
H. Kim et al., Analog-Grade Passive Memristive Circuit 

Page 1 of 15 
 

Supplementary Information 

4K-Memristor Analog-Grade Passive Crossbar Circuit  

H. Kim, M. R. Mahmoodi, H. Nili, and D. B. Strukov 

 

Supplementary Figure 1. Half-select disturbance.  A typical half-biasing scheme in (a) 
passive (“0T1R”) and (b) active (“1T1R”) crossbar circuits that are employed for applying 
write voltages to the selected memristor. In 0T1R arrays, a fraction of the external voltage, 
which is applied to the crossbar array to write the selected device, is dropped across the half-
selected devices that share the same horizontal and vertical electrodes with the selected device. 
On the other hand, the select transistors and additional lines controlling it allow applying a 
nonzero voltage across the selected device only in the 1T1R circuits. (c) Schematic drawings 
of representative I-V curve and device-to-device distributions for set and reset switching 
voltages (bottom right and top left insets, correspondingly) which highlight the issue of half-
select disturbance in passive crossbar circuits. Specifically, writing the selected device with the 
switching threshold at the higher end of the distribution can disturb the half-selected devices at 
the lower end of the distribution if the distribution is wide enough.  Adapted from Ref. 1.  
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Supplementary Figure 2. Sidewall residue challenge. (a) A top and (b) cross-sectional 
scanning electron microscopy (SEM) images of the crossbar circuit fabricated without 
planarization steps. Panel a inset shows a zoomed-in image of a crosspoint area. When the top 
electrodes (TEs) are patterned with the etching process without the planarization step, a 
sidewall residue along the bottom electrodes (BEs) results in the shortening of all TEs. 
 

 
 
Supplementary Figure 3.  Chemical-mechanical polishing calibration. Chemical-
mechanical polishing with 80 rpm plate rotate rate, 50 ml/min slurry flow rate under two 
different conditions for back-pressure: (a) 25 psi and (b) 35 psi. The latter conditions result in 
higher quality surface and are utilized in device fabrication.   
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Supplementary Figure 4.  As-fabricated crossbar results. (a) The conductance map 
measured at 0.4 V. Median conductance is  ~ 45 nS. (b) I-V characteristics for the 36 virgin-
state (i.e., before forming) devices of the 6×6 subarray located in the center of the crossbar 
circuit. The blue curve corresponds to the device highlighted in Fig. 2a of the main text.  
 
 

 
Supplementary Figure 5. Additional crossbar circuit characterization data. (a) Switching 
threshold voltage map. Blue and red data points correspond to set and reset voltages, 
respectively. (b) Correlations in switching voltages. The data are post-processed from Fig. 2e 
of the main text. (c) A retention test is performed after the 1M-cycle endurance test shown in 
Fig. 2d of the main text. Conductance is measured at 0.1 V at 2 s intervals while continuously 
baking the crossbar circuit at 100°C.  
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Supplementary Figure 6. Additional data for the classifier experiment. (a) Software-based 
training results for single-layer perceptron classifier. (b) The cumulative distribution of 
absolute pre-activation error, i.e., |Iideal – Imeasured|/(Iideal)max, for several studied tuning precisions. 
The data are computed based on experimentally measured currents and their desired values 
computed in software for 104 test patterns. (c) The comparison of measured and ideal pre-
activation distributions for the case of 1% relative tuning precision for 104 test patterns.  
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Supplementary Figure 7. Modeling half-select disturbance. (a-d) Details of the utilized 
measurement protocol for modeling (a) set and (b) reset transitions and (c, d) results for 
conductance changes for three studied cases of initial conductance G0. Each line with 
connected dots corresponds to the evolution of the conductance change, normalized to the 
specific tuned initial value G0 and averaged across 500 devices, upon application of the voltage 
pulses with a specific amplitude and exponentially increased duration. (e-i) A 
phenomenological model for dynamic behavior. The results of fitting dynamic equations to the 
experimental (e) set and (f) reset data, averaged over 500 devices, and (g) the corresponding 
model parameters. (h) The distribution of parameter α fitted to reproduce experimentally 
observed device-to-device variations in Fig. 2f, and (i) predicted by the model variations in the 
switching threshold for 4096 devices in the modeled 64×64 crossbar circuit. See 
Supplementary Note 1 for more details. All conductances are specified at 0.1 V.  

Coefficients Set Reset

𝛽ଵ -0.1832 -0.1832

𝛽ଶ 0.3524 0.1239

𝛽ଷ 24.32 4.433

𝛾ଵ 3.108e-08 -0.006067

𝛾ଶ -7.563e-09 0.003209

𝛾ଷ 4.594e-10 -0.0001962

2 1 0 1 2

4k

8k

12k

16k

20k

 

 

C
ou

n
ts

Variation Parameter (a)

 aset

 areset

h i

10n100n
1µ10µ100µ1m10m100m

1

0.2

0.4

0.6

0.8

1.0

-2.0
-1.8

-1.6
-1.4

-1.2
-1.0

-0.8
-0.6

G
/G

0

Pulse Amplitude (V)
Pulse Width (S)

 50 uS
 25 uS
 16 uS

G0

10n100n
1µ10µ100µ1m10m100m

1
10 2

4

6

8

0.6

0.8

1.0

1.2

1.4

1.6

G
/G

0

Pulse
 Amplitu

de (V
)Pulse Width (S)

 7.5 mS
 10 mS
 25 mS

G0

Time
Set

Voltage

Read

Retune to 𝐺

Time

Reset

Voltage
Read

Retune to 𝐺
a b

c d

0.6
0.8

1.0
1.2

1.4
1.6

5

15

25

35

45

55

65

75

0

1

2

3

4

5

G
0  (mS)

DG
/G
0

Pulse Amplitude (V)

 Model
 Experiment

-1.9

-1.6

-1.3

-1.0

-0.7

5

15

25

35

45

55

65

75

-1
.2

-1
.0

-0.8

-0.6

-0.4

-0.2

0.0

G 0 (
mS

)
D

G
/G

0

Pulse Amplitude (V)

 Model
 Experiment

e f g

-3 -2 -1 0 1 2 3

4k

8k

12k

16k

20k
 

C
o

un
ts

Switching Voltage (V)

 SET
 RESET



H. Kim et al., Analog-Grade Passive Memristive Circuit 

Page 6 of 15 
 

 

Supplementary Figure 8. Modeling MLP classifier.  (a) General scheme for the modeled 
differential MLP network. (b) The evolution of classification accuracy and cross-entropy loss 
(inset) during ex-situ training. (c, d) Histograms of (c) the ideal conductances in the 1st positive 
(G1+), 1st negative (G1-), 2nd positive (G2+), and 2nd negative (G2-) weight layers, and (d) the 
ideal pre-activation currents for the hidden (L1) and the output (L2) neurons. (e, f) Map of ideal 
conductances for (e) the 1st layer and (f) the 2nd layer of the network.   
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Supplementary Figure 9. Device uniformity impact on MLP accuracy. (a-l) Modeling 
results when using (a-c) baseline, (d-f) 1st, (g-h) 2nd, and (j-l) 3rd tuning approaches. (a, d, g, j) 
The improvements in classification accuracy with more rounds of tuning. (b, e, i, k) Cumulative 
distribution of the absolute tuning error at the end of the 10th tuning round. (c, f, h, l) 
Classification accuracy as a function of device variations at the end of the 10th tuning round. 
The box plot shows the statistics over 10 different cases of initial conductances.  The thick red 
lines correspond to the demonstrated technology, i.e., α = ~26%. For simplicity, memristors’ 
static I-V nonlinearities and noise are neglected, and ideal peripheral circuits are assumed in 
simulations. In panel a, the accuracy saturates after a few rounds because of the significant 
half-select disturbance when re-tuning higher switching threshold devices. In panel d, the 
utilized maximum values for set / reset thresholds are NA, 2, 0, 1.65, 1.45, 1.4, 1.35, 1.3, 1.2, 
1.1  / NA, 0, -1.65, -1.45, -1.35, -1.3, -1.2, -1.1 for tuning rounds #1, #2, …, #10, respectively.  
In panel j, the highest accuracy is 97.29%.  
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Supplementary Figure 10. Experimental setup. The photo shows the setup's main parts, 
namely the packaged crossbar circuit mounted on a custom printed circuit board, personal 
computer controller, Agilent switch matrix, and Agilent B1500 semiconductor device analyzer. 
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Supplementary Figure 11. Crossbar circuit area scaling with device current. 64×64 
crossbar circuit and its peripheral analog muxes areas for two topologies implemented in 65 
nm process as a function of leakage and forming/write currents. (For simplicity, the area of 
sensing circuitry, decoders, and level-shifters are excluded in this figure to avoid performing 
more comprehensive modeling of scaling down Gon and finding optimal design of other 
peripheral components.) The cell area for 0T1R technology is 250×250 nm2, which was 
determined from the layout in the considered CMOS process. Thick-oxide 3.3 V transistors are 
used to implement select transistors and forming/switching current passing muxes in peripheral 
circuitry. Their sizing is chosen such as not to exceed the 0.7 V voltage drop and hence limit 
the maximum input voltage to 4 V. For 0T1R crossbar circuits, an analog switch are designed 
to pass the forming current to the selected device and leakages through other off-state devices 
in the crossbar. The leakage currents are modeled assuming negligible line resistance and 
floating forming configuration [29]. For 1T1R crossbar circuits, an analog switch in the 
periphery is designed to pass only the forming current though there is less headroom because 
part of the voltage is also dropped on the selector.  The memory and peripheral circuits are 
assumed to overlap for 0T1R implementation. Note that forming current of 250 µA and Goff = 
1.056 µS correspond to the memory technology assumptions of the last two columns in Table 
S3, e.g. max[A, 128B] ≈  820 µm2 and A+128B ≈ 7400 µm2 for 0T1R and 1T1R, 
correspondingly, where A is an area of the 64×64 crossbar memory array and B is an area of 
analog mux circuitry serving one line. The simulation results show that for the 1T1R case, the 
total area is dominated by the cells’ select transistor, which is scaled down with lowering 
forming currents. For the 0T1R case, the total area is due to peripheral muxes, which is reduced 
at higher Goff when lowering leakage currents, but is mostly limited by forming currents at 
lower Goff.  
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Supplementary Table 1. Comparison of memristive circuits. The specific focus of the table 
is on the state-of-the-art non-volatile (filamentary) analog-grade 0T1R metal-oxide devices, 
while only few representative works are listed for metal-oxide 1T1R and solid-state-electrolyte 
0T1R circuits. Furthermore, the table does not include recent results based on dense 
commercial “binary” 1T1R technology. Also, note that the common concern for the solid-state 
electrolyte type devices (rows #1 to #3) and interfacial switching WOx devices (rows #4 to #6) 
is poor state retention.  

 
0 “Crossbar size” refers to the largest-dimension fabricated integrated crossbar circuit (not necessarily fully-functional), while 
the “largest working demo” refers to the largest number of devices employed at once in the demo, i.e., without relying on post-
processing / combining the results from separate measurements. 1 Based on the full pitch of the integrated memory cells. 2 

Largest set voltages are used if statistical data are not reported. 3 The test conditions may be different. 4 Specified at 0.1V for 
the devices with nonlinear static I-V characteristics unless noted otherwise. 5 SA = Stand-alone integrated crossbar circuit, RIE 
= reactive ion etching, BEOL = Back end of line integrated crossbar circuit on CMOS wafer containing access transistors, FI-
BEOL = BEOL with fully integrated CMOS peripheral circuits. 6 Denser single devices are reported, though most experimental 
results are for 25 µm2 devices. 7 Data for the low-resistance state. Significant retention loss at high resistance levels. 8 Based 
on Fig. 4c. 9 From Fig. 1d. 10 40×40 conductance map is based on combining results from separate 25 measurements of 8×8 
subarrays. 11 Based on Fig. 4d. 12 Based on Fig. S3 of [5]. Not clear if the data are obtained after tuning all devices or measured 
immediately after programming each device. 13 Average range of conductance values observed in the crossbar. There is a 
significant variation between different devices.  14 The effective retention drops with an increase in the utilized conductance 
range and/or precision of operation - see, e.g., Fig. 6.5 from [30]. 15 126 6×8 physical subarrays utilized for a logical 108×54 
array with the conductances measured after programming each subarray. 16 From Supplementary Note 10. 17 For the top 
crossbar, while it is 2 V / 50 µA for the bottom one. 18 Effective crossbar dimensions based on 3D-CMOL-like structure (with 
overlapping electrodes in one direction). 19 Total number of employed devices in one filter based on Fig. 4d. 20 Based on Fig. 
2g. Though SEM images of 300-nm-scale devices are shown, all experimental results are based on microscale devices. 21 Based 
on Fig.1c of [17]. 22 Based on Fig. 1c of [16, 19]. 23 Based on Fig. S3 of [28].   

 
Supplementary Table 2. General circuit and device assumptions 

 
CMOS process feature size  65 nm 

Parasitic cap of a minimum metal width1 0.21 fF/μm  

Parasitic cap of a minimum size thick-oxide device  0.38 fF 
Global and local sensing voltage swing  0.15 V 
On-resistance of a thick-oxide device  5 kΩ 
Minimum area of a thick-oxide device 0.72 μmଶ 
Minimum area of a thin-oxide device  0.14 μmଶ 
MIM capacitor 2.5 fF/μmଶ 

1 The total parasitic capacitance of electrodes in 0T1R arrays consists of line-to-line capacitance in crossbar structure 
(M5/M4/M3) that includes coupling and fringing capacitors between conductors (see footnote 3 in Supplimentary Table 3 for 
more details).  

Cell type Ref. Crossbar
size0

Yield 
(%)

Largest  
working 
demo0

Cell
size

Forming 2

current 
( / 

Voltage(V)

Endur-
ance3

(cycles)

Array 
level 

tuning 
precision

Set 
switching 
statistics 
µ / σ (V)

Gmax /Gmin
4 Retention

(@°C)

Type of integration / 
patterning  technique / 

Substantial CMOS foundry 
integration challenges5

0T1R

Si/Ag [2] 32×32 ~100 32×32 ~12008 5000/3.7 >10M - 2.25/ 0.1 10 / 19 ~hours SA/RIE/High-T epitaxy&Ag
SiGe-aSi/Ag [3] 40×40 - 8×810 0.01 - - ~ 50%11 3.5/ - 4/0.1 - BEOL / lift-off / Ag

[4] 11×3 - 11×3 - 1000/~1.8 - - 0.85/0.05 - - SA / lift-off / none

[5-7] 32×32 - 25×20 ~9 >170 / - - ~ 35%12 1.7/ - 3/113 mins to hours 
@RT14 SA / lift-off / none

[8] 108×5415 - 26×10 > 25616 - - - - 2.4/1 mins to hours 
@RT14 FI-BEOL / lift-off / none

[9] 18×2 ~100 18×2 - 250 / ~1.1 - - - 1500/850 - SA / lift-off / none
[10] 16×3 78 4×3 - 1000 / ~2 > 100k - 1.25/0.1 1800/1300 - SA / lift-off / none

TiO2-x

[11,12] 12×12 >50 10×6 0.16 200 / 1.9 >200k - 0.9/0.17 200/6 >140h@76 SA / lift-off / none
[13] 20×20 >95 17×20+8×11 0.25 220 /1.5 >100k < 8% 1.0/0.18 200/6 >20h@120 SA / lift-off / none
[14] 2×10×10 ~100 2×10×10 0.49/2 100/2.517 - - 1.1/0.15 100/0.1 >25h@100 SA/ion beam milling/ none

this work 64×64 ~99 64×64 0.5625 100 / 3.2 >100k < 5% 1.2/0.13 100/6 >20h@100 SA /RIE/ none 
HfO2-x [15] 3D 8×818 - ~12019 ~1000/820 - - binary - 1200/~300 - SA / lift-off / none

1T1R HfO2-x

[16-19] 128×64 >9921 128×64 ~250022 - - <3.1%23 2 / - 900/100 10yr @RT BEOL/lift-off / none
[20] 128×8 - 960 - >150 / >3 - < 35% - 40/5 - BEOL/ lift-off / none
[21] 128×16 >99 128×16 > 5 - - 3.3 % - 20/2 ~ days @RT BEOL /lift-off / none
[22] 158K - 158 K 1.69 100 / >1.8 < 1k ~ 2-bit 1 / - 10 / 0.1 - NA / NA / none
[23] 1K - 448 ~25 - - ~ 20% 3.5 / - 100/0.1 ~1m @30 NA / NA / none
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Supplementary Table 3. Memory assumptions and VMM modeling. Memory cell 
assumptions and the detailed breakdown of area and power for 64×64 VMM blocks. 

 
1 For the demonstrated 0T1R crossbar, the electrode width is 250 nm, and the gap size is 500 nm. In the case of scaled 0T1R 
technology, 100×100 nm2 cell footprint and 150 nm spacing between metal lines are based on design rules for the considered 
65 nm process. The assumptions of 1T1R memory are somewhat aggressive when compared to the state-of-the-art 
demonstrations (Supplementary Table 1). For example, in analog-grade 1T1R device technology [16-19], the cell size is 2,500 
µm2, while switching currents and midrange conductance are ~10× higher. ~100 F2 cell area in F = 22 nm FinFET technology, 
which is equivalent to ~0.42 µm2 in 65 nm planar CMOS process, and 50 µS midrange conductance were reported in [24].  
2 Device conductance is assumed to scale linearly with the device footprint [13]. 
3 𝐶ଵୖ =(𝐶_𝑤 + 2C_ + 𝐶_𝑤 + 2𝐶_ + 2𝐶୰୧୬)(𝑤 + 𝑔) and 𝐶ଵଵୖ= 𝐶ଵୖ + 𝐶ୢ୧, where 𝑤 is the width of 
the electrode, g is the gap size between electrodes, and 𝐶ୢ୧ is the diffusion capacitance of the selector in the ohmic regime, 
and other parameters are obtained from the process design kit, i.e. 𝐶_ = 0.24 fF/μmଶ, 𝐶_ = 0.24 fF/μmଶ, 𝐶_ = 
1.07 × 10ିଶ fF/μm, 𝐶_  = 1.1 × 10ିଶ fF/μm, 𝐶୰୧୬ = 6.5 × 10ିଶ fF/μm. 
4 The maximum input voltage drop during forming of the device is 4 V, from which 3.3 V is dropped on a memristor and 0.7 
V on analog programming muxes. All programming switching is designed using thick-oxide MOSFETs. 
5 The maximum input and output currents were found to be <10𝐼୫ୟ୶,ୡୣ୪୪ from the detailed kernel mapping to 64×64 VMM 
blocks for representative neural networks [26].  
6 Level shifters are used to translate the output voltage from 1.2 V decoders to 3.3 V programming switches.  
7 Local sensing circuitry is optimized according to the VMM block parasitics [25,26]. 
8 The sizing of analog switches is obtained according to the caption of Supplementary Figure 11.   
9 The total area for analog VMM block is calculated as max[A, 128(B+C) + 64D + 2E] and A + 128(B+C) + 64D + 2E  for 
0T1R and 1T1R implementations, correspondingly. The max is due to the assumption of overlap between peripheral circuits 
and memory.   
10 The total area for mixed-signal VMM is calculated as max[A, 128(B+C) + 64D + 2E + 32F] and A + 128(B+C) + 64D + 2E 
+ 32F for 0T1R and 1T1R implementations, correspondingly. The factor of 32 is due to using a 4-bit differential DAC circuit.  
11 Figure 5a explains the distributed local/global sensing implementation. 
12 The estimates are for one output channel so that the total for the 64-output VMM circuit is 64 times larger.  

0T1R 
250nm+500nm

(this paper)

0T1R
100nm+150nm

(scaled)

1T1R 
375 𝐹ଶ

(scaled)
General circuit characteristics 

BL parasitic capacitance of entire channel (fF) 14 3.5 39.56
Maximum output/input current (μA) 5 100 16 16

VMM area breakdown (𝛍𝐦𝟐)
A:   64×64 crossbar memory array 2304 256 6471.7
B:   Level shifter (per channel) 6 11.5
C:   Analog programming mux (per channel) 8 10.5 6.375 7.13
D:   Local sensing circuit (per channel) 7 63.8 50.35 50.35
E:   6×64 decoder 750
F:   Buffered 4-bit current-steering DAC (per channel) 88.8 75.3 75.3

Total single-ended 64×64 analog VMM 9 8395 7010 13579
Total single-ended 64×64 mixed-signal VMM 10 11237 9421 15991

Global sensing circuit (per channel) 11 113.8 100.35 100.35
VMM power breakdown (𝛍𝐖)

Average crossbar power (per channel) 12 60 19.2 19.2
Local sensing (per channel) 12 17.2 11.02 11.02

Buffered 4-bit current-steering DAC (per channel) 37.74 22.08 22.08
Global sensing 11 35.2 31.9 31.9

VMM Characteristics

0T1R 
250nm+500nm

(this paper)

0T1R
100nm+150nm

(scaled)

1T1R 
375 𝐹ଶ

(scaled)
Cell area (μmଶ) 1 0.75×0.75 0.25×0.25 1.58

𝐺୭୬  (μS) 2 100 16 16
𝐺୭  (μS) 2 6.6 1.056 1.056

Cell parasitic capacitance (fF) 3 0.22 0.055 0.61
Forming / Set / Reset voltage (V) 4 3.3
Forming / switching current  (μA) 250

Memory Cell Assumptions
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Supplementary Table 4. Performance estimates for the two studied applications. 
 

 

1 Fully-analog 7-layer (1024-16384-4096-4096-1024-256-100) MLP circuit consists of ~105M weights and utilizes 
architecture similar to the one described in Fig. 5a. 4-bit buffered current steering DACs are assumed in the front-end of the 
network. The neurons in the last layer are assumed to be loaded with a 1 pF capacitor. 
2  Registers are required for buffering input data in the MLP circuit.  
3  Memory efficiency is reported as a fraction of the area occupied by memory cells. In the case of 0T1R circuits, memory cell 
arrays are overlapped with peripheral circuits.  
4 We assume 4-bit aCortex architecture [26] utilizing mixed-signal 64×64 VMM blocks with 4-bit buffered current steering 
DACs. The performance is evaluated for Google’s deep recurrent network for language translation (GNMT) benchmark with 
~134 M weights. 
 

Supplementary Note 1: Phenomenological Dynamic Model 

The main purpose of the model is to estimate the change in device conductance DG, 
with respect to the initial conductance G0, all measured at small non-disturbing (read) voltage 
0.1 V, upon application of write voltage pulse with amplitude V and a fixed duration of 2 ms. 
The fixed duration is assumed for simplicity, i.e., to avoid explicit dependence of conductance 
change on pulse duration in the model. This simplification is also justified because of a similar 
fixed-duration pulse approach utilized in the tuning algorithms. (In a more advanced algorithm, 
variable time duration could be used for faster convergence [27]). Because of the long memory 
state retention for the developed metal-oxide memristors, i.e., their strongly nonlinear 
switching kinetics, obtaining meaningful experimental data for fitting conductance changes at 
half of the nominal write voltages required applying very long, with up to 2 ms duration pulses 
(Supplementary Figure 7a-d). This is the main difference compared to the phenomenological 
model presented in Ref. 28, which used experimental data for a narrower range of write voltage 
pulse amplitudes and durations to derive dynamic model, and hence somewhat inaccurate in 
predicting conductance changes at smaller, half-bias voltages. The following function is found 
to fit well experimental data for both set and reset switching 

                  
∆ீ

ீబ
≈ exp ቂ

ఉభ

ଵାఉమ(ఈ)మቃ sinh ቂ𝛽ଷ
ఈ

ଵାఉమ(ఈ)మቃ ൫γଵ + γଶඥ𝐺 + γଷ𝐺൯,                      (S1) 
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where 𝛽ଵ, 𝛽ଶ, 𝛽ଷ, γଵ, γଶ and γଷ are fitting parameters common for all devices (Supplementary 
Figure 7g), while α is a unique scaling parameter for each device that represents device to 
device variations in the switching threshold (Supplementary Figure 7h).  

Specifically, the model for the average behavior, with fixed α = 1, is first found by 
fitting a surface to the experimental data for the average conductance changes, i.e.  {<DG/G0>, 
G0, V} data points (Supplementary Figure 7e,f ).  

As a reminder, the effective set (reset) switching threshold of the crossbar array is 
defined as a voltage at which the small-voltage conductance is changed from its extreme value 
G0 = 14 µS (75 µS) by more than 20%, i.e., |DG|/G0 = 0.2 when applying increasing amplitude 
positive (negative) voltage ramp (Fig. 2e). According to the fitted model, Vset

*= 1 V and Vreset
*= 

-1.4 V for α = 1. The experimentally measured threshold voltages (Fig. 2f) are well 
approximated with log-normal distributions with parameters µ = 0.14 and σ = 0.25, and µ = 
0.29 and σ = 0.26 for set and reset switching, respectively. According to the selected fitting 
function, parameter α is a multiplicative factor for the applied voltages. Hence, when modeling 
distribution in set threshold voltages of a crossbar circuit, we first randomly initialize Vset for 
each crosspoint device by sampling it from the fitted set threshold log-normal distribution and 
then find the corresponding αset = Vset*/ Vset. A similar approach is used to initialize αreset. An 
example of the generated α using such approach and corresponding threshold voltages 
predicted by the model are shown in Supplementary Figure 7h and 7i, respectively.  

Finally, since the experimentally observed variations in set and reset threshold voltages 
(i.e. the relative standard deviations or the coefficient of variations) are very similar, for 
simplicity, we use the same α when sweeping variations in the modeling studies (Fig. 5 and 
Supplementary Figure 9). 

 

Supplementary Note 2: System-Level Performance Estimates 

To demonstrate the prospects of 0T1R technology, we model the performance of two 
representative neuromorphic architectures - aCortex [26], which is an energy-efficiency-
optimized multi-purpose architecture for the acceleration of a wide range of neural network 
inference models, and a fully-analog large-scale (1024-16384-4096-4096-1024-256-100) 
multilayer perceptron with ~105M parameters, which is especially suitable for high-throughput 
inference tasks. All peripheral circuits, digital blocks, and circuits for conductance tuning are 
designed in the 65 nm CMOS process – see Supplementary Table 2-4 for more details. The 
performance is evaluated using the results of physical layout and SPICE simulations of the 
major components. All designs involve 64×64 physical crossbar circuits, while differential 
implementation based on two physical crossbar circuits, i.e., similar to the architecture shown 
in Fig. 5a, are assumed for 64×64 VMM operation. The details of the simulation methodology 
for aCortex were presented in [26]. For MLP, the complete signal path from the network’s 
input to the output is properly modeled by simulating signal propagation in VMM blocks and 
taking into account the intra-block parasitic capacitance of the global lines. Furthermore, three 
technology options are evaluated – the one with parameters close to the demonstrate device, 
65-nm 0T1R, and 65-nm 1T1R devices with the parameters shown in Supplementary Table 2b.  

The simulation results for the fully-analog MLP implementation with the demonstrated 
technology show 5.61 µJ/f energy-efficiency and 16.6 Mf/s throughput with 12.95% of 4.07 
cm2 of the chip occupied by the memristors. When scaled down to 65 nm, though throughput 
reduces due to 11.6 Mf/s, the overall energy efficiency improves because of power scaling in 
the array and amplifiers. As expected, the area slightly improves to 3.17 cm2 for 65-nm 0T1R 
technology, though it becomes substantially larger (increased to 6.39 cm2) for 1T1R technology.  
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The simulation results for aCortex show that the inference time for GNMT benchmark 
tasks slightly improves when scaling 0T1R technology. Though peripheral circuits become 
slower in scaled 0T1R circuits due to the reduced midrange device conductance, the upshot is 
a more compact implementation of VMM blocks, which results in less parasitics in the digital 
circuits and much faster data transfer. Most importantly, the density of the scaled 0T1R aCortex 
chip is better by a factor of ~18×, while throughput and energy efficiency also substantially 
higher compared to the 65-nm 1T1R design.  

 Our estimates show that further scaling down of the technology will increase the gap 
between passive and active memories even more if the switching voltage and currents remain 
the same. Alternatively, with appropriate scaling of cell currents, more efficient and compact 
peripheral circuits can be utilized to improve memory efficiency, especially in the MLP circuit, 
potentially matching that of embedded NOR flash memory aCortex [26]. Furthermore, the 
memory efficiency is expected to improve significantly with periphery sharing and 3D memory 
integration.   
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