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Deep Learning Based Autofocus Method Enhances 
Image Quality in Light-Sheet Fluorescence Microscopy

Fig.  S1. Comparison between traditional autofocus quality measures. The bubble 
chart shows the prediction of various methods when a full stack (13 images) is 
provided as an input. In all the cases (~420) the true prediction is at 0 µm. From left 
to right, the methods are image variance (VARS), Variance of Laplacian (LAPV), 
Variance of Wavelet coefficients (WAVV), Steerable filters (STFL), Tenengrad 
variance (TENV), Brenner’s measure (BREN), Shannon entropy of the normalized 
discrete cosine transform (DCTS). DCTS shows the best performance among the 
tested methods.



Fig.  S2. Real-time perturbation experiments in light-sheet fluorescence 
microscopy. (a1 and b1) The in-focus (∆𝑧 = 0) images of neurons and hair cells, 
respectively. (a2 and b2) Images that show the same field of view as in a1 and b1 
after the objective lens was displaced by -15 µm and 30 µm, respectively. (a3 and 
b3) Images of the same field of view after the objective was moved according to the 
network defocus prediction as shown in a4 and b4. The improved image quality in a3 
and b3 indicates that the network can estimate the defocus level and adjust the 
detection focal plane to improve image quality. In a and b, the white boxes mark the 
location of the zoom in images, and the line profiles in a4 and b4 represent image 
intensities along the dashed lines in a and b.



Fig. S3. Changes in image quality over small defocus distances. Representative 
examples of defocused images with small defocus (∆𝑧) values. Changes in image 
quality are observed by eye starting from ∆𝑧 distance of 6 𝜇𝑚. 

Table S1. Performance comparison between DNN and DCTS on 3 × 3 tiles with various 
conditions.

Note: all 420 test images are randomly cropped from the test dataset (42 stacks), the 
size of the test image is 384 ×  384 (pixels), which is exactly 3 ×  3 tiles. In general, 
DNN performs better when tiles with low certainty are excluded, and DCTS performs 
better when it is provided the entire 384 ×  384 pixels as input. The certainty values 
for the DCTS were provided from the DNN. 


