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Example 13 in the Main text

In Example 13 in the main text we consider the following reaction network:

X
κ1→ ∅, ∅ κ2→ 2X. (1)

The network is not weakly reversible, hence it cannot be complex balanced. Furthermore, the model
is not a birth-death process as the ‘birth event’ creates two copies of X. Consequently, we cannot
use the theory developed in the main text to determine whether the non-equilibrium potential
converges to a Lyapunov function and in case it does, the form of the Lyapunov function.

Here we prove the claims made in the main text about the network. To be precise we will show
that an equilibrium distribution exists and show that it can be given as the sum of two independent
Poisson distributions. We will use this representation to argue that the non-equilibrium potential
converges to a Lyapunov function and state its form.

Proposition 1. Let Nt be the number of X molecules at time t in the network N . Then the
distribution of Nt is given as the convolution of two independent random variables,

Nt = N1,t + 2N2,t, N1,t ∼ Po
(

2αV (1− e−k1t)2
)
, and N2,t ∼ Po

(
αV (1− e−2k1t)

)
.

Letting t→∞, we obtain the equilibrium distribution of X,

N = N1 + 2N2, N1 ∼ Po(2αV ), and N2 ∼ Po (αV ) ,
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where N1 and N2 are independent random variables.

Proof of Proposition 1. Let λ = V k2 and µ = k1 for convenience. Fix t > 0. The number of
birth events that has occured before time t is Poisson with rate λt. Assume a birth event happens
at time 0 < u < t. Then either zero, one or two of the X molecules might survive until time t, each
with death rate µ. The probabilities of these events are

pu(2) = e−2µ(t−u), pu(1) = 2e−µ(t−u)(1− e−µ(t−u)), and pu(0) = 1− pu(1)− pu(2), (2)

where pt(i), i = 0, 1, 2, is the probability that i lineages survive. Given that Nt birth events have
happened, each of the Nt events occur at a uniform random time in (0, t). Hence, the probabilities
in equation (2), averaged over time, become

Pt(i) =
1

t

∫ t

0
pu(i)du,

or

Pt(2) =
1

2µt
(1− e−2µt), Pt(1) =

1

µt
(1− e−µt)2, and Pt(0) = 1− Pt(1)− Pt(2).

It follows that the number of birth events for which both molecules survive is N2,t ∼ Po(λtPt(2)) and
the number of birth events for which only one of the two molecules survive is N1,t ∼ Po(λtPt(1)),
which coincide with those stated in the lemma. Since birth events occur independently of each
other, N1,t and N2,t are independent random variables. Further, the number of molecules at time t
is Nt = N1,t + 2N2,t, which proves the first part.

To obtain the equilibrium distribution we let t → ∞ and obtain N1 ∼ Po(2αV ) and N2 ∼
Po(αV ), where α is as defined in the lemma.

The probability distribution of N in Lemma 1 is given by

P (N = n) =
∑

k,m : k+2m=n

(2V α)k

k!
e−2V α

(V α)m

m!
e−V α

= e−3V α
∑

k,m : k+2m=n

(2V α)k

k!

(V α)m

m!
, (3)

where the sum is over all positive integers k,m such that k+ 2m = n. The sum does not seem easy
to manipulate further.

To evaluate 1
V ln(P (N = n)) as V →∞ and n/V → x, we need a version of Laplace’s method for

approximating integrals of the form
∫
eV f(x)dx. To state the method, we first look at the sum in (3).

Each term is rewritten by taking the exponential and the logarithm to the term, and subsequently
applying Stirling’s approximation,

√
2π nn+

1
2 e−n ≤ n! ≤ e nn+

1
2 e−n for n ≥ 1 (e ≈ 2.71),

to provide an upper and a lower bound:

(2V α)k

k!

(V α)m

m!
= exp{k ln(2V α)− ln(k!) +m ln(V α)− ln(m!)} ≥

√
2π

V

1

u1/2(x− 2u)1/2
eV fx(u)

(2V α)k

k!

(V α)m

m!
= exp{k ln(2V α)− ln(k!) +m ln(V α)− ln(m!)} ≤ e

V

1

u1/2(x− 2u)1/2
eV fx(u),

(4)
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where x = n
V , u = m

V , and k,m > 0, such that u > 0 and x− 2u > 0, and

fx(u) = −u ln(u)− (x− 2u) ln(x− 2u) + (x− u)(ln(α) + 1) + (x− 2u) ln(2).

Note that x − 2u = k
V , x − u = k+m

V and 0 < u < x
2 . Only the cases m = 0 and k = 0 cannot be

bound in this way.
Consider fx(u) as a function on the open interval (0, x2 ) into R. The derivative of fx(u) with

respect to u is
f ′x(u) = − ln(u) + 2 ln(x− 2u)− 2 ln(2)− ln(α),

which is decreasing in u. The function fx(u) attains its maximum for

u∗ =
1

2
(x+ α−

√
α(α+ 2x)),

which fulfills
0 < u∗ <

x

2
for x > 0.

The second derivative of fx(u) is always negative; hence fx(u) is convex and strictly increasing for
u < u∗ and strictly decreasing for u > u∗.

Let (a, b) be an open interval in R with a, b potentially infinite.

Theorem 1. (Laplace’s method) Assume h : (a, b) → R and f(u) : (a, b) → R are two functions,
such that h(u) is continuous and h(z) > 0 for all u ∈ (a, b), and f(u) is twice continuously dif-
ferentiable with a unique (global) maximum u∗ ∈ (a, b), such that f ′′(u∗) < 0. Further, assume
h(u)eV f(u) is integrable on (a, b) for all V ≥ 0.

Then, ∫ b

a
h(u)eV f(u)du ≈

√
2π

V |f ′′(u∗)|
h(u∗)eV f(u

∗) as V →∞,

where the approximation means that the ratio of the two terms goes to one.

Lemma 1. Let P (N = n) be the probability in (3). Then

lim
V→∞

− 1

V
ln(P (N = xV )) = 3α− fx(u∗),

where u∗, which depends on u, is the unique maximum of fx(u).

Proof of Lemma 1. We assume the notation and definitions introduced above. Consider the sum
over all k,m, such that k + 2m = n and k,m > 0:

S =

n′
V∑

u= 1
V

1

u1/2(x− 2u)1/2
eV fx(u),

where n′ = n−1
2 , if n is odd and n′ = n

2 − 1, if n is even. We split the sum S into three parts:∑
u<ε

+
∑

x
2
−ε<u

+
∑

ε≤u≤x
2
−ε

1

u1/2(x− 2u)1/2
eV f̃x(u)
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for some (small) ε > 0. The sum of the first two terms can be bounded downwards by 0 and upwards
by

d1V
1
2 eV d2 ,

where d1 > 0 and d2 ∈ R. Indeed, using the properties of fx(u), we have d2 = max(fx(ε), fx(x2 − ε)),
and d1 is a number such that d1V

1
2 > max

(
1

u1/2(x−2u)1/2 |u ≤ ε or x
2 − ε ≤ u

)
.

The last sum can be approximated by an integral. For this, consider the function

h(u) =
1

u1/2(x− 2u)1/2

and let u0 be given. Since fx
(
u0 + 1

V

)
≈ fx(u0) + 1

V f
′
x(u0) to order 1

V , we have

a1V

∫ u0+
1
V

u0

1

u1/2(x− 2u)1/2
eV fx(u)du ≤ h(u0)e

V fx(u0) ≤ a2V
∫ u0+

1
V

u0

1

u1/2(x− 2u)1/2
eV fx(u)du,

for two constants a1, a2 > 0. The functions h(u), fx(u) and f ′x(u) are continuous and bounded on
[ε, x2 − ε], hence a1, a2 can be chosen such that they are independent of u ∈ [ε, x2 − ε]. Consequently,
the bounds hold for all u ∈ [ε, x2 − ε] and we obtain

a1V

∫ x
2
−ε

ε

1

u1/2(x− 2u)1/2
eV fx(u)du ≤

∑
ε≤u≤x

2
−ε

1

u1/2(x− 2u)1/2
eV fx(u)

≤ a2V
∫ x

2
−ε

ε

1

u1/2(x− 2u)1/2
eV fx(u)du.

Using Theorem 1, the sum can further be approximated by a single term for large V . Since
h(u)eV fx(u) is bounded on [ε, x2 − ε] for fixed V , the conditions for using Theorem 1 are fulfilled and
we obtain,

b1V
1
2 eV fx(u

∗) ≤
∑

ε≤u≤x
2
−ε

1

u1/2(x− 2u)1/2
eV fx(u) ≤ b2V

1
2 eV fx(u

∗).

for some new constants b1, b2 > 0.
Consider now P (N = n). We have from the equation (3) and the definition of S that

P (N = n) = Se−3αV + P (N = n,N1 = 0) + P (N = n,N2 = 0).

Depending on whether n is odd or even, P (N = n,N1 = 0) might be zero. Using Stirling’s
approximation we obtain

P (N = n,N2 = 0) ≈ e−3αV eV fx(0)x−
1
2V −

1
2 ,

and

P (N = n,N2 = 0) ≈ e−3αV eV fx(
x
2
)
(x

2

)− 1
2
V −

1
2 ,

where the ≈ means the ratio of the two terms goes to one as V →∞.
Putting all terms in P (N = n) together, using that Se−3αV is to a higher power in V than the

other terms, yields

lim
V→∞

− 1

V
ln(P (N = xV )) = lim

V→∞
− 1

V
ln(Se−3αV ) = 3α− fx(u∗),
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which proves the claim of the lemma.

Proposition 2. The function

g(x) = 3α− fx(u∗), with u∗ =
1

2
(x+ α−

√
α(α+ 2x))

is a Lyapunov function for the network in (1). Further, g(x) might be written as

g(x) =

∫ x

0
ln

(√
1 +

2u

α
− 1

)
du− ln(2)x,

as stated in the main text.

Proof of Proposition 2. From (1) we have ẋ = 2k2 − k1x. Recall that α = k2
2k1

, hence the sign of
ẋ is the same as the sign of

ẋ

k1
= 4α− x. (5)

We consider the function g(x) as a function g̃(x, u) = −3α+ fx(u) of two variables (x, u) evaluated
in (x, u∗). Hence the derivative of g(x) with respect to x is

g′(x) =
∂g̃

∂u
(x, u∗)

du∗

dx
+
∂g̃

∂x
(x, u∗) = −∂fx

∂u
(u∗)

du∗

dx
− ∂fx

∂x
(u∗).

The first term on the right side is 0 by definition of u∗. Evaluating the second term yields

g′(x) = ln

(√
1 +

2x

α
− 1

)
− ln(2),

which fulfills
g′(x) > 0 if and only if 4α < x,

and zero only when 4α = x. Comparing with (5) gives

g′(x)ẋ ≤ 0 for all x > 0,

and equality only if x = 4α. Hence g(x) is a Lyapunov function for the network (1).
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