. 2016 the fall-off was modelled with different types of functions. Because
the spatial sampling in our used dataset is coarser (10 mm spacing between electrodes)
compared to the high density-grids used by Muller et al (4 mm spacing), we did not perform a
function fit of the correlation profile / spatial pattern coefficients and opted for a simple metric
here.

● L. Muller, L. S. Hamilton, E. Edwards, K. E. Bouchard, E. F. Chang, Spatial resolution dependence on
spectral frequency in human speech cortex electrocorticography, Journal of Neural Engineering 13 (5)
(2016) 056013.

We clarified this aspect by extending the methods section (page 9, line 327):
To illustrate spatial spread of oscillatory components, we analysed the topography of
spatial pattern coefficients. For each component, the absolute value of the associated
spatial pattern coefficients was taken and the values were then divided by the maximum
value. The maximum spatial pattern coefficient in a distance of 2.5 cm around the
maximum (distance value determined by Euclidean distance) was extracted to assess
contribution of a single component onto several electrode signals. We chose to limit the
calculation to the immediate surrounding of the spatial maximum based on work from
Muller et al. (2016), who modelled the decrease in spatial correlation across electrodes
using different function fits in high density ECoG data. As the spacing across electrodes
in the dataset used here was too coarse to fit a function, we opted to quantify the
decrease in spatial spread across space by the maximum spatial pattern coefficient in
the vicinity of the spatial maximum.

R1 comment #9



Line 255, what is the band range used to define the noise?

The used band range is the desired peak frequency ± 1.75 Hz for defining the maximum SNR
component (= the component that is set to be removed, e.g. constituting line noise). For the
contribution that should remain in the data, we used a lower frequency band value of 1 Hz, so
that the activity over the whole frequency range would be used for calculation of the
corresponding covariance matrix. We apologize for the oversight to describe this more detailed
in the methods and have updated the description in the methods for clarifying this and also
highlighting the flexibility of SSD in that respect (page 10, line 359).

For removing noise with a specific spectral profile, we estimate spatial filters for
maximizing SNR around the frequency peak that should be removed, e.g., 60 Hz ± 1.75
Hz for line noise. Then these components For defining the contribution that should be
minimized, i.e. the contribution that should remain in the cleaned data, we adjusted the
used frequency ranges slightly: while previously only a narrow frequency range was
used for defining the flanking frequency, here we adjusted the lower range of the
flanking pass-band to be at 1 Hz, such that the activity across the whole frequency
range should be considered to remain in the data. The adjustment of frequency borders
is a benefit of SSD, as it allows for flexible incorporation of prior knowledge for
estimation of spatial filters. After estimation of spatial filters, the components
constituting line noise are subtracted from the raw signal with a linear operation:

R1 comment #10

Line 295: ‘which utility’ -> ‘whose utility’

Fixed, thank you!

R1 comment #11

Lines 310-311: ‘Using SSD results in less bias’ -> Bias in a statistical sense refers to
a difference from the expected mean, so I was unsure how it was being used here. I
do agree that SSD makes fewer assumptions about the nature of how sources are
distributed/how they are getting mixed and so this terminology might be better fit or
perhaps just a definition of what is intended in using the word ‘bias’.



Thank you for this comment, this helped us to clarify terminology. We have updated this
paragraph to reflect our intention when using this term (same paragraph as in comment R1
comment #4, page 12, line 450):

Additionally, all signals were submitted simultaneously to the SSD procedure, without
subselection, making it possible to combine information from multiple leads and
electrode configurations efficiently. Using SSD results in less bias due to fixed reference
choice, as learning the filter coefficients from the data enables recovery of rhythms in a
flexible way regardless of their location and dipole orientation. While standard
referencing techniques tend to enhance signals generated via a specific way, SSD is
agnostic to the biophysical generation, and can be used more flexibly in this regard. For
instance, monopolar and common-average referencing preserve correlation across
channels to a higher degree than bipolar referencing (Li et al., 2018). This will influence
measurement of rhythms, which can have a different spatial spread across subjects,
depending on local cortex anatomy. So, while common average referencing highlights
radial sources, bipolar referencing has a focus on locally generated activity and
emphasizes bipolar sources. SSD will extract components with maximum SNR agnostic
about their spatial spread. In the next section, we further examine the spatial spread
present empirically in iEEG data.

R1 comment #12

While a paragraph in the results is dedicated to discussing the possibly ways we
could apply statistical tests to SSD in order to perform inference on the components
(lines 343 -  347), why isn’t it implemented here? I suppose SSD is being
demonstrated here as a data exploration tool, in that case this being the reason no
statistical tests are implemented needs to be made explicit in this section or earlier
in the Methods.

The reviewer is right that our main focus here is to promote the usage of SSD as a data
exploration tool. In our view, statistical testing would be highly dependent on the specific
objectives one has, and there may be different criteria required. We now also provide the
eigenvalues as a return argument, which correspond to the local relative SNR-threshold
criterion as in Nikulin et al., 2011. Personally, we have not used this criterion, as we prefer an
explicit 1/f-correction. We extended the paragraph regarding this, page 15, line 502:

The determination of which components to keep can be made using several different
approaches, such as a threshold criterion based on relative SNR1/f-corrected SNR as in
this article, a more local relative SNR-threshold criterion only focusing on the peak
frequency band and neighboring flanking bands (Nikulin et al., 2011; Haufe et al.,



2014a), with the aid of a bootstrapping procedure (Zuure et al., 2020), or based on
physiological considerations such as focusing on rhythms originating from a specific
location, which can be determined with aid of the spatial patterns. We want to stress
that a criterion of the number of components to keep is dependent on the specific
objectives of the study and needs to be carefully considered within the scope of those
desired objectives. In the following, we employed a 1/f-corrected SNR criterion, as the
aim was to quantify all dominant resting rhythms without any regional pre-selection.

R1 comment #13

9. Line 353: what threshold of SNR was applied? 5 dB?

Yes, we added this description also here, page 15, line 519 (in addition to the existing text in
methods).

​ The components with SNR exceeding a specified threshold (>5 dB) were retained.

R1 comment #14

10.  Lines 370-371: I understand this is of concern because of the possible effects
of a few outliers on results, but that needs to be made explicit in this line.

Thank you for pointing this out, it’s important for us to get this point across and we have
therefore expanded this section with additional details, page 17, line 538.

Another factor to consider, especially in iEEG data, is the fact that patients have the
grids implanted for clinical reasons, with different pathologies and different medication
status, which might contribute to the observed variability. Nevertheless, variability in
peak frequencies and oscillatory SNR is also observed in non-invasive
electrophysiological measurements. For iEEG, this might be more of a concern, since a
smaller number of participants are usually included per study, compared to studies
using non-invasive measurements. In the case of such small sample sizes, a single
participant with a large amplitude, prominent rhythm across many electrodes may
dominate the analysis due to the way that iEEG data are often pooled. This can result in
a seemingly large effect in the group-average, despite only being present in a small
number of participants.

R1 comment #15



11.  In Figure 5, I was unclear what is meant when there’s no sphere in 5A, no
dominant frequency present at that electrode?

Correct, in that case, there is no component of that dominant frequency (= above the
SNR-threshold) with a spatial maximum over that particular location. We extended the
description in the legend to clarify this.

Figure 5: A) Each subplot shows the location of electrodes (white squares) on a
template brain for one individual participant. Each sphere indicates an oscillatory
component, with the size indicating 1/f-corrected SNR and the color indicating peak
frequency of that component. If there is no sphere of a respective color in the vicinity of
an electrode, no rhythm above the SNR-threshold could be detected in that frequency
band. There is large variability between participants. For improved comparison across
participants, all electrodes and rhythm locations were mapped onto the right
hemisphere. Participants are ordered according to the mean z-coordinate across the
electrode grid, to ease comparison.

R1 comment #16

12.  In Figure 5B how is it possible for multiple components to have peak
frequencies so close to one another? i.e. don’t the bandpass filters overlap
considerably for some of these components?

Two key aspects are related to this comment:
1. The peak frequency that is used as the SSD parameter does not necessarily exactly

correspond exactly to the peak frequency of the resulting components. So, while the
peak frequency lies in the used passband for defining the signal, there is some variation
in peak frequencies, for instance when using a passband of 8-12 Hz, it is possible that
one component could have a peak frequency of 8.5 Hz and another 11.5 Hz. This will
result in slightly varying colors in Fig. 5B. But typically the range of peak frequencies is
closer together for the top SNR components.

2. Sometimes, there are peak frequencies in the raw signal that are quite close by. In that
case, for Fig. 5B we ran SSD for all of these frequencies that exhibited a prominent
peak in the electrode signals, the computation was performed separately per frequency.
For instance, in the figure below we show power spectra, topographies and a time
series extract for components with a peak frequency of 9.33 Hz and 7.00 Hz that are
neighboring in peak frequency and location for the participant from Fig. 2 of the main
manuscript.



To clarify the first point, in addition to the already stated motivation for this procedure in the
methods section, we have extended the description of Fig. 5B in the results section (page 17,
line 527):

We also show the peak frequency of all identified components in 5B and C. We find a
distribution similar to Groppe et al. (2013), where there are more rhythms detected with
a peak frequency around 7 as well as 16 Hz, and fewer rhythms with a peak frequency
around 10 Hz, in contrast to non-invasive electrophysiological measurements. Note that
because we use spectral parametrization on the spectra of SSD components, the peak
frequency of SSD components can slightly vary from the peak frequency used as an
input parameter for SSD. The distribution of peak frequencies is possibly related to the
spatial bias of electrode placement, wherein most are placed over sensoriomotor and
temporal areas, with less coverage over occipital areas, as determined by clinical
needs.

R1 comment #17

13.  Line 404: ‘am’ -> a

Fixed, thanks!



R1 comment #18

14.  Line 450, same question about bias as in Q7, also I think there is one other time
bias is used this way.

Please see our reply to the above comment R1#11 for this.

I hope the comments are helpful and want to reiterate that I think this is valid and useful
contribution.

We are grateful to receive so many thoughtful comments and had fun thinking about the raised
issues!

Reviewer #2:

In their manuscript entitled "Enhancing oscillations in intracranial elecrophysiological
recordings with data-driven spatial filters" the authors Schaworonkow and Voytek report a
useful new method and demonstrate its application to a number of datasets. The paper is
clearly written, well justified, and the results support the position that this represents a useful
tool. I thank the authors for using publically available data and making their code available. I
have a few comments in order below that might improve the paper, and believe that it is well
suited for publication.

I cloned the repo and but was unable to get the code to run, so I will not comment on it
specifically, with the following error. [ERROR]

We apologize for this oversight! The problem was related to a used toolbox, we have now
provided a code version where this type of problem is avoided. Additionally we checked that
the code runs on another machine with a fresh checkout of the repo.

R2 comment #1

1) MAJOR. I was a bit confused about the distinction between electrocoritcography,
intracranial recordings, and iEEG, and I think later sEEG. I think this paper is focused on
electrocorticography (on the surface of cortex), as opposed to depth electrode arrays
(intracranial depth electrodes). I think it would help the reader to clarify this early on and



in the discussion perhaps indicate how these methods might apply to linear arrays of
depth electrodes.

We abbreviate intracranial recordings with iEEG. In our manuscript we distinguish two types of
iEEG recordings, electrocorticography (ECoG) using electrode grids placed on the surface (like
in Fig. 2) and stereoencephalography (sEEG) using electrode strips (like in Fig. 3). We mostly
use ECoG, because that’s what is the type of electrodes in the majority of the dataset we use.

To clarify this, we extended the paragraph in the introduction (page 2, line 2):
Invasive, intracranial electroencephalography (iEEG) recordings from patients
undergoing epilepsy monitoring have been tremendously valuable for examining
neuronal activity. This is because iEEG provides both high temporal and spatial
resolution that is impossible to achieve using solely noninvasive human neuroimaging
(Engel et al., 2005; Jacobs and Kahana, 2010). There are different types of recording
electrodes for iEEG, using electrodes arranged in grids that are commonly referred to as
electrocorticography (ECoG) or using electrodes arranged along a linear array, which is
referred to as stereoencephalography (sEEG). Because of the superior spatial and
temporal resolution of iEEG, combined with the possibility of simultaneous
single-neuron recordings from humans (Suthana and Fried, 2012), these rare recordings
provide a bridge between human cognition and decades of animal electrophysiology.

Additionally, we extended a paragraph in the discussion section (page 22, line 656):
The benefits of using statistical approaches like SSD, in contrast to biophysical
modelling, is that no anatomical information or biophysical model is required for the
estimation of the spatial filters, which strongly reduces the complexity of the procedure.
While our demonstrations are mostly using ECoG data (as this was the predominant
recording type present in the used dataset), the method can be similarly applied to
sEEG data, as seen in Fig. 3, for the benefit of combining information from different
electrode leads. Whenever time series data from multiple electrodes is available, the
method can be applied. The electrode locations are only needed for the interpretation of
spatial patterns, but the source time series estimation is independent from the
localization accuracy of the electrode positions.

R2 comment #2

2) MAJOR. Independence of components. I was hoping for some discussion of the
relative orthogonality and independence of the components obtained by this method as
opposed to simple eigenvalue decomposition, ICA or PCA. No mention or rotation for
orthogonality, etc. Are the components obtained independent of one another. The text
is often written as if they are (multiple oscillatory sources from same coritical area). Can



the authors show mathematically or experimentally how independent their components
are and if this is desired.

We extended the description in the methods sections at page 8, line 277. Please also see the
next comment #3 for more details the difference between spatial filters and patterns.

The number of components returned by SSD is equal to the number of electrodes, with
the components ordered by relative SNR in the frequency band of interest. In contrast
to PCA, the first few SSD components only capture a small fraction of global variance,
as the method is focused on maximizing variance in a specific frequency band. PCA
has strong constraints, and can only return a spatial filter matrix W which is orthogonal,

i.e., for which needs to be satisfied. Therefore , which means𝑊𝑇𝑊 = 𝐼𝑑 𝑊𝑇 = 𝑊−1 = 𝐴
that spatial patterns A are equal to spatial filters for PCA. As this results in spatial filters
with high degree of smoothness between neighboring values, PCA will not be able to
distinguish rhythms in the same subspace. SSD and other generalized eigenvalue
decomposition methods do not have this constraint. There, the following constraint

needs to be satisfied , so the spatial patterns are not generally equal to the𝐴𝑇𝑊 = 𝐼𝑑
spatial filters, as the inverse of a matrix is not generally equal to its transpose. This
allows distinguishing sources in the same subspace, e.g. rhythms coming from the
same cortical area in the same frequency band. In terms of amplitude of the individual
components, they are independent of each other for PCA as well as SSD.

R2 comment #3

3) I found most of the math intuitive except the difference between spatial filters and
patterns. It seems strange they are different at first glance. I think this is just because
the filters are the linear combo if signals needed to derive a source from the data itself.
Perhaps a bit more prose regarding your intuitions for why these are different and that is
expected would help?

For making the difference between the two concepts clearer, we have included the associated
formulas in the methods, page 8, line 267:

While the spatial filters are estimated with the aid of covariance matrices obtained from
narrowband activity (from the narrowband activity defined as signal as well as the
flanking narrowband noise), the spatial filters are then applied on the broadband signal.
The application to a broadband signal activity recorded by the electrodes to yield the𝑋

component time series . The data can be reconstructed using ,𝑆
^

= 𝑊𝑇𝑋 𝑋 = 𝑊−1𝑆
^

= 𝐴𝑆
^

where the inverse of the spatial filter matrix constitutes the matrix of spatial𝑊−1

patterns .𝐴



Additionally, we have modified the Introduction, where we first introduce the difference
between spatial filters and patterns, as follows (page 5, line 100):

It is important to make a distinction between spatial filters and the spatial patterns
associated with each filter. A spatial filter assigns a weight to each electrode that
quantifies how much each electrode contributes to the calculation of an extracted
component. A spatial filter is generally not interpretable (Haufe et al., 2014b), however,
in the sense that the magnitude of the weights directly reflects the contribution of the
source to the spatially filtered signal.  This information about spatial origin of a
component can be found in the spatial pattern, which can be computed for each spatial
filter and reflects , as a large spatial filter weight may also be related to cancellation of
noise, for instance. Once the spatial filter weights are calculated, one can examine the
spatial structure of each component by computing the spatial patterns, with each
pattern reflecting the mapping of sources onto measured electrode signals, showing.
This quantifies the strength and polarity of a putative source signal on all electrodes. For
instance, in Fig. 1, for the bipolar referencing only two electrodes contribute to the
calculation of the component. But due to the fact that neighboring electrodes exhibit
signal correlation to the involved electrodes due to spatial spread, information about
this source is also present in the vicinity of the two electrodes used for calculation of
the bipolar derivation. Therefore, the associated spatial pattern has intermediate
coefficients around the involved electrodes. The spatial patterns are can for instance be
computed by matrix inversion of the spatial filters. It can be seen that although the
spatial filters in Fig. 1 have different structure respectively, the associated spatial
patterns are quite similar, reflecting a source originating in the sensorimotor region.

R2 comment #4

4) Remove artifacts without artifacts from temporal bandpass filtering. I find this hard to
buy, seems to good to be true. Maybe this needs to be watered down a bit. Of course
one source of "artifact" or a-perfection in the filtering is the width of the band used in
the covariance matrix computation (attentuation just outside the filter band). I might
argue the imperfection of the filter used to construct the narrow band signal matrix also
would introduce analagous artifacts. Perhaps these statements can be tempered a bit.

The reviewer is right that removing noise always comes with a cost. Here, we would say that
the main risk is removing information that is not line noise / interesting signal contributions.
That can happen when too many line noise components are removed, in an attempt to reduce
the line noise. This is especially problematic when noise and signal contributions cannot be
reliably separated. Please also see R1 comment #9 for a clarification on which frequency bands
were used to calculate SSD filters for removing line noise.



We extended the paragraph (page  19, line 622) to be clearer in this respect:
The cost of this type of noise removal is the loss of dimensionality equal to the number
of removed components, similar to the effect of applying a common average spatial
filter. This loss of dimensionality is not of concern when a high number of electrodes are
present, but would not be recommended for a small number of electrodes. While a
common average spatial filter may work well if there is a common noise source that is
manifesting in all electrode signals, using data-driven spatial filters allows for more
flexibility if noise is not present in all signals. If too many noise-related components are
removed, this bears the risk of removing signal contribution that is of interest to the
research question. It is therefore necessary to inspect the estimated noise components,
for instance regarding the presence of spectral peaks in the frequency band of interest.
If time-locked analyses are performed, noise components can also be inspected for the
presence of time-locked contributions, to rule out reduction in valuable information by
noise component subtraction.

R2 comment #5

1) bottom of page six, indicate the covariance matrix are over channels (says it later, but
useful here)

Good point for clarification, we included this at page 8, line 251.
The covariance matrices across electrodes of the signal and noise contributions are
calculated on the basis of the band-pass filtered electrode activity.

R2 comment #6

2) pg. 7 "while the spatial filters are estimated with the aid of covarianc ematrices
obtained from narrowband activity, ..." this confused me on first read since they were
also made with the braodband noise activity just as much, probably rephrase.

The spatial filters are also constructed with noise contribution, but this is also of narrow-band
nature (this is specifically for SSD, variants like Mike Cohen’s GEDb method use broadband
noise). We included a statement clarifying that on page 8, at line 267:

While the spatial filters are estimated with the aid of covariance matrices obtained from
narrowband activity (from the narrowband activity defined as signal as well as the
flanking narrowband noise), the spatial filters are then applied on the broadband signal.
The application to a broadband signal activity recorded by the electrodes [...]



And on page 8, line 237:
We estimate spatial filters via spatio-spectral decomposition (SSD) (Nikulin et al. 2011),
which specifically maximizes spectral power in a frequency band of interest (for
example from 8–12 Hz), while minimizing spectral power in flanking frequency bands
(for example from 6-7 Hz as well as 13-14 Hz). This procedure enhances the height of
spectral peaks over the 1/f-contribution, exploiting specifically the typical narrowband
peak structure of neural oscillations.

R2 comment #7

3) OUT THERE. One connection my brain made is that accentuating the size of effects
in this way might introduce a dangerous potential to find "voodoo correlations". In that
old Vul work, they showed that "using a strategy that computes separate correlations
for individual voxels, and reports means of just the subset of voxels exceeding chosen
thresholds. We show how this non-independent analysis grossly inflates correlations".
Is there a danger of the field over estimating effect sizes if we accentuate the size of the
effects in the way proposed here, and what steps should researchers take to avoid this
pitfall?

The reviewer makes an important general point. We think whether preprocessing techniques
that increase SNR can lead to circular analysis depend on the analyses that are performed
afterwards. For instance, we deliberately did not include a statistical test regarding SNR of SSD
compared to other reference choices, as this would fall into this sphere of performing circular
analysis. In general, many procedures strive to increase SNR (e.g., source reconstruction,
standard reference schemes aiming to reduce common noise or emphasize activity coming
from different areas, or even simple trial-averaging). In that respect, we see SSD and other
spatial filtering techniques as one tool in the toolkit for researchers interested in specifically
oscillations.

This note relates to our way of thresholding components based on SNR for the inter-individual
variability analysis. We therefore now included a cautionary note on this topic in the discussion,
page 25, line 826:

In deciding how many components to keep for analysis, the following aspects should
be considered when using SSD: Inspecting the relative SNR with aid of the power
spectrum is crucial and is simplified because the components are ordered according to
SNR in the frequency band of interest. Components without a spectral peak in the
frequency band of interest should not be considered when talking about neural
oscillations in that specific frequency band (Donoghue et al., 2021). The spatial patterns



should be inspected for determining the local focus of the generating source. In
addition, bootstrapping approaches based on surrogate data have been suggested to
estimate the number of components to retain (Zuure et al., 2020). Regarding the
accuracy of reconstruction for instance in the example in Fig. 2, it can be seen that the
spatial focus lies on the edge of the recording electrode grid. In that way, the quality of
reconstruction is limited by not having more electrodes bordering the spatial maxima. In
general, optimizing for SNR and then checking for the presence of high SNR bears the
risk of circular analysis. Here, we use a moderate SNR-threshold to retain components.
Because our focus on these results is to highlight the degree of variability in the
individual recordings, we did not perform a bootstrapping analysis. However, if we
wanted to quantify whether the component structure contains more oscillatory structure
than expected when running the analysis using spatially correlated 1/f-activity
contributions not containing oscillatory bursts, bootstrapping would be appropriate.
Circular analysis is not of concern when relative contrasts within conditions are
computed, for instance across trials for one participant, where the SSD spatial filters
were estimated on the whole data segment, because in this case it is not the absolute
oscillatory power that is crucial, but rather consistent power in- or decreases across
experimental conditions.

And include a guiding note at the beginning of the discussion, page 21, line 636:
In this article, we highlighted the benefits of using spatial filters for the extraction of
neural oscillations in invasive electrophysiological recordings. Applying spatial filters
that specifically optimize for oscillatory SNR in iEEG recordings, we assessed presence,
spatial spread, variability and waveform shape of iEEG resting rhythms. SSD and other
spatial filtering techniques can be a potential tool in the toolkit for researchers
specifically interested in oscillations. As with all tools, careful consideration of the
benefits and limitations has to be weighed against the increased complexity and
freedom in parameter choices that might give way to potential false positives.

R2 comment #8

4) Researcher degrees of freedom - I tend to avoid any component selecting in my
analysis pipeline, as Laszlo showed that ICA component selection success varries with
experiementer experience. Can you imagine more automated ways of selecting
components than the heurestics proposed in the paper?

We agree with the reviewer that the selection of components introduces researcher bias. In
contrast to ICA, the benefit of SSD is that the components are ordered according to SNR, so
it’s possible to define a cut-off criterion, without inspection of all individual components. In
most of our previous studies using SSD we used a 1/f-corrected SNR criterion of 5 dB like in



the present manuscript, which for us constitutes a basic oscillation presence check. In that
way, a cut-off criterion constitutes at least an improvement over inspection. For modifications
of manuscript text regarding this aspect, please compare to R1 comment #12 (pasted below
for convenience, from page 15, line 502) ,where we stress that we use SSD as a tool for data
exploration, so the criterion which components are to be selected may also be informed by the
study objectives, for example if rhythms of a specific location are of interest.

The determination of which components to keep can be made using several different
approaches, such as a threshold criterion based on relative SNR1/f-corrected SNR as in
this article, a more local relative SNR-threshold criterion only focusing on the peak
frequency band and neighboring flanking bands (Nikulin et al., 2011; Haufe et al.,
2014a), with the aid of a bootstrapping procedure (Zuure et al., 2020), or based on
physiological considerations such as focusing on rhythms originating from a specific
location, which can be determined with aid of the spatial patterns. We want to stress
that a criterion of the number of components to keep is dependent on the specific
objectives of the study and needs to be carefully considered within the scope of those
desired objectives. In the following, we employed a 1/f-corrected SNR criterion, as the
aim was to quantify all dominant resting rhythms without any regional pre-selection.

R2 comment #9

1) Pg. 15, ln 404, typo "am"
Fixed, thanks!

R2 comment #10

2) Figure 6 - I think e1 and e2 should. be above the comp 1 and 2 to match other
figures

Thank you, we adjusted the figure according to your comment for increased consistency.

R2 comment #11

3) Figure 7 - can you show a panel here using a normal bandpass noise filter that many
people would use, to show the bleed over into neighbouring bands. I think for Figure 7
adding a panel D with a narrow band 60 Hz filter will show how much better yours is.

According to the suggestion, we added a panel with a standard notch filter from MNE, using
the noise peak frequencies, see the updated Fig. 7. The notch filter was applied on the



common-average referenced data, since we think that would be the most typical workflow for
iEEG processing. The artefacts in the spectrum are clearly visible.

A) Time series of six electrodes and power spectra for raw ECoG recording for 87
electrodes, color code corresponds to electrode position, with neighboring electrodes
having a similar color. B) Time series and power spectra after removal of components
maximizing SNR for 60 Hz and 200 Hz spectral peaks. Note that there are no band-stop
type artefacts in the spectrum since no temporal filtering was performed. C) Time series
and power spectra after common average referencing. While the 200 Hz noise is largely
attenuated, 60 Hz line noise still persists. D)  Time series and power spectra after
common average referencing and then band-stop filtering. The band-stop filters
introduce artefacts in the spectral domain.

R2 comment #12

4) Waveform shape section - I like this and you did show that it was working well after
the transformation, but if the hypothesis of this paper is "this technique works better
than others" and this section is "it also works for bycycle analysis", then you should
probably compare the results to those obtained from non-transformed data.



We tried to state the benefit of the approach as more flexible, not necessarily as better,
because “better” depends on the respective criteria used for evaluation. Please compare the
reply and text changes to the related comment #4 from reviewer 1. Specifically for waveforms,
the difficulty in comparing the time series results for waveforms is the choice of comparison
electrode, which can show a mixture of the waveforms present as shown in Fig. 6A. Such a
comparison may also delve into circular analysis, because all waveform shape phenomena are
highly dependent on SNR; we therefore have deliberately left that out. Our main point here in
Fig. 6D & E was simple to show that non-sinusoidal waveforms are present throughout the
cortex and may be an interesting feature to look at in ECoG studies as they allow access to a
higher SNR and therefore detectability of these phenomena.

R2 comment #13

1) limitations - This section was good but was a bit detached from YOUR analysis and
results. Can you point to a couple of your results in each of these limitations. When you
say backwards model doesn't "acheive perfect accuracy" - what does this look like in
the data, bleed over into components, not separating them well, etc. For the travelling
wave example, could this explain any of your results in a different way (multiple sources
of alpha from one location)

This comment is tricky, as these things are hard to substantiate without a known ground truth.
See also related R1 comment #4. We extended the limitation section by referencing our Fig. 2
example participant to make the raised points more easy to grasp with examples.

Regarding the first listed limitation about accuracy of source reconstruction, page 25, line 831:
The spatial patterns should be inspected for determining the local focus of the
generating source. In addition, bootstrapping approaches based on surrogate data have
been suggested to estimate the number of components to retain (Zuure et al., 2020).
Regarding the accuracy of reconstruction for instance in the example in Fig. 2, it can be
seen that the spatial focus lies on the edge of the recording electrode grid. In that way,
the quality of reconstruction is limited by not having more electrodes bordering the
spatial maxima.

Regarding the second listed limitation about signal polarity, line 849:
Further, the estimated spatial filters are invariant with respect to signal polarity, i.e., the
sign cannot be uniquely determined. Therefore depending on the choice of parameters,
the spatial filter can result in a polarity-inverted signal. For instance, for the participant
in Fig. 2, the time series and spatial pattern of the second and third component was
manually multiplied with -1 for visualization. Alignment of spatially filtered signals can



for instance be accomplished according to the sign of the electrode signals, and is
straightforward in the case of radially orientated components.

Regarding the 3rd listed limitation about linearity & waveform shape, line 860:
Finally, the underlying assumption here is a linear model, and the estimated spatial
filters are not dependent on time. This assumption might insufficiently capture traveling
wave phenomena, for instance. Propagating activity with high velocity will impact very
sharp waveforms, as for electrodes linearly combined with a slight offset a sharp trough
will result in a less sharp trough for the component due to time-independent linear
combination. For instance, the waveforms in Fig. 2 will display a higher peak-trough
asymmetry when calculated on high-SNR segments directly from the electrodes, while
SSD component traces will have a slightly lower asymmetry measure due to the spatial
filtered signal being a linear combination of slightly time-shifted oscillation. It would be
of interest for future directions to take wave propagation into account when estimating
neuronal oscillatory sources (Kuznetsova et al., 2020; Hindriks, 2020).

We thank the reviewer for all comments and hope to have clarified the raised concerns
regarding properties of SSD components, the difference between spatial filters and spatial
patterns and further aspects of the noise removal via spatial filters.


