## **Supporting information**

Lysine deacetylase substrate selectivity: a dynamic ionic interaction specific to KDAC8

Tasha B. Toro\*, Jordan S. Swanier, Jada A. Bezue, Christian G. Broussard, Terry J. Watt\*

Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098

email: tjwatt@xula.edu (TJW), ttoro@xula.edu (TBT)

Table S1. Specific activity values of peptides in low ionic strength buffer plotted as normalized values

| Enzyme      | Peptide              | Specific activity (s <sup>-1</sup> ) | Activity (pmol s <sup>-1</sup> ) <sup>†</sup> |
|-------------|----------------------|--------------------------------------|-----------------------------------------------|
| KDAC8       | FRK <sup>ac</sup> RW | 0.035 ± 0.007                        |                                               |
| KDAC8       | $FRK^{ac}RW$         | 0.025 ± 0.002*                       |                                               |
| KDAC8       | $ISK^{ac}FD$         | 0.0040 ± 0.0009                      |                                               |
| KDAC8       | $SLK^{ac}FG$         | 0.0084 ± 0.0016                      |                                               |
| KDAC8       | $FRK^{ac}AW$         | $0.034 \pm 0.004$                    |                                               |
| KDAC8       | $FAK^{ac}RW$         | 0.0039 ± 0.0007                      |                                               |
| KDAC8       | $ARK^{ac}AA$         | 0.0028 ± 0.0009                      |                                               |
| KDAC8       | $AAK^{ac}RA$         | 0.0000 ± 0.0002                      |                                               |
| KDAC8       | $FKK^{ac}RW$         | 0.016 ± 0.003*                       |                                               |
| KDAC8       | $FQK^{ac}RW$         | $0.009 \pm 0.003$                    |                                               |
| KDAC8       | $FEK^{ac}RW$         | 0.0008 ± 0.0005                      |                                               |
| KDAC8 D101E | $FRK^{ac}RW$         | $0.029 \pm 0.004$                    |                                               |
| KDAC8 D101N | $FRK^{ac}RW$         | $0.0000 \pm 0.0004$                  |                                               |
| KDAC8 D101A | $FRK^{ac}RW$         | 0.0000 ± 0.0005                      |                                               |
| KDAC8 D101R | $FRK^{ac}RW$         | 0.0001 ± 0.0007                      |                                               |
| KDAC8 D101E | $FKK^{ac}RW$         | 0.017 ± 0.007*                       |                                               |
| KDAC8 D101E | $FQK^{ac}RW$         | 0.0057 ± 0.0011                      |                                               |
| KDAC8 D101E | $FAK^{ac}RW$         | 0.0052 ± 0.0007                      |                                               |
| KDAC8 D101E | $FEK^{ac}RW$         | 0.0009 ± 0.0003                      |                                               |
| KDAC1       | $FRK^{ac}RW$         |                                      | $0.32 \pm 0.03$                               |
| KDAC1       | $FRK^{ac}RW$         |                                      | 0.030 ± 0.015*                                |
| KDAC1       | $FKK^{ac}RW$         |                                      | 0.036 ± 0.018*                                |
| KDAC1       | $FQK^{ac}RW$         |                                      | $0.30 \pm 0.03$                               |
| KDAC1       | $FAK^{ac}RW$         |                                      | $0.16 \pm 0.02$                               |
| KDAC1       | $FEK^{ac}RW$         |                                      | $0.033 \pm 0.005$                             |
| KDAC1       | $FRK^{ac}AW$         |                                      | 0.22 ± 0.05                                   |
| KDAC6       | $FRK^{ac}RW$         | $0.024 \pm 0.009$                    |                                               |
| KDAC6       | $FRK^{ac}RW$         | 0.029 ± 0.004*                       |                                               |
| KDAC6       | $FKK^{ac}RW$         | 0.027 ± 0.004*                       |                                               |
| KDAC6       | $FQK^{ac}RW$         | 0.015 ± 0.009                        |                                               |
| KDAC6       | $FAK^{ac}RW$         | 0.0179 ± 0.0019                      |                                               |
| KDAC6       | $FEK^{ac}RW$         | $0.031 \pm 0.008$                    |                                               |
| KDAC6       | FRK <sup>ac</sup> AW | 0.0241 ± 0.0015                      |                                               |

<sup>\*</sup> indicates measured using mass spectrometry assay.

<sup>†</sup> KDAC1 is reported as raw activity because the commercial sample was of low purity.

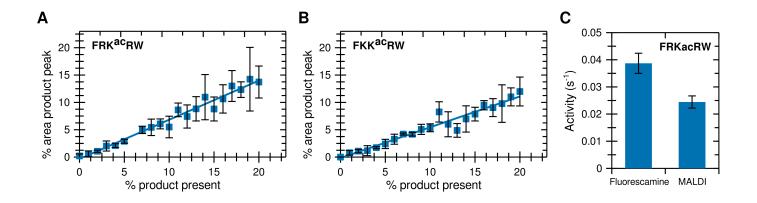



Figure S1. MALDI-TOF assay to measure specific activity of lysine deacetylases with peptide substrates.

(A) Standard curve of peak area ratios from mass spectrometry of defined ratios of product peptide (FRKRW) and substrate peptide (FRKacRW). Error bars represent standard deviations (n≥3). The line represents the linear fit. (B) Standard curve of peak area ratios from mass spectrometry of defined ratios of product peptide (FKKRW) and substrate peptide (FKKacRW). Data is represented as in panel A. (C) KDAC8 was reacted with FRKacRW. Each reaction replicate was assayed by both the fluorescamine assay as previously reported and the MALDI-TOF assay described here. Error bars represent standard deviations (n=4). The difference in activity was not statistically significant using a paired t-test (p > 0.05).

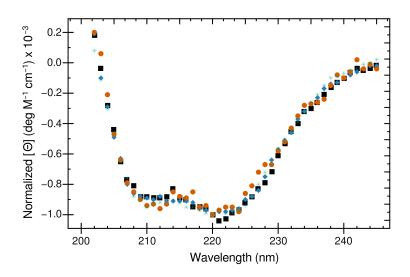



Figure S2. Circular dichroism spectra of KDAC8 variants do not indicate significant structural differences. Circular dichroism was performed with wild-type KDAC8 (black squares), KDAC8 D101N (blue diamonds), KDAC8 D101A (red circles) and KDAC8 D101R (green stars).