OMTM, Volume 22

# Supplemental information

# Unique somatic variants in DNA from urine

#### exosomes of individuals with bladder cancer

Xunian Zhou, Paul Kurywchak, Kerri Wolf-Dennen, Sara P.Y. Che, Dinanath Sulakhe, Mark D'Souza, Bingqing Xie, Natalia Maltsev, T. Conrad Gilliam, Chia-Chin Wu, Kathleen M. McAndrews, Valerie S. LeBleu, David J. McConkey, Olga V. Volpert, Shanna M. Pretzsch, Bogdan A. Czerniak, Colin P. Dinney, and Raghu Kalluri

#### **Supplementary Material**

# Unique somatic variants in the DNA from urine exosomes of bladder cancer patients

Xunian Zhou<sup>1,‡</sup>, Paul Kurywchak<sup>1,‡</sup>, Kerri Wolf-Dennen<sup>1</sup>, Sara P.Y. Che<sup>1</sup>, Dinanath Sulakhe<sup>2</sup>, Mark D'Souza<sup>2</sup>, Bingqing Xie<sup>2</sup>, Natalia Maltsev<sup>2</sup>, T. Conrad Gilliam<sup>2</sup>, Chia-Chin Wu<sup>3</sup>, Kathleen M. McAndrews<sup>1</sup>, Valerie S. LeBleu<sup>1,4</sup>, David J McConkey<sup>5</sup>, Olga Volpert<sup>1</sup>, Shanna Pretzsch<sup>6</sup>, Bogdan A Czerniak<sup>7</sup>, Colin Dinney<sup>6</sup>, Raghu Kalluri<sup>1,8,9,\*</sup>

<sup>1</sup>Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
<sup>2</sup>Department of Human Genetics, University of Chicago, Chicago, IL
<sup>3</sup>Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
<sup>4</sup>Feinberg School of Medicine, Northwestern University, Chicago, IL
<sup>5</sup>Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD
<sup>6</sup>Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX
<sup>7</sup>Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX
<sup>8</sup>School of Bioengineering, Rice University, Houston, TX

<sup>‡</sup>These authors contributed equally

\*Corresponding author: Raghu Kalluri, MD, PhD Email: <u>rkalluri@mdanderson.org</u>

#### Supplementary data with analyses for individual patients

#### https://doi:10.17632/kg2ccb425s.1

The files contain (a) annotations of the genes containing somatic variations; (b) the results of the enrichment analyses for the identification of the functional categories and pathways over-represented in the set of genes containing somatic variations; (c) the reconstructions of the molecular networks of genes identified in every sample (e.g. tumor or urine), and (d) the predictions of the miRNAs potentially targeting the UTRs containing somatic variations.

#### **Supplementary Figures**



Supplementary Figure 1. Representative H&E images of bladder cancer patients

Representative H&E images of the indicated bladder cancer patient; please see **Supplementary Table 1** for details. (**A**) Papillary urothelial carcinoma, low grade (P1). (**B**) Urothelial carcinoma with squamous differentiation, high grade (P2). (**C**) Papillary urothelial carcinoma, low grade (P3). (**D**) Urothelial carcinoma, high grade (P4). (**E**) Urothelial carcinoma, high grade (P5). (**F**) Small cell variant of urothelial carcinoma (P6). Scale bar, 100 μm.



# **Supplementary Figure 2. Diagram of urine exosome isolation and purification procedure**. Healthy sample and BC patient urine are thawed from -80°C storage and centrifuged to remove protein contaminants

and other debris. The resulting pellet contains Tamm-Horsfall (THS) glycoprotein, which is known to trap exosomes. These exosomes can be liberated by digesting Tamm-Horsfall in DTT. Liberated exosomes, now in the supernatant following an additional spin, are combined with the supernatant of the first spin. The combined supernatants are then processed using filtration and ultracentrifugation (UC) to collect exosomes for downstream analysis. The exosomes from UC (UC pellets) were also subjected to size exclusion chromatography and fractions 7-10 were pooled for further experiments.



Supplementary Figure 3. Full-size autographs of the Western blots and Coomassie staining. (A) Lane1: Healthy human urine exosome lysate. Lane 2: Healthy human serum exosome lysate. (B) Coomassie

blue staining of the fractions 7-11, 17-19 and UC exosome pellets. The presence of albumin was found in fractions 18 and 19. THP and albumin were present in the UC pellet. (C) Fraction 7-11 of urine exosome lysate. Molecular weights are indicated in writing under each autograph. (D) DNA was isolated from healthy sample 8 (H8) without DNase I (left) or with DNase I (right) to eliminate exogenous DNA and resultant DNA fragments were analyzed by capillary electrophoresis. (E-F) DNA was isolated from BC tumor biopsies (E), matched serum (F) from P2 and P5 and analyzed by capillary electrophoresis.



Supplementary Figure 4. PCR & Sanger sequencing of BC hotspots in patient samples. (A) Gel electrophoresis of PCR hotspot targets in urine exoDNA samples in six BC patients. (B) Representative

Sanger sequencing alignment of *TP53* hotspot PCR product in PBMC, tumor, and urine exoDNA from patient 2.



Supplementary Figure 5. Bioinformatics analysis using NGS data for normal and tumor tissues, serum and urine exoDNA. (A) Analytic workflow; (B) High-throughput data analysis; (C) Downstream analysis.



**Supplementary Figure 6.** Sanger sequencing confirmed select variants in genes frequently mutated in bladder cancer. Tumor DNA isolated for the P2, P5 and P6 sample sets, which showed identical variants in the urine exoDNA and tumor tissue. DNA was amplified with primers flanking the identified variants and Sanger sequencing performed (for primers see Supplementary Table 2). (**A**, **B**) Confirmed variant for exonic variants in *TP53* sequence (P2 and P5, respectively). (**C**) Confirmed exonic variant in *FGFR3* sequence (P2). (**D**) Confirmed deletion in 3'UTR region in *RXRA* (P6).

# **Supplementary Tables**

# Supplementary Table 1. Bladder cancer patient information.

| Inform        | nation |                      | Biopsy                        |                  | Cystect                    | omy          |                                  | Treatment           |
|---------------|--------|----------------------|-------------------------------|------------------|----------------------------|--------------|----------------------------------|---------------------|
| Patient<br>ID | Gender | Histology            | Grade                         | Invasive         | Positive<br>Nodes<br>(Y/N) | LVI<br>(Y/N) | Neo-<br>adjuvant<br>Chemo        | BCG/Intravesical Tx |
| P1            | Male   | Papillary<br>UCC Low |                               | Non-<br>invasive | No No                      |              | lfos/Adria(2)<br>DD-<br>MVAC(4)  | No                  |
| P2            | Female | Squamous             | High                          | Non-<br>invasive | No                         | No           | CGI-5 cycles                     | No                  |
| P3            | Female | Papillary<br>UCC     | Low                           | Non-<br>invasive | -                          | -            | No                               | BCG/Mitomycin       |
| P4            | Male   | UCC                  | CC High Invasive No No cycles |                  | GEM/Cis 4<br>cycles        | Yes (BCG)    |                                  |                     |
| P5            | Male   | UCC                  | High                          | Invasive         | Yes                        | No           | DD-MVAC 4<br>cycles              | No                  |
| P6            | Male   | Small<br>Cell/UCC    | -                             | Invasive         | No                         | No           | Ifos/Adria(1)<br>Etop/Cis (3)    | No                  |
| P7            | Male   | UCC                  | High                          | invasive         | Yes                        | _            | Tax/Carbo,<br>Gem/Cis,<br>Pembro | No                  |
| P8            | Male   | Papillary            | Low                           | Non-<br>invasive | -                          | _            | N/A                              | Yes (BCG)           |
| P9            | Male   | Papillary            | illary High inva              |                  | -                          | -            | N/A                              | Yes (BCG)           |
| P10           | Male   | UCC, CIS             | High                          | Non-<br>invasive | No                         | No           | No                               | Yes (BCG)           |

| Gene     | Use        | Forward – 5'              | Reverse – 3'           |
|----------|------------|---------------------------|------------------------|
| FGFR3-1  | PCR        | CATGTCTTTGCAGCCGAGGA      | GGCAGCTCAGAACCTGGTAT   |
| FGFR3-2  | PCR        | GTGACCGAGGACAACGTGAT      | TCGGTCAAACAAGGCCTCAG   |
| FGFR3-3  | PCR        | CCCTGAGCGTCATCTGCC        | ACCTTGCTGCCATTCACCTC   |
| HRAS-1   | PCR        | GCGCCAGGCTCACCTCTAT       | CTGGGCCTGGCTGAGCA      |
| HRAS-2   | PCR        | ACTGGTGGATGTCCTCAAAAGA    | AGAGGCTGGCTGTGTGAACT   |
| KDM6A    | PCR        | ACACAACCAGCATTTACTTTTCCT  | ATTGGCCAAAGGCTGCCC     |
| TP53-1   | PCR        | GGCAACTGACCGTGCAAGT       | TGCTGTCCCCGGACGATATT   |
| TP53-2   | PCR        | AAGAAGCCCAGACGGAAACC      | TCACCCATCTACAGTCCCCC   |
| TP53-3   | PCR        | AACCCCTCCTCCCAGAGAC       | CCAGGCCTCTGATTCCTCAC   |
| TP53-4   | PCR        | TATGGAAGAAATCGGTAAGAGGTGG | ATCTTGGGCCTGTGTTATCTCC |
| TP53-5   | PCR        | CTGAGGCATAACTGCACCCT      | TCCTTACTGCCTCTTGCTTCTC |
| TP53-6   | PCR        | GCTGCTCACCATCGCTATCT      | TACTCCCCTGCCCTCAACAA   |
| PIK3CA-1 | PCR        | CATCTGTGAATCCAGAGGGGAA    | AGCACTTACCTGTGACTCCAT  |
| PIK3CA-2 | PCR        | ACATTCGAAAGACCCTAGCCTT    | AATCGGTCTTTGCCTGCTGA   |
| TERT     | PCR        | AGTGGATTCGCGGGCACAGA      | CAGCGCTGCCTGAAACTC     |
| FGFR3-4  | PCR        | CCTGAAGATGGGAGCCTTTAC     | CCTGGGACACACAGCAATTA   |
| FGFR3-5  | Sequencing | AGGCTGGACGTACATTCTTG      |                        |
| RXRA     | PCR        | TGAGCCTCATACCTGTACCA      | CTCTGTGGCATCTTCACTCC   |
| RXRA     | Sequencing | GGTGGCTAATGAGCTGATGTTA    |                        |
| TP53-7   | PCR        | CATCACACCCTCAGCATCTC      | GCCAGACCTAAGAGCAATCA   |
| TP53-8   | Sequencing | CATCACACCCTCAGCATCTC      |                        |

Supplementary Table 2. Primer sets for PCR amplification and Sanger sequencing.

Supplementary Table 3. Total reads and coverage achieved by whole exome sequencing. Mapping rate ( $\geq$ 95%), Duplicate mapped reads ( $\leq$ 25%), Mean coverage ( $\geq$ 100X), Median coverage ( $\geq$ 50X) WES total reads & coverage. PBMC DNA was not available for patient 3 and this patient was excluded from further bioinformatics analysis. Raw sequencing metrics revealed a mean target coverage of 158-198X in PBMC samples, 138-162X in tumor samples, 31-334X in urine exosome samples, and 14-187X in serum exosome samples. Median target coverage ranged from 124-156X in PBMC samples, 103-127X in tumor samples, 1-138X in urine exosome samples. Median target coverage was likely reduced in urine and serum exosome samples due to whole-genome amplification being employed before library preparation, which is known to create bias in sequence fragment representation.

| Туре            | Patient<br>ID | Total<br>reads<br>x 10 <sup>6</sup> | Mapping<br>rate (%) | Duplicate<br>Mapped<br>Reads<br>(%) | Mean<br>Coverage   | Median<br>Coverage | 100X<br>(%Targets) | 75X<br>(%Targets) | 50X<br>(%Targets) |
|-----------------|---------------|-------------------------------------|---------------------|-------------------------------------|--------------------|--------------------|--------------------|-------------------|-------------------|
| PBMCs           | 1             | 166.57                              | 99.78               | 12.75                               | 196.35             | 155.77             | 68.03              | 73.68             | 77.9              |
| PBMCs           | 2             | 162.04                              | 99.8                | 13.23                               | 198.36             | 156.26             | 68.36              | 73.86             | 77.78             |
| PBMCs           | 4             | 150.11                              | 99.8                | 11.66                               | 186.92             | 150.57             | 67.18              | 73.29             | 77.63             |
| PBMCs           | 5             | 142.86                              | 99.76               | 13.26                               | 168.41             | 1 132.65 63.18     |                    | 71.1              | 76.72             |
| PBMCs           | 6             | 138.96                              | 99.7                | 13.2                                | 158.76             | 124.98             | 61.02              | 70                | 76.31             |
| Tumor           | 1             | 135.69                              | 99.73               | 10.89                               | 161.8 127.42 61.48 |                    | 61.48              | 70.12             | 76.21             |
| Tumor           | 2             | 131.81                              | 99.73               | 11.3                                | 157.93             | 118.28             | 57.96              | 67.85             | 75.18             |
| Tumor           | 3             | 119.83                              | 99.69               | 12.57                               | 138.7              | 103.83             | 52.03              | 64.7              | 74.27             |
| Tumor           | 4             | 126.69                              | 99.73               | 11                                  | 153.08             | 114.17             | 56                 | 65.81             | 73.64             |
| Tumor           | 5             | 133.66                              | 99.72               | 10.78                               | 162.23             | 124.24             | 60.33              | 69.43             | 75.91             |
| Tumor           | 6             | 128.38                              | 99.73               | 13.91                               | 149.83             | 109.06             | 54.27              | 65.52             | 74.28             |
| Urine<br>ExoDNA | 1             | 313.38                              | 99.28               | 18.11                               | 334.59             | 138.64             | 138.64 39.59       |                   | 58.56             |
| Urine<br>ExoDNA | 2             | 247.14                              | 98.38               | 24.03                               | 233.48             | 63.12              | 23.67              | 29.86             | 39.25             |
| Urine<br>ExoDNA | 3             | 238.27                              | 96.4                | 42.73                               | 162.47             | 6.86               | 8.88               | 10.95             | 14.43             |
| Urine<br>ExoDNA | 4             | 239.51                              | 78.11               | 76.43                               | 31.29              | 1.14               | 1.58               | 2.08              | 2.98              |
| Urine<br>ExoDNA | 5             | 249.37                              | 98.75               | 32.85                               | 199.52             | 20.47              | 11.62              | 14.94             | 20.64             |
| Urine<br>ExoDNA | 6             | 260.87                              | 98.9                | 36.09                               | 185.7              | 26.2               | 9.64               | 13.4              | 20.28             |
| Serum<br>ExoDNA | 1             | 163.31                              | 87.06               | 75.18                               | 13.99              | 0                  | 0.6                | 0.77              | 1.08              |
| Serum<br>ExoDNA | 2             | 255.72                              | 97.39               | 39.18                               | 187.52             | 23.95              | 24.08              | 29.04             | 36.44             |
| Serum<br>ExoDNA | 3             | 259.5                               | 94.78               | 47.39                               | 141.96             | 3.93               | 12.94              | 15.42             | 19.33             |
| Serum<br>ExoDNA | 4             | 264.42                              | 95.95               | 65.09                               | 148.16             | 0                  | 5.97               | 6.93              | 8.46              |

| Serum<br>ExoDNA        | 5     | 255.88 | 93.14 | 47.93 | 122.54 | 21.31 | 20.08 | 25.14 | 32.88 |
|------------------------|-------|--------|-------|-------|--------|-------|-------|-------|-------|
| Serum<br>ExoDNA        | 6     | 256.7  | 89.06 | 78.58 | 33.8   | 0     | 1.29  | 1.57  | 2.12  |
| Below qua<br>threshold | ality |        |       |       |        |       |       |       |       |

Supplementary Table 4. Total variants, concordance and contamination analysis. (A) Total variants by sample, (B) Concordance, PBMCs (Normal, N) vs Tumor (T), (C) Concordance, PBMCs (Normal, N) vs Urine (U), (D) Concordance, PBMCs (Normal, N) vs Serum (S), (E) Contamination, PBMCs (Normal, N) vs Tumor (T), Urine (U) and Serum (S), (F) Summary of QU analysis.

#### A. Total variants by sample

|                | P1        | P2        | P4        | Р5        | P6        | Total<br>Variants |
|----------------|-----------|-----------|-----------|-----------|-----------|-------------------|
| PBMCs          | 1,055,918 | 954,048   | 879,234   | 908,288   | 948,607   |                   |
| Serum          | 28,197    | 515,271   | 140,414   | 438,430   | 34,241    | 1,156,553         |
| Tumor          | 944,394   | 934,908   | 1,053,203 | 874,486   | 872,261   | 4,679,252         |
| Urine          | 1,214,430 | 851,080   | 92,435    | 524,199   | 637,053   | 3,319,197         |
| Total variants | 3,242,939 | 3,255,307 | 2,165,286 | 2,745,403 | 2,492,162 |                   |

#### B. Concordance, PBMCs (Normal, N) vs Tumor (T)

|     | P1N    | P2N    | P4N    | P5N    | P6N    |
|-----|--------|--------|--------|--------|--------|
| P1T | 99.90% | 39.11% | 40.33% | 40.62% | 39.06% |
| P2T | 39.21% | 99.84% | 37.81% | 39.78% | 37.43% |
| P4T | 40.31% | 37.67% | 99.86% | 40.08% | 38.07% |
| P5T | 40.65% | 39.78% | 39.98% | 99.88% | 39.09% |
| P6T | 38.88% | 37.13% | 38.12% | 38.59% | 99.92% |

#### C. Concordance, PBMCs (Normal, N) vs Urine (U)

|     | P1N    | P2N    | P4N    | P5N    | P6N    |
|-----|--------|--------|--------|--------|--------|
| P1U | 98.86% | 32.74% | 34.62% | 35.01% | 31.30% |
| P2U | 34.90% | 98.56% | 34.19% | 36.00% | 31.89% |
| P4U | 44.85% | 45.05% | 67.56% | 48.70% | 43.95% |
| P5U | 41.67% | 39.62% | 40.75% | 95.03% | 39.17% |
| P6U | 35.83% | 32.78% | 34.25% | 36.22% | 92.19% |

|     | P1N    | P2N    | P4N    | P5N    | P6N    |
|-----|--------|--------|--------|--------|--------|
| P1S | 49.05% | 71.52% | 42.95% | 42.13% | 38.98% |
| P2S | 41.59% | 97.94% | 42.21% | 42.08% | 39.36% |
| P4S | 55.02% | 52.07% | 66.84% | 55.54% | 52.81% |
| P5S | 38.79% | 38.42% | 38.84% | 98.20% | 35.84% |
| P6S | 51.79% | 51.97% | 50.82% | 48.18% | 49.14% |

# D. Concordance, PBMCs (Normal, N) vs Serum (S)

# E. Contamination, PBMCs (Normal, N) vs Tumor (T), Urine (U) and Serum (S)

|    | N     | Т     | U      | S      |
|----|-------|-------|--------|--------|
| P1 | 0.37% | 0.51% | 1.38%  | 98.87% |
| P2 | 0.36% | 0.70% | 1.31%  | 2.35%  |
| P4 | 0.32% | 0.33% | 94.87% | 99.51% |
| P5 | 0.55% | 0.75% | 2.78%  | 1.55%  |
| P6 | 0.43% | 0.65% | 4.48%  | 98.99% |

# F. Summary of QU analysis. Conc: concordance; Cont: contamination.

|           |      | N        |      | т        |                  | U        | S                |         |  |  |
|-----------|------|----------|------|----------|------------------|----------|------------------|---------|--|--|
|           | Conc | Cont     | Conc | Cont     | Conc             | Cont     | Conc             | Cont    |  |  |
| P1        | OK   | Possible | OK   | Possible | OK               | Possible | Possible<br>swap | Massive |  |  |
| P2        | ОК   | Possible | OK   | Possible | Possible<br>swap | Massive  | Negative         | Massive |  |  |
| P4        | OK   | OK       | OK   | OK       | Possible<br>swap | Massive  | Possible<br>swap | Massive |  |  |
| P5        | OK   | Possible | OK   | Possible | OK               | Possible | Negative         | Massive |  |  |
| <b>P6</b> | OK   | Possible | OK   | Possible | OK               | Possible | Possible<br>swap | Massive |  |  |

# Supplementary Table 5. Read depth per individual somatic variants identified in the study. Normal:

matched PBMCs.

| Variation ID |     | Normal (PBMCs) |    |    |    | Tumor |     |    |     | Urine |     |      |    |     | Serum |    |     |    |    |    |
|--------------|-----|----------------|----|----|----|-------|-----|----|-----|-------|-----|------|----|-----|-------|----|-----|----|----|----|
| Variation ID | P1  | P2             | P4 | P5 | P6 | P1    | P2  | P4 | P5  | P6    | P1  | P2   | P4 | P5  | P6    | P1 | P2  | P4 | P5 | P6 |
| rs10415095   |     |                |    |    |    | 4     | 3   | 11 | 7   |       | 27  |      |    |     |       |    |     |    | 10 |    |
| rs11343599   |     |                |    |    |    | 4     | 4   |    | 2   |       | 8   |      |    | 10  |       |    |     |    | 6  |    |
| rs58312807   | 4   |                |    |    | 4  | 3     | 5   | 3  | 5   | 4     | 4   |      |    | 10  | 11    |    |     |    | 17 |    |
| rs1130214    |     |                |    |    |    | 6     | 5   |    | 3   |       | 27  |      |    |     |       |    | 18  |    |    |    |
| rs2976396    | 6   |                |    | 8  |    |       | 5   | 6  |     | 5     | 193 | 2212 |    | 226 | 95    |    |     |    |    |    |
| rs13258775   |     |                | 4  |    |    |       | 5   |    | 6   | 3     |     |      |    |     | 3     |    |     |    |    |    |
| rs251860     |     |                |    |    |    |       | 3   | 6  | 2   |       | 3   |      |    |     | 5     |    |     |    |    |    |
| rs1051782    | 4   |                |    |    |    |       | 5   |    | 3   | 3     |     |      |    |     |       |    |     |    |    |    |
| rs2422978    | 5   |                |    |    |    |       |     | 4  | 6   | 6     | 3   |      |    |     |       |    |     |    |    |    |
| rs55645907   | 3   |                |    | 10 |    | 2     | 7   | 3  |     | 2     | 6   | 8    |    |     | 4     |    | 5   |    |    |    |
| rs1045570    |     |                |    | 5  |    | 3     |     |    | 4   |       | 9   |      |    |     |       |    | 10  |    |    |    |
| rs4842194    | 7   |                | 3  | 6  |    | 4     | 5   |    | 12  |       | 8   | 6    |    |     |       |    |     |    |    |    |
| rs34109509   |     |                |    |    |    |       | 3   |    |     |       |     |      |    |     |       |    | 25  |    |    |    |
| rs35280127   | 7   |                |    |    |    |       | 7   |    |     |       | 14  |      |    |     |       |    |     |    |    |    |
| rs3135904    |     |                | 3  | 8  | 3  |       | 2   | 9  | 3   | 3     | 37  | 20   |    | 18  |       |    |     |    |    |    |
| rs28934578   |     |                |    |    |    |       | 151 |    |     |       |     |      |    |     |       |    |     |    |    |    |
| rs193920817  |     |                |    |    |    |       |     |    | 128 |       |     |      |    |     |       |    |     |    |    |    |
| rs1800372    |     | 115            |    |    |    |       | 58  |    |     |       |     | 723  | 5  |     |       |    | 442 |    |    |    |
| rs9266       |     |                |    |    |    |       |     |    |     |       |     | 12   |    |     | 32    |    |     |    |    |    |
| rs712        |     | 8              |    | 4  | 6  | 7     |     | 3  |     | 6     |     |      |    |     | 3     |    |     |    |    |    |
| rs3828609    |     |                |    |    |    |       |     |    | 2   |       |     |      |    |     |       |    |     |    |    |    |
| rs1057016    |     |                |    |    |    |       | 2   |    |     |       |     |      |    |     | 2     |    |     |    |    |    |
| rs3173956    | 4   |                |    |    | 5  |       |     | 2  |     |       | 3   |      |    |     |       |    |     |    |    |    |
| rs704010     |     |                |    |    | 7  | 2     | 2   |    | 16  |       | 30  |      |    | 22  | 4     |    |     |    |    |    |
| rs10875943   | 10  |                |    |    |    | 7     | 3   | 3  |     |       | 17  |      |    | 6   |       |    | 158 |    |    |    |
| rs10248903   | 3   |                |    |    |    |       | 3   |    | 3   |       | 15  | 2    |    |     | 2     |    |     |    |    |    |
| rs7931342    |     |                | 5  |    |    | 3     | 7   | 3  | 4   |       |     |      |    |     |       |    |     |    |    |    |
| rs2981582    | 2   |                |    |    |    |       | 4   | 3  |     |       | 5   | 68   |    |     |       |    |     |    |    |    |
| rs5768709    |     | 2              |    |    |    | 4     | 3   |    |     |       | 8   | 3    |    |     |       |    |     |    |    |    |
| rs7832232    | 2   |                |    |    |    |       | 2   |    | 2   |       | 5   | 18   |    |     |       |    |     |    |    |    |
| rs1883924    |     | 4              |    |    |    | 3     |     |    |     |       | 7   | 5    |    |     |       |    |     |    | 5  |    |
| rs4939827    |     | 2              |    |    |    |       | 2   |    |     |       |     | 9    |    |     | 2     |    |     |    | 4  |    |
| rs4986938    | 125 |                |    |    |    | 111   |     |    |     |       | 557 |      | 5  |     |       | 8  |     |    |    |    |
| rs7504990    |     |                |    |    | 5  |       |     |    |     |       | 429 | 206  |    | 49  | 225   |    |     |    |    |    |
| rs4132601    | 3   |                |    |    |    | 5     |     |    | 4   | 3     |     |      |    |     |       |    |     |    |    |    |
| rs2367202    |     |                |    |    | 3  | 3     | 3   |    |     |       | 2   |      |    |     |       |    |     |    |    |    |
| rs3176336    | 2   |                |    |    |    | 2     |     |    |     | 11    | 6   |      |    |     |       |    |     |    |    |    |
| rs5030625    | 3   |                |    |    |    | 2     |     |    | 4   |       |     | 5    |    |     |       |    |     |    |    |    |
| rs9340799    |     |                |    |    | 5  |       | 2   |    |     | 3     |     | 4    |    |     |       |    |     |    |    |    |
| rs2234693    |     |                |    |    | 3  |       |     |    |     | 2     |     | 4    |    |     | 3     |    |     |    |    |    |

| rs1138272  | 117 |     |  | 60  |     |   | 844 |     |  | 187 |     |  |
|------------|-----|-----|--|-----|-----|---|-----|-----|--|-----|-----|--|
| rs11611238 | 36  |     |  | 33  |     |   | 88  |     |  | 2   |     |  |
| rs17632542 |     | 266 |  |     | 264 |   |     | 198 |  |     | 751 |  |
| rs17634425 |     | 3   |  |     | 5   |   |     | 4   |  |     | 7   |  |
| rs1799939  |     | 302 |  |     | 291 |   |     | 589 |  |     | 11  |  |
| rs1801270  | 251 |     |  | 232 |     |   | 52  |     |  | 33  |     |  |
| rs2107425  | 5   |     |  |     |     | 3 | 17  |     |  | 61  |     |  |
| rs2479106  | 4   |     |  | 5   |     |   | 3   |     |  | 10  |     |  |

#### Supplementary Table 6. Total shared & unique somatic variants in driver genes in tumor samples.

Shaded cells represent the number of variant unique for a specific patient. Clear cells show the overlap between the two patients.

|    | P1        | P2          | P4         | P5      | P6 | Total |
|----|-----------|-------------|------------|---------|----|-------|
| P1 | 90        | 6           | 11         | 9       | 5  | 124   |
| P2 | 6         | 109         | 12         | 10      | 7  | 144   |
| P4 | 11        | 12          | 71         | 11      | 6  | 117   |
| P5 | 9         | 10          | 11         | 110     | 5  | 152   |
| P6 | 5         | 7           | 6          | 5       | 81 | 107   |
|    | Overlap o | of variants | between p  | atients |    |       |
|    | Variants  | unique for  | a specific | patient |    |       |

Supplementary Table 7. Number of variations predicted by GATK. GATK-based variant analysis using

DNA isolated from tumor tissues, exoDNA from urine and serum, and matched normal (PBMC) DNA as

the reference sequence.

| Variation type         | Normal (PBMCs) |         |         |         |         |  |  |
|------------------------|----------------|---------|---------|---------|---------|--|--|
|                        | P1             | P2      | P4      | P5      | P6      |  |  |
| Exonic                 | 23,292         | 23,647  | 22,878  | 22,966  | 24,052  |  |  |
| Exonic; splicing       | 11             | 9       | 10      | 14      | 13      |  |  |
| ncRNA_splicing         | 16             | 18      | 16      | 17      | 22      |  |  |
| ncRNA_UTR3             | 239            | 214     | 209     | 222     | 250     |  |  |
| ncRNA_UTR5             | 90             | 75      | 82      | 79      | 84      |  |  |
| ncRNA_UTR5; ncRNA_UTR3 | 1              | 1       | 1       | 1       | 1       |  |  |
| Splicing               | 146            | 134     | 137     | 148     | 151     |  |  |
| UTR3                   | 12,858         | 12,177  | 11,258  | 11,830  | 12,801  |  |  |
| UTR5                   | 4,870          | 4,801   | 4,492   | 4,675   | 4,685   |  |  |
| UTR5;UTR3              | 11             | 12      | 8       | 11      | 12      |  |  |
| Downstream             | 8,610          | 7,678   | 6,795   | 7,201   | 7,924   |  |  |
| Intergenic             | 551,475        | 488,321 | 450,182 | 462,446 | 474,249 |  |  |
| Intronic               | 401,210        | 367,773 | 337,914 | 351,450 | 375,700 |  |  |
| ncRNA_exonic           | 5,476          | 5,321   | 4,928   | 5,228   | 5,236   |  |  |
| ncRNA_intronic         | 34,464         | 31,578  | 28,947  | 30,253  | 31,093  |  |  |
| Upstream               | 12,666         | 11,777  | 10,960  | 11,305  | 11,916  |  |  |
| Upstream; downstream   | 483            | 512     | 417     | 442     | 418     |  |  |

| Variation type         | Tumor   |         |         |         |         |  |  |
|------------------------|---------|---------|---------|---------|---------|--|--|
| Variation type         | P1      | P2      | P4      | P5      | P6      |  |  |
| Exonic                 | 23,252  | 23,792  | 22,765  | 22,953  | 23,097  |  |  |
| Exonic; splicing       | 11      | 10      | 10      | 14      | 13      |  |  |
| ncRNA_splicing         | 20      | 14      | 17      | 20      | 21      |  |  |
| ncRNA_UTR3             | 217     | 212     | 220     | 226     | 233     |  |  |
| ncRNA_UTR5             | 87      | 76      | 73      | 78      | 85      |  |  |
| ncRNA_UTR5; ncRNA_UTR3 | 1       | 1       | 1       | 1       | 0       |  |  |
| Splicing               | 140     | 141     | 131     | 143     | 152     |  |  |
| UTR3                   | 11,895  | 12,001  | 11,498  | 11,969  | 11,480  |  |  |
| UTR5                   | 4,646   | 4,666   | 4,432   | 4,539   | 4,438   |  |  |
| UTR5; UTR3             | 10      | 11      | 7       | 10      | 9       |  |  |
| Downstream             | 7,476   | 7,326   | 8,141   | 7,105   | 7,133   |  |  |
| Intergenic             | 487,245 | 478,321 | 556,140 | 436,611 | 437,281 |  |  |
| Intronic               | 361,076 | 360,185 | 399,713 | 345,189 | 342,511 |  |  |
| ncRNA_exonic           | 5,296   | 5,199   | 4,997   | 5,089   | 4,984   |  |  |
| ncRNA_intronic         | 31,316  | 31,262  | 33,656  | 29,313  | 29,470  |  |  |
| Upstream               | 11,290  | 11,180  | 10,977  | 10,787  | 10,934  |  |  |
| Upstream; downstream   | 416     | 511     | 425     | 439     | 420     |  |  |

| Variation turns        | Urine   |         |        |         |         |  |  |
|------------------------|---------|---------|--------|---------|---------|--|--|
| variation type         | P1      | P2      | P4     | P5      | P6      |  |  |
| Exonic                 | 23,689  | 24,205  | 9,773  | 22,064  | 23,359  |  |  |
| Exonic; splicing       | 10      | 9       | 5      | 9       | 13      |  |  |
| ncRNA_splicing         | 25      | 25      | 6      | 18      | 19      |  |  |
| ncRNA_UTR3             | 250     | 229     | 41     | 147     | 143     |  |  |
| ncRNA_UTR5             | 85      | 69      | 13     | 48      | 54      |  |  |
| ncRNA_UTR5; ncRNA_UTR3 | 1       | 8       | 0      | 0       | 1       |  |  |
| Splicing               | 168     | 183     | 87     | 193     | 240     |  |  |
| UTR3                   | 13,970  | 11,370  | 1,587  | 7,705   | 7,973   |  |  |
| UTR5                   | 4,684   | 4,008   | 642    | 2,726   | 2,610   |  |  |
| UTR5;UTR3              | 10      | 11      | 2      | 7       | 11      |  |  |
| Downstream             | 11,068  | 7,868   | 672    | 4,876   | 4,728   |  |  |
| Intergenic             | 635,479 | 417,525 | 39,441 | 252,902 | 318,299 |  |  |
| Intronic               | 465,532 | 343,203 | 35,790 | 206,794 | 250,256 |  |  |
| ncRNA_exonic           | 6,013   | 4,905   | 755    | 3,656   | 3,308   |  |  |
| ncRNA_intronic         | 39,214  | 26,926  | 2,612  | 16,571  | 20,251  |  |  |
| Upstream               | 13,688  | 10,054  | 959    | 6,144   | 5,572   |  |  |
| Upstream; downstream   | 544     | 482     | 50     | 339     | 216     |  |  |

| Variation type         | Serum  |         |        |         |        |  |  |
|------------------------|--------|---------|--------|---------|--------|--|--|
| variation type         | P1     | P2      | P4     | P5      | P6     |  |  |
| Exonic                 | 4,609  | 23,779  | 7,080  | 25,240  | 3,758  |  |  |
| Exonic; splicing       | 4      | 9       | 6      | 13      | 3      |  |  |
| ncRNA_splicing         | 0      | 15      | 2      | 12      | 3      |  |  |
| ncRNA_UTR3             | 15     | 171     | 48     | 140     | 7      |  |  |
| ncRNA_UTR5             | 3      | 48      | 5      | 35      | 1      |  |  |
| ncRNA_UTR5; ncRNA_UTR3 | 0      | 0       | 0      | 0       | 0      |  |  |
| Splicing               | 30     | 235     | 81     | 281     | 52     |  |  |
| UTR3                   | 656    | 8,523   | 1,961  | 7,980   | 710    |  |  |
| UTR5                   | 306    | 3,164   | 832    | 3,098   | 319    |  |  |
| UTR5; UTR3             | 0      | 7       | 1      | 6       | 0      |  |  |
| Downstream             | 122    | 4,431   | 1,170  | 3,627   | 243    |  |  |
| Intergenic             | 10,336 | 239,596 | 69,886 | 189,446 | 14,448 |  |  |
| Intronic               | 10,740 | 208,731 | 51,924 | 185,453 | 12,924 |  |  |
| ncRNA_exonic           | 303    | 3,278   | 1,127  | 3,097   | 294    |  |  |
| ncRNA_intronic         | 771    | 16,402  | 4,660  | 13,690  | 955    |  |  |
| Upstream               | 288    | 6,570   | 1,568  | 5,985   | 495    |  |  |
| Upstream; downstream   | 14     | 312     | 63     | 327     | 29     |  |  |

| Su | pplementary | Table 8. | Antibodies | used in | this s | studv. |
|----|-------------|----------|------------|---------|--------|--------|
|    |             |          |            |         |        |        |

|                      |                      |        | Primary    | antibodies |             |         |                  |
|----------------------|----------------------|--------|------------|------------|-------------|---------|------------------|
| Antigen              | Specificity          | Host   | Vendor     | Catalog No | Lot No      | Used in | Dilution         |
| CD9                  | Human,<br>Mouse, Rat | Rabbit | Abcam      | Ab92726    | GR237847-20 | TEM, WB | 1:300,<br>1:1000 |
| Flotillin-1          | Human                | Rabbit | Santa Cruz | sc25506    | H1914       | WB      | 1:300            |
| Secondary antibodies |                      |        |            |            |             |         |                  |
| Ab Type              | Specificity          | Host   | Conjugate  | Vendor     | Catalog No  | Used in | Dilution         |
| lgG                  | Rabbit               | Goat   | HRP        | Sigma      | A0545       | WB      | 1:2000           |