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AT and PM networks are less segregated with older age regardless of analysis approaches 

The relationship between age group and segregation was assessed across multiple analysis 

approaches related to matrix thresholding, bivariate vs. semi-partial correlations, various network 

metrics of intersystem relationships, and network labeling. 

To assess the influence of matrix thresholding on age group differences in network 

segregation, this supplementary analysis was identical to the original analysis (in the main text) 

except we retained both positive and negative correlations in each subject’s z-matrix (Figure S1A). 

Similarly, to assess the influence of type of correlation analysis on age group differences in 

network segregation, this supplementary analysis was identical to the original one except we 

calculated bivariate correlations instead of semi-partial correlations (Figure S1B).  

 To examine the influence of network labeling on age group differences in network 

segregation, we used two different labeling schemes (in addition to our original one). First, we 

used the Brainnetome Atlas1, using all ROIs from amygdala (4 ROIs), FuG (6 ROIs), ITG (14 

ROIs), PHC (12 ROIs), RSC (4 ROIs), and precuneus (8 ROIs). To create these ROIs, we produced 

4mm-radius spheres centered around each MNI coordinate from the literature (Figure S1C). To 

create AT and PM networks based on the same AT and PM regions used in one of the seminal 

papers defining AT and PM systems2, we added 4 FreeSurfer ROIs each to our original AT and 

PM networks. These additional FreeSurfer regions included bilateral lateral orbitofrontal cortex 

and temporal pole for the AT network and medial orbitofrontal and posterior cingulate cortices for 

the PM network, creating a total of 10 ROIs for each network (Figure S1D).  

To assess the influence of various network metrics of intersystem relationships, we used 

the Brain Connectivity Toolbox in Matlab to calculate participation coefficient and modularity 

values for each subject. The participation coefficient of a given ROI measures to what extent an 



ROI interacts with ROIs in other networks in relation to the total number of connections it contains 

in its own network. Each subject’s participation coefficient value was calculated from their 

respective z-matrix. Participation coefficients for each ROI were computed based on the following 

formula: 
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where 𝑘!(𝑚) is the weighted connections of ROI i with nodes in network 𝑚 and 𝑘! is the 

total weighted connections ROI i exhibits. Thus, higher participation coefficient values indicate 

proportionally greater communication with ROIs in other networks (Figure S1E).  

Similar to network segregation, modularity assesses the strength of module (i.e., network) 

segregation. Specifically, the modularity index (Q) compares the observed intra-module functional 

connectivity with that which is expected by chance. Thus, higher modularity values reflect stronger 

separation of the system’s modules. The modularity index is formally defined as: 
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where 𝐸 is the number of graph connections (i.e., edges), A is the adjacency matrix, 𝛾 is 

the resolution parameter, e is the null model, and 𝛿 is an indicator that equals 1 if ROIs i and j 

belong to the same module and 0 otherwise (Figure S1F).  

 

 



 

Figure S1. Older adults show significantly less segregated networks compared to younger adults 

across multiple analysis approaches related to A) matrix thresholding: inclusion of positive and 

negative correlations (t = 2.8, p = 0.006), B) bivariate correlations (t = 2.4, p = 0.019), network 

labeling: C) Brainnetome Atlas (t = 3.4, p = 0.001) and D) inclusion of 20 FreeSurfer ROIs used 

in Ranganath et al. 2012. (t = 5.7, p < 0.001), and various network metrics of intersystem 

relationships: E) participation coefficient (t = -4.7, p < 0.001), and F) modularity (t = 7.9,  p < 

0.001).  

 

AD pathology moderates the association between segregation and episodic memory in AT 

and PM networks 

 To examine the association between network segregation and episodic memory in the main 

text, we computed a single segregation measure by averaging the AT and PM segregation values 

because our episodic memory composite measure included both object- and spatial-related 



memory domains. Figure S2 below shows that the results were essentially the same in both the AT 

and PM networks separately.  

 

 

Figure S2. Alzheimer’s disease pathology moderates the association between network 

segregation and episodic memory performance in AT and PM systems. (A) Less segregated 

AT networks are associated with better performance in Aβ- older adults whereas (B) AT 

segregation is not associated with performance in Aβ+ older adults. (C) Similarly, less segregated 

PM networks are associated with better performance in Aβ- older adults whereas (D) PM 

segregation is not associated with performance in Aβ+ older adults. 

 



Baseline segregation predicts longitudinal memory decline using various measures of 

pathology 

 

In order to examine the relationship between baseline segregation, baseline Aβ and tau, 

and change in cognitive performance, we used a linear mixed model that included two-way 

interactions between baseline segregation and time, global Aβ and time, and tau and time. In the 

main text, we report the results using continuous measures of global Aβ and BraakIII-IV tau as they 

retain more statistical power in the model. The results were very similar whether we used BraakIII-

IV tau (Table 3 in main text), AT-tau (Table S4) or PM tau (Table S5) and whether we used 

dichotomous (Table S6) or continuous Aβ and tau (Table 3 in main text) in the model. All models 

were adjusted for age, sex, and education. 

 

Tables 

 

Table S1. Multiple regression results for AT-Tau predicting AT-segregation and Global Aβ 

predicting PM-segregation (while controlling for mean motion). 

          

 AT-seg  PM-seg  
Predictor t p t p 
Age -0.33 0.75 -1.3 0.2 
Aβ -0.33 0.74 -3.1 0.003 
Sex -0.51 0.61 0.19 0.85 
Tau -2.1 0.047 1.1 0.26 
Aβ x Tau 0.39 0.69 1.5 0.15 
Mean motion -0.23 0.82 -0.29 0.78 

     



*AT-tau was used for the regression predicting AT-segregation whereas PM-tau was used for predicting PM-

segregation. 

 

 

Table S2. Multiple regression results for mean segregation and its interaction with Aβ-status 

predicting episodic memory at baseline (while controlling for mean motion). 

   
Predictor t p 
Age -2.8 0.007 
Aβ-status -2.5 0.016 
Sex 0.88 0.38 
Education 1.2 0.22 
Mean 
Segregation -2.8 0.006 
Aβ-status x Seg 2.4 0.017 
Mean motion 1.2 0.23 

   
 
 
Table S3. Multiple regression results for mean segregation and its interaction with Tau-status 

predicting episodic memory at baseline (while controlling for mean motion). 

   
Predictor t p 
Age -2.5 0.015 
Tau-status -1.4 0.18 
Sex 0.8 0.43 
Education 1.1 0.28 
Mean 
Segregation -2.1 0.043 
Tau-status x Seg 1.4 0.16 
Mean motion 1.3 0.18 

   
 
 
 



 

 

Table S4. Linear mixed model results for segregation and pathology predicting longitudinal 

episodic memory change (while controlling for mean motion). 

   
Predictor Estimate p 
Age -0.18 0.04 
Sex -0.03 0.69 
Education 0.14 0.1 
Segregation -0.2 0.016 
Time  -0.07 0.05 
Tau -0.17 0.09 
Aβ 0.03 0.75 
Tau x Time -0.15 0.001 
Aβ x Time -0.001 0.98 
Segregation x Time 0.08 0.028 
Mean motion -0.13 0.12 

   
 

 

Table S5. Movement parameters for each age group.  

   
Movement Parameter YA (n = 55) OA (n = 97) 
Framewise displacement (mm) 0.10 ± 0.04 (0.05-0.31) 0.15 ± 0.10 (0.06-0.76) 
Percentage of outliers 5 ± 3.5 (1-19) 3.4 ± 2.5 (1-15) 
 
  

  

 

 

 

 



 

 

Table S6. Older adult cohort demographics split by Aβ- and tau-status. 

        

  PiB- (N = 54) PiB+ (N = 42) t, p Tau- (N = 66) Tau+ (N = 30) t, p 
Age 75.9 ± 7.4 (60-93) 77 ± 4 (69-86) t = -0.88, p = .38 76 ± 6.7 (60-93) 77.3 ± 4.4 (65-84) t = -1, p = 0.32 

Sex (M/F) 18/36 17/25 t = 0.72, p = 0.48 20/46 16/14 t = 2.2, p = 0.039 

Education (Yrs) 17 ± 0.32 16.5 ± 1.8 t = 1.2, p = 0.23 16.8 ± 1.9 16.8 ± 1.8 t = -0.02, p = 
0.98 

APOE ε4 (C/NC) 6/46 (2 N/A) 22/19 (1 N/A) 
t = -4.6, p < 
0.001 15/48 (1 N/A) 13/17 

t = -1.8, p = 
0.073 

Global PiB DVR 
1.01 ± 0.03 (0.92-
1.06) 

1.37 ± 0.27 (1.07-
1.89) 

t = -8.8, p < 
0.001 

1.09 ± 0.17 (0.92-
1.76) 1.32 ± 0.3 (1-1.9) t = -3.9, p < 

0.001 

AT FTP SUVR 
1.21 ± 0.10 (0.98-
1.5) 1.39 ± 0.24 (1.11-2.3) t = -4.5, p < 

0.001 1.2 ± 0.08 (0.98-1.3) 1.47 ± 0.25 (1.3-2.3) t = -5.8, p < 
0.001 

PM FTP SUVR 
1.13 ± 0.10 (0.94-
1.3) 

1.24 ± 0.13 (1.05-
1.63) 

t = -4.6, p < 
0.001 

1.12 ± 0.08 (0.94-
1.25) 

1.3 ± 0.10 (1.11-
1.63) 

t = -9.7, p < 
0.001 

       
 

 

Table S7. Linear mixed model results for segregation and pathology (including AT-tau) predicting 

longitudinal episodic memory change. 

 
    
Predictor Estimate p 
Age -0.20 0.02 
Sex -0.003 0.97 
Education 0.13 0.12 
Segregation -0.23 0.007 
Time  -0.07 0.051 
AT-tau -0.11 0.4 
Aβ 0.03 0.79 
AT-tau x Time -0.19 <0.001 
Aβ x Time 0.007 0.87 
Segregation x Time 0.07 0.049 



   
 

 

Table S8. Linear mixed model results for segregation and pathology (including PM-tau) predicting 

longitudinal episodic memory change. 

   
Predictor Estimate p 
Age -0.20 0.03 
Sex 0.02 0.84 
Education 0.13 0.13 
Segregation -0.18 0.036 
Time  -0.07 0.071 
PM-tau -0.11 0.29 
Aβ 0.03 0.79 
PM-tau x Time -0.08 0.073 
Aβ x Time -0.05 0.25 
Segregation x Time 0.07 0.05 

   
 

Table S9. Linear mixed model results for segregation and (dichotomous) pathology predicting 

longitudinal episodic memory change. 

   
Predictor Estimate p 
Age -0.20 0.02 
Sex 0.007 0.94 
Education 0.13 0.15 
Segregation -0.18 0.032 
Time  -0.06 0.09 
Tau-status 0.009 0.93 
Aβ-status 0.03 0.78 
Tau-status x Time -0.09 0.03 
Aβ-status x Time -0.01 0.78 
Segregation x Time 0.07 0.05 
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