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SUMMARY
Emerging single-cell epigenomic assays are used to investigate the heterogeneity of chromatin activity and
its function. However, identifying cells with distinct regulatory elements and clearly visualizing their relation-
ships remains challenging. To this end, we introduce TooManyPeaks to address the need for the simulta-
neous study of chromatin state heterogeneity in both rare and abundant subpopulations. Our analyses of
existing data from three widely used single-cell assays for transposase-accessible chromatin using
sequencing (scATAC-seq) show the superior performance of TooManyPeaks in delineating and visualizing
pure clusters of rare and abundant subpopulations. Furthermore, the application of TooManyPeaks to new
scATAC-seq data from drug-naive and drug-resistant leukemic T cells clearly visualizes relationships among
these cells and stratifies a rare ‘‘resistant-like’’ drug-naive sub-clone with distinct cis-regulatory elements.
INTRODUCTION

Cell-type-specific transcriptional diversity is largely set by the

interactions between transcription factors and their cognate cis-

regulatory elements within accessible chromatin regions. The

emergence of single-cell/single-nucleus assays for transposase-

accessible chromatin using sequencing (here, collectively called

scATAC-seq) has enabled profilingof accessiblecis-regulatory el-

ements (here, interchangeably referred to as the epigenome) for

thousands of individual cells. Unique characteristics of scATAC-

seq readouts coupled with the increase in data volume have

created a need for efficient computational tools for identifying

and visualizing cells with similar chromatin accessibility, including

rare populations. Although some scATAC-seq data analysis

methods havebeenproposed, it still remains challenging to simul-

taneously identify and visualize rare and abundant subpopulations

with distinct chromatin structures. To address this need, we

introduce TooManyPeaks, which is equipped with several func-

tionalities and provides a standalone end-to-end solution for scA-

TAC-seq analysis. We assessed the accuracy and efficiency of

TooManyPeaks in identifying and visualizing both rare and abun-

dant populations by using several benchmarks. Given the key

role of Notch signals in T cell acute lymphoblastic leukemia

(T-ALL), we also used TooManyPeaks to investigate how hetero-

geneity of cis-regulatory elements influences divergent responses

to Notch antagonist gamma-secretase inhibitor (GSI) in T-ALL.

TooManyPeaks is open source and available through https://

github.com/faryabib/too-many-cells#too-many-peaks.
This is an open access article under the CC BY-N
RESULTS

TooManyPeaks relates cells with distinct chromatin
states
To identify and visualize cell subpopulations with distinct cis-

regulatory elements from scATAC-seq data, we introduce

TooManyPeaks (Figure 1A). TooManyPeaks provides an end-to-

end solution for scATAC-seq data analysis from chromatin

accessibility readouts tomulti-scalar renderingsof cell group rela-

tionships and is integrated into the TooManyCells suite (Schwartz

et al., 2020), a platform originally built for single-cell RNA-seq

(scRNA-seq) data analysis. To this end, TooManyPeaks imple-

ments a number of graph-based algorithms to extract distinct

cis-regulatory elements of both rare and abundant subpopula-

tions and creates cell clade relationships from scATAC-seq data

(Figure1A; seeSTARMethods). Thesecell cladesare represented

by a nested cluster structure in which relationships among the

groups are maintained. In contrast to single-resolution clustering

algorithms commonly used for scATAC-seq analysis (Li et al.,

2020; Pliner et al., 2018; Bravo González-Blas et al., 2019; Cusa-

novich et al., 2018; Danese et al., 2019; Stuart et al., 2020; Fang

et al., 2021), each inner node of the TooManyPeaks output is a

cluster at a given resolution and a leaf node is a finer-grain cluster

for which any additional partitioning would be as informative as

randomly separating the cells (see STAR Methods).

The TooManyPeaks tree-based visualization offers several ad-

vantages over ‘‘flat’’ two-dimensional portrayals of data provided

by projection-based methods such as t-distributed stochastic
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Figure 1. TooManyPeaks overview and performance comparison

(A) Graphical representation of the TooManyPeaks algorithm. Following the arrows from left to right, TooManyPeaks converts scATAC-seq data to a cell-by-bin

matrix, binarizes each value (accessible or inaccessible), and identifies and visualizes cell clade relationships by using matrix-free divisive hierarchical spectral

clustering (see STAR Methods). TooManyPeaks trees are interpreted by following the cell groups from the root (the largest inner node) to the leaves. A leaf node

here is shown as a pie chart of its cell composition. The sizes of a leaf and branches are proportional to the number of cells in the node. TooManyPeaks may then

perform several downstream analyses.

(B–D) Clustering benchmarks with, from left to right, lower entropy, higher purity, higher normalized mutual information (NMI), higher adjusted Rand index (ARI),

higher homogeneity, and higher residual average Gini index (RAGI; not applicable to synthetic data) representing more accurate clustering of simulated bone

marrow cells with a moderate noise level of 0.2 (Chen et al., 2019) (B), CD34+ hematopoietic progenitor cells profiled using 10x Genomics (n = 7,771 cells)

(Satpathy et al., 2019) (C), or Fluidigm C1 (n = 2,954 cells) (Buenrostro et al., 2018) (D).

(E–G) Detection of cells from two ‘‘rare’’ populations mixed with a ‘‘common’’ population was benchmarked. Box-and-whisker plots quantifying the accuracy of

rare population detection in controlled admixtures from various datasets (m = 10 admixtures), as follows: n = 1,000 synthetic cells generated by simATAC (Navidi

et al., 2021) (E); n = 1,000 B (common), CD8+ T (‘‘rare1’’) and Treg cells (‘‘rare2’’) (Satpathy et al., 2019) (F); and n = 500 common myeloid progenitors (CMPs)

(common), monocytes (rare1), and plasmacytoid dendritic cells (pDC) (rare2) (Buenrostro et al., 2018) (G). Each point represents the average performance of 10

experiments from an admixture (100 admixtures overall). Performance indicates (true rare pairs (cells from the same rare population in the same cluster)/total rare

pairs (true rare pairs and cells from different rare populations)). Box-and-whisker plots represent the following: center line, median; box limits, upper (75th) and

lower (25th) percentiles; whiskers, 1.5 3 interquartile range; points, outliers. See also Figure S1.
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neighbor embedding (t-SNE) and uniform manifold approxima-

tion and projection (UMAP) (van der Maaten and Hinton, 2008;

McInnes et al., 2018). Although frequently used, projection-based

methods generally do not report quantitative inter-cluster rela-

tionships and lack interpretable visualizations across clustering

resolutions (Kobak and Linderman, 2021). To complement
2 Cell Reports 36, 109575, August 24, 2021
these existing single-resolution visualizationmethods and enable

multi-resolution scATAC-seq data exploration, TooManyPeaks

provides a fully customizable dendrogram for the visualization

of inter-cluster relationships. To facilitate data exploration, we

includedmany features in theTooManyPeaks visualizationoutput

including, but not limited to, branch scaling, weighted-average
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color blending, and statistically driven tree pruning. TooMany-

Peaks can also display outputs of other scATAC-seq clustering

algorithms to quantify the relationships among their identified

cell populations.

To enable an end-to-end built-in scATAC-seq analysis

solution, TooManyPeaks provides several specialized and

commonly used functionalities for scATAC-seq data analysis.

For example, TooManyPeaks provides an algorithm for cell-

type annotation based on input reference cis-regulatory ele-

ments of fluorescence-activated cell sorting (FACS)-purified

cells. TooManyPeaks can also perform cluster- and cell-label-

specific peak calling, as well as differential accessibility analyses

across various clustering resolutions. Furthermore, TooMany-

Peaks enables several downstream analyses by generating

normalized genome browser tracks and incorporating motif

analysis methods (Heinz et al., 2010; Bailey et al., 2009) for

each population. All TooManyPeaks functionalities can be

readily set through its command-line interface (see STAR

Methods).

TooManyPeaks accurately segregates and clearly
visualizes rare cells
To assess the accuracy of cell clustering, we compared the out-

puts of TooManyPeaks and seven commonly used scATAC-seq

clusteringmethods, as follows: APEC (Li et al., 2020), Cicero (Pli-

ner et al., 2018), CisTopic (Bravo González-Blas et al., 2019), Cu-

sanovich2018 (Cusanovich et al., 2018), EpiScanpy (Danese

et al., 2019), Signac (Stuart et al., 2020), and SnapATAC (Fang

et al., 2021). Importantly, these methods use different combina-

tions of features for cell clustering. TooManyPeaks and Cusano-

vich2018 use latent semantic analysis (LSA) (Deerwester et al.,

1990) for producing features in lower dimensional space,

whereasCisTopic uses latent Dirichlet allocation (LDA) to identify

‘‘topics’’ as a form of feature definition (Falush et al., 2003). In

contrast, Cicero and APEC summarize scATAC-seq signals

into gene activity scores and ‘‘accessons,’’ respectively. As Cis-

Topic recommends density peak clustering but other selected

algorithms use Louvain clustering, we also included CisTopic

topics as features for Louvain clustering (referred to as CisTopic

with Louvain) in our comparative analysis (see STAR Methods).

To assess the performance of each method in identifying ho-

mogeneous cell label clusters, we used purity (Manning et al.,

2008), entropy (Tan et al., 2019), mutual information (Kvålseth,

2017), adjusted rand index (ARI), homogeneity (Rosenberg and

Hirschberg, 2007), and residual average Gini index (RAGI)

(Chen et al., 2019). More homogeneous clusters result in higher

purity, normalized mutual information (NMI), homogeneity, and

RAGI, as well as lower entropy (see STAR Methods). We

compared the ability of each algorithm to identify pure cell clus-

ters of synthetic data (Chen et al., 2019; Figure 1B) and pheno-

typically defined cells within bone marrow and blood samples

profiled using 10x Genomics (Satpathy et al., 2019; Figure 1C)

or Fluidigm C1 (Buenrostro et al., 2018; Figure 1D) scATAC-

seq platforms. We chose a 5-kb genomic bin size and 50 LSA

dimension due to the low variability of performance across

parameter choices (Figures S1A and S1B). As expected, TooMa-

nyPeaks resulted in low ARI, a measure that is sensitive to true

label uncertainty and is biased againstmulti-resolution clustering
methods (Chen et al., 2019). Nevertheless, TooManyPeaks, Cu-

sanovich2018, and SnapATAC generated the purest clusters in

both synthetic and complex real datasets included in this anal-

ysis (Figures 1B–1D). Together, these comprehensive analyses

indicated the advantage of using TooManyPeaks for clustering

individual cells based on their chromatin state, while maintaining

their multi-scalar relationships in highly diverse hematopoietic

cells.

Although some clustering methods provide resolution

parameters to focus on small or large populations, concurrent

identification and visualization of rare and abundant cells from

scATAC-seq data remain challenging (Lancichinetti and Fortu-

nato, 2011; Fang et al., 2021). Previous clustering benchmarks

(Figures 1C and 1D) measured the diversity of cell labels within

clusters, yet they did not directly quantify an algorithm’s ability

to detect rare subpopulations with distinct regulatory elements.

To rigorously assess the ability of various scATAC-seq clustering

algorithms to simultaneously identify rare and abundant cells, we

adapted our previous scRNA-seq rare population benchmark

(Schwartz et al., 2020) to scATAC-seq. We used synthetic data

(Navidi et al., 2021), 10x Genomics (Satpathy et al., 2019), and

Fluidigm C1 (Buenrostro et al., 2018) scATAC-seq datasets

and generated several controlled cell admixtures with various ra-

tios of one ‘‘common’’ and two equally abundant ‘‘rare’’ popula-

tions. We then assessed how each algorithm separated the two

rare populations from each other and from the common popula-

tion in 10 controlled cell admixtures with various levels of rare

populations. We found that TooManyPeaks outperformed all

other tested algorithms or tied with SnapATAC in recovering

rare populations (Figures 1E–1G).

Feature choice can significantly affect scATAC-seq analysis

outputs. Given that several genomic elements could be involved

in the regulation of a gene, scATAC-seq data have orders of

magnitude more features than scRNA-seq and cannot neces-

sarily be collapsed to the resolution of genes. As such, genomic

bins or peaks, defined as equal-sized genomic windows or loci

with enriched accessibility in pseudo-bulk ATAC-seq, respec-

tively, are commonly used as scATAC-seq analysis features

(Chen et al., 2019). Alternatively, some algorithms use topic

and gene activity features. TooManyPeaks can readily compute

on all four types of features (Figures S1C–S1H). More impor-

tantly, our data revealed that TooManyPeaks, Cusanovich2018,

and SnapATAC, which are algorithms that use genomic bin

features, show superior performance in detecting rare cells

compared to algorithms using peaks or other features (Figures

1F and 1G). Timing benchmark on a set of 2,954 cells (Figure S1I)

further showed that TooManyPeaks operates at a comparable

rate or faster than other algorithms, even with its multi-resolution

output.

TooManyPeaks classifies and relates cells from mouse
bone marrow and spleen
Cell-type classification is one of the major applications of scA-

TAC-seq analysis. To this end, we equipped TooManyPeaks

with functionality to annotate individual cells based on input

reference cis-regulatory element sets, including those from

FACS-sorted bulk ATAC-seq data. Briefly, TooManyPeaks im-

plements a fast bipartite-graph algorithm using cosine similarity
Cell Reports 36, 109575, August 24, 2021 3
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Figure 2. Stratification and annotation of murine bone marrow and spleen cells

(A) The TooManyPeaks algorithm for cell-type annotation based on input reference cis-regulatory elements is used to predict the cell types inmouse bonemarrow

and spleen (n = 16,749 cells) (Cusanovich et al., 2018). Reference cis-regulatory elements of 92 phenotypically defined progenitor and differentiated hemato-

poietic cell types are generated from the analyses of bulk ATAC-seq in FACS-sorted cells (Yoshida et al., 2019). A TooManyPeaks tree pruned at me-

dian(modularity) + 153MAD (modularity) threshold shows major hematopoietic lineages. At each bipartitioning, a darker circle circumference represents higher

modularity.

(legend continued on next page)
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to assign each cell to one of the reference cell types with a known

cis-regulatory element repertoire (see STAR Methods and Fig-

ure 1A). To assess the efficacy of the TooManyPeaks cell-type

classification, we annotated murine bone marrow and spleen

cells (Cusanovich et al., 2018) based on reference cis-regulatory

elements defined by bulk ATAC-seq analysis of 92 FACS-puri-

fied progenitor and differentiated hematopoietic cells (Yoshida

et al., 2019). Visual inspection of the TooManyPeaks tree

showed general separation of major phenotypically defined he-

matopoietic cell types (e.g., B cells segregate into a single

branch) without or with modularity-guided pruning (Schwartz

et al., 2020; Figures S2 and 2A).

To further inspect the localization of more refined cellular sub-

types, we next overlayed the positions of late transitional T3 B

cells on the TooManyPeaks tree and projection outputs of all

other algorithms included in this analysis including PAGA, which

attempts to conserve and display global topology by using a

network (Wolf et al., 2019; Figures 2B–2J). Interestingly, Cicero

failed to complete the analysis of 16,749 cells. T3 B cells were

mostly compartmentalized within a single TooManyPeaks tree

branch (Figure 2B), whereas they were spread across the projec-

tion plots (Figures 2C–2J, left panels) and separated into multiple

clusters (Figures 2C–2J, right panels) with the other algorithms.

Notably, T3 B cells were spread out over 13 nodes of the PAGA

network (Figure 2J). Furthermore, quantitative assessment of

cell-type classification based on reference cis-regulatory ele-

ments of hematopoietic cells showed the improved performance

of TooManyPeaks compared to all the other algorithms in accu-

rately detecting (Figure 2K) and clearly visualizing (Figure S3) 92

distinct cell types in murine bone marrow and spleen.

Similar to the T3 B cell analysis of single-cell combinatorial in-

dexing ATAC-seq (sciATAC-seq) data (Cusanovich et al., 2018;

Figure 2), human hematopoietic stem cells (HSCs) profiled with

the Fluidigm C1 platform (Buenrostro et al., 2018) were clearly

distinguishable within the TooManyPeaks tree, but not in the

projection plots of other algorithms, and the PAGA network

(Figure S4).

TooManyPeaks determines the unique chromatin state
of GSI-‘‘resistant-like’’ drug-naive T-ALL cells
Notch mutations are observed in nearly 60% of patients with T-

ALL and correlate with poor prognosis (Marks et al., 2009). These

observations provide a compelling rationale for focusing on

Notch signaling antagonists, such as GSI, as targeted therapies

for Notch-mutated T-ALL. Nevertheless, progress toward tar-

geted treatment of Notch-mutated T-ALL has been stymied

partly due to a limited understanding of GSI-resistance acquisi-

tion. To investigate the underlying mechanisms of GSI resis-

tance, we selected for GSI-resistant T-ALL cells by prolonged

treatment of parental NOTCH1-mutated DND-41 cells with a

high GSI dose (Schwartz et al., 2020). Given the genetic homo-

geneity of DND-41 cells and results of earlier studies showing

the reversibility of the GSI resistance phenotype (Knoechel
(B–J) TooManyPeaks tree (B) and UMAP outputs (C–J) colored by T3 B cells (red

(K) Clustering benchmarks with, from left to right, lower entropy, higher purity, high

of phenotypically defined progenitor and differentiated hematopoietic cell types in

that failed to complete. See also Figures S2, S3, and S4.
et al., 2014), we hypothesized that epigenetic differences

contribute to the divergence of parental cells with resistant-like

regulatory programs from non-resistant-like parental cells.

To test this hypothesis, we measured the accessibility of chro-

matin in7,989parental andGSI-resistantDND-41cells. TooMany-

Peaks revealed that although parental cells are largely segregated

from resistant cells, a rare resistant-like subpopulation of 144

parental cells had achromatin state similar to that of theGSI-resis-

tant cells (Figures 3A and S5A). Analyses with other selected tools

(Figures S5B–S5E and S6A–S6E) showed resistant-like from non-

resistant-likeparental cellswereseparatedpartially.Nevertheless,

the flat outputs of these algorithmsgenerally obscured full separa-

tion of resistant-like cells from non-resistant-like parental cells. In

contrast, the TooManyPeaks tree immediately rendered the rela-

tionship between resistant-like parental and resistant cells and

clearly placed them within the resistant-cell-dominant subtree

(Figure 3A).

To gain insights into transcriptional regulatory programs

conferring resistance to GSI, we used TooManyPeaks to directly

compare the chromatin accessibility of resistant-like and non-

resistant-like parental cells. We identified 28,593 genomic ele-

ments with significantly higher accessibility in resistant-like cells

(q < 0.05; see STAR Methods), which were collectively enriched

with motifs associated with transcription factors with known

functions in T cell development, transformation, and malig-

nancies, such as GATA3, RUNX1, and MYC (Figure S7A; Table

S1). Integration of scATAC-seq and scRNA-seq data (Table

S1) further revealed that MYC had both significantly elevated

expression (Figure S7B; Table S1) and higher accessible

consensus binding sequences in the resistant-like parental cells

(Figure S7C).

Guided by the differential activity ofMYC in resistant-like cells,

we used TooManyPeaks to map putative MYC regulatory ele-

ments in GSI-resistant and non-resistant-like parental cells.

Concordant with transcriptional levels, the MYC promoter was

active in both non-resistant-like parental and GSI-resistant cells

(Figures 3B and 3C; Table S2). Our scATAC-seq data of non-

resistant-like parental cells delineated clusters of accessible el-

ements within�2-Mb region 30 of theMYC promoter (Figure 3B).

Importantly, we observed marked differences in accessibility of

three chromatin regions flanking the MYC promoter when

comparing non-resistant-like parental and GSI-resistant cells

(Figure 3B). Accessibility of genomic element E1 (�1.42-Mb 30

of theMYC promoter), and E2 (�1.5-Mb 30 of theMYC promoter

and proximal to the long non-protein coding gene LINC00977)

were significantly (p < 0.05 and q <0.05) reduced in the GSI-

resistant cells (Figures 3B, 3D, 3E, 3G, and S7D; Table S2; E1:

log2FC= � 1:74 and E2: log2FC = � 2:78). In contrast, genomic

element cluster E3 (�1.85-Mb 30 of the MYC promoter) signifi-

cantly gained accessibility in the GSI-resistant cells (Figures

3B, 3F, 3G, and S7D; Table S2; log2FC = 0:924). Together,

this scATAC-seq analysis revealed significant chromatin restruc-

turing of the MYC locus during GSI resistance development.
, left) or cluster label (right) generated by the noted algorithms.

er NMI, higher ARI, and higher homogeneity showing more accurate clustering

mouse bone marrow and spleen by TooManyPeaks. An ‘‘X’’ marks algorithms

Cell Reports 36, 109575, August 24, 2021 5
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Figure 3. TooManyPeaks identifies genomic elements specific to resistant-like parental T-ALL cells

(A) TooManyPeaks tree of parental (n = 3,831 cells) and GSI-resistant (n = 4,158 cells) DND-41 T-ALL cells showing a resistant-like parental subpopulation of n =

144 cells.

(B) Genome tracks highlight key genomic elements at theMYC locus from 50 to 30, as follows:MYC promoter, Notch-dependentMYC enhancer E1, LINC00977-

proximal enhancer E2, and Notch-independentMYC enhancer E3. The top two and bottom two tracks show H3K27ac and aggregated scATAC-seq of DND-41

populations in (A), respectively.

(C–F) TooManyPeaks tree as in (A) showing the accessibility of the MYC promotor (C) and enhancers E1 (D), E2 (E), and E3 (F).

(legend continued on next page)
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To further elucidate the function of differentially accessible el-

ements at the MYC locus, we complemented our single-cell

measurements with chromatin immunoprecipitation sequencing

(ChIP-seq) analysis of enhancer histone mark H3K27ac. In

concordance with the scATAC-seq data (Figures 3B and 3G),

we recapitulated the loss of activity at E1 and E2 and gain of ac-

tivity in E3 in GSI-resistant cells (Figure 3B). Interestingly, earlier

studies showed that although genomic element E1 binds the

Notch transcription complex and functions as a Notch-depen-

dent MYC enhancer, E2 does not bind Notch and functions as

a Notch-independent MYC enhancer (Yashiro-Ohtani et al.,

2014; Herranz et al., 2014; Shi et al., 2013). Together, our bulk

ChIP-seq analysis confirmed our scATAC-seq results and further

showed differential activity of Notch-dependent and Notch-in-

dependent MYC distal enhancers E1 and E3, as well as unchar-

acterized LINC00977-proximal putative MYC enhancer E2, in

GSI-sensitive and GSI-resistant DND-41 cells.

To more directly test whether chromatin accessibility differ-

ences in drug-naive cells contribute to the GSI-resistant pheno-

type, we next benefited from our scATAC-seq data to identify

potential chromatin changes underpinning differential MYC

expression in the resistant-like compared to non-resistant-like

parental cells (Figure S7B). Notch-independent MYC enhancer

E3 was similarly accessible in the resistant-like and non-resis-

tant-like parental cells (Figures 3B and 3G; Table S3). Similarly,

the accessibility of Notch-dependent MYC enhancer E1 was

comparable in these two subpopulations of parental cells (Fig-

ures 3B and 3G; Table S3; log2FC = � 0:316, q = 2:653

10�3). In contrast, enhancer E2 accessibility was markedly

different between these two parental subpopulations (Figures

3B and 3G). Similar to GSI-resistant cells, enhancer E2 was

significantly less accessible in resistant-like than in non-resis-

tant-like subpopulation of parental cells (Figures 3B and 3G; Ta-

ble S3; log2FC = � 0:802, q = 0:0286). To assess if the loss of

enhancer E2 accessibility may further affect LINC00977 expres-

sion, we used TooManyCells (Schwartz et al., 2020) to quantify

LINC00977 transcript levels in 7,371 parental and resistant cells

(Figures 3H and 3I). This scRNA-seq analysis revealed that

LINC00977 expression was markedly lower in the GSI-resistant

cells than in non-resistant-like parental cells (Figures 3H and

3I; Table S4; log2FC = � 1:84, q< 2:22310�16). Notably, in

concordance with enhancer E2 accessibility loss (Figures 3B

and 3G), we also observed reduced LINC00977 expression in

resistant-like compared to non-resistant-like parental cells (Fig-

ures 3H and 3I, and Table S1; log2FC = � 0:568, p = 0:117).

To further elucidate the underlying mechanisms of differential

LINC00977-proximal enhancer E2 activity in the two parental

sub-populations, we used motif search to explore transcription

factors that potentially bound enhancer E2 in non-resistant-like

but not resistant-like parental cells (Figure S7E; Table S5). These

data revealed the presence of consensus binding motifs of TCF

high-mobility group (HMG) family of proteins in the sequences

of enhancer E2. Notably, scRNA-seq data showed significant
(G) Box-and-whisker plot showing normalized accessibility at each locus in (B) fo

(H) TooManyCells tree of gene expression showing elevated LINC00977 levels in

(I) Box-and-whisker plot quantifying upper-quartile-normalized LINC00977 expre

S1, S2, S3, S4, and S5.
downregulation of TCF-7, the gene encoding for T cell-lineage

determinant factor TCF-1 (Johnson et al., 2018), in both GSI-

resistant and resistant-like parental compared to non-resistant-

like parental cells (Figures S7E and S7F; log2FC = � 2:63, q =

9:30310�5). Together, these data suggest that in addition to

MYC, differential activity of TCF-1 and its cognate regulatory el-

ements such as LINC00977-proximal enhancer E2 may play a

role in setting disparate epigenetic transcriptional regulatory pro-

grams in resistant-like and non-resistant-like parental sub-

populations.

DISCUSSION

We developed TooManyPeaks, which provides complementary

algorithms for clustering and visualizing scATAC-seq data. Too-

ManyPeaks visualization and clustering are fundamentally

different from projection-based visualization and single-resolu-

tion clustering. In addition to various visualization features, Too-

ManyPeaks provides other capabilities including, but not limited

to, flexible genomic feature options and cell type classification

based on reference cis-regulatory elements. To enhance usabil-

ity, TooManyPeaks is extensively documented (https://github.

com/faryabib/too-many-cells#too-many-peaks) and is available

as an easy-to-install standalone program through Nix or Docker.

Using the unique capabilities of TooManyPeaks, we identified

a rare resistant-like population of Notch-mutated T-ALL DND-41

cells with chromatin accessibility more similar to GSI-resistant

cells than non-resistant-like parental cells. Our new scATAC-

seq data also suggested regulatory element markers of cells

with a propensity for developing GSI resistance and signify po-

tential transcription factor drivers of the resistance phenotype.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-H3 acetyl-K27 Active Motif Cat# 39133; RRID:AB_2561016

Chemicals, peptides, and recombinant proteins

Recombinant Protein G Agarose Invitrogen Cat# 15920-010

Proteinase K Invitrogen Cat# 25530-049

RNase A Roche Cat# 10109169001

g-Secretase Inhibitor XXI (compound E) Calbiochem Cat# 565790

RPMI 1640 Corning Cat# 10-040-CM

HyClone Fetal bovine serum Thermo Fisher Scientific Cat# SH30070.03

L-glutamine Corning Cat# 25-005-CI

Penicillin-Streptomycin Corning Cat# 30-002-CI

MEM Non-Essential Amino Acids GIBCO Cat# 11140-050

Sodium Pyruvate GIBCO Cat# 11360-070

Glycine Invitrogen Cat# 15527-013

Pierce 16% Formaldehyde Thermo Fisher Scientific Cat# 28908

Trizma Hydrochloride Solution, pH 7.4 Sigma-Aldrich Cat# T2194-100ml

Sodium Chloride Solution, 5M Sigma-Aldrich Cat# 59222C-500ml

Magnesium Chloride Solution, 1M Sigma-Aldrich Cat# M1028-100ml

Nonidet P40 Substitute Sigma-Aldrich Cat# 74385-5l

MACS BSA Stock Solution Miltenyi Biotec Cat# 130-091-376

Flowmi Cell Strainer, 40 mm Bel-Art Cat# H13680-0040

Digitonin Thermo Fisher Scientific Cat# BN2006

Dulbecco’s Phosphate-Buffered Salt

Solution 1X

Corning Cat# 21031CV

Critical commercial assays

KAPA Library Quant Kit Roche Cat# KK4824

D1000 ScreenTape Agilent Cat# 5067-5582

D1000 Reagents Agilent Cat# 5067-5583

High Sensitivity D1000 ScreenTape Agilent Cat# 5067-5584

High Sensitivity D1000 Reagents Agilent Cat# 5067-5585

QIAquick PCR Purification Kit QIAGEN Cat# 28106

NEBNext Ultra II DNA Library Prep Kit NEB Cat# E7645S

Chromium Single Cell ATAC Library & Gel

Bead Kit, 4 rxns

10X GENOMICS Cat# PN-1000111

Chromium i7 Multiplex Kit N, Set A 10X GENOMICS Cat# PN-1000084

Chromium Chip E Single Cell ATAC Kit, 48

rxns

10X GENOMICS Cat# PN-1000082

NextSeq� 500/550 High Output Kit v2

(75 cycles)

Illumina Cat# FC-404-2005

NextSeq� 500/550 High Output Kit v2

(150 cycles)

Illumina Cat# FC-404-2002

Deposited data

Raw and analyzed scATAC-seq data This paper GEO: GSE155916

Raw and analyzed ChIP-seq data This paper GEO: GSE171098

Bulk ATAC-seq of purified progenitor and

differentiated hematopoietic cells

Yoshida et al., 2019; https://doi.org/10.

1016/j.cell.2018.12.036

GEO: GSE100738
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REAGENT or RESOURCE SOURCE IDENTIFIER

10x Genomics scATAC-seq of

CD34\textsuperscript{+} hematopoietic

progenitor cells

Satpathy et al., 2019; https://doi.org/10.

1038/s41587-019-0206-z

GEO: GSE129785

Fluidigm C1 scATAC-seq of

CD34\textsuperscript{+} hematopoietic

progenitor cells

Buenrostro et al., 2018; https://doi.org/10.

1016/j.cell.2018.03.074

GEO: GSE96769

sciATAC-seq of murine marrow and spleen

cells

Cusanovich et al., 2018; https://doi.org/10.

1016/j.cell.2018.06.052

GEO: GSE111586

scRNA-seq of GSI-resistant DND-41 cells Schwartz et al., 2020; https://doi.org/10.

1038/s41592-020-0748-5

GEO: GSE138892

Experimental models: Cell lines

DND-41 DSMZ ACC 525

Software and algorithms

APEC v1.2.2 Li et al., 2020; https://doi.org/10.1186/

s13059-020-02034-y

https://github.com/QuKunLab/APEC

Cicero v1.9.1 Pliner et al., 2018; https://doi.org/10.1016/j.

molcel.2018.06.044

https://github.com/cole-trapnell-lab/

cicero-release

CisTopic v0.3.0 Bravo González-Blas et al., 2019; https://

doi.org/10.1038/s41592-019-0367-1

https://github.com/aertslab/cisTopic

Cusanovich2018 Cusanovich et al., 2018; https://doi.org/10.

1016/j.cell.2018.06.052

This paper https://github.com/faryabib/

CellReports_TooManyPeaks_analysis

EpiScanpy v0.3.0 Danese et al., 2019; https://doi.org/10.

1101/648097

https://github.com/colomemaria/

epiScanpy

Seurat v3.2.3 Butler et al., 2018; https://doi.org/10.1038/

nbt.4096

https://github.com/satijalab/seurat

Signac v1.1.0 Stuart et al., 2020; https://doi.org/10.1101/

2020.11.09.373613

https://github.com/timoast/signac

SnapATAC v1.0.0 Fang et al., 2021; https://doi.org/10.1038/

s41467-021-21583-9

https://github.com/r3fang/SnapATAC

tsne v0.1.3 van der Maaten and Hinton, 2008 https://github.com/jdonaldson/rtsne/

TooManyPeaks v2.2.0.0 This paper https://doi.org/10.5281/zenodo.

5130671

https://github.com/faryabib/

too-many-cells#too-many-peaks

TooManyPeaks analysis code This paper https://doi.org/10.5281/zenodo.

5130655

https://github.com/faryabib/

CellReports_TooManyPeaks_analysis

R wrapper for TooManyCells v0.1.1.0 Schwartz et al., 2020; https://doi.org/10.

1038/s41592-020-0748-5

https://github.com/GregorySchwartz/

tooManyCellsR

umap-learn v0.4.6 McInnes et al., 2018; https://doi.org/10.

21105/joss.00861

https://github.com/lmcinnes/

HOMER v4.9 Heinz et al., 2010; https://doi.org/10.1016/j.

molcel.2010.05.004

http://homer.ucsd.edu/homer

bedtools v2.30.0 Quinlan and Hall, 2010; https://doi.org/10.

1093/bioinformatics/btq033

http://bedtools.readthedocs.io/en/stable

BWA v0.7.13 Li and Durbin, 2009; https://doi.org/10.

1093/bioinformatics/btp324

http://bio-bwa.sourceforge.net

Cell Ranger ATAC v1.2.0 Satpathy et al., 2019; https://doi.org/10.

1038/s41587-019-0206-z

https://support.10xgenomics.com/

single-cell-atac/software/pipelines/latest/

what-is-cell-ranger-atac

Picard v2.1.0 Broad Institute https://github.com/broadinstitute/picard

Trim Galore v0.4.1 Babraham Bioinformatics https://www.bioinformatics.babraham.ac.

uk/projects/trim_galore

UCSC tools v404 Kent et al., 2010; https://doi.org/10.1093/

bioinformatics/btq351

https://github.com/ucscGenomeBrowser/

kent
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Robert B.

Faryabi (email:faryabi@pennmedicine.upenn.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
DND-41 T-ALL scATAC-seq and ChIP-seq data have been deposited at the Gene Expression Omnibus and are publicly available as

of the date of publication. Accession numbers are listed in the Key resources table.

In addition, Bulk ATAC-seq of purified progenitor and differentiated hematopoietic cells, 10x Genomics scATAC-seq, Fluidigm C1

scATAC-seq, sciATAC-seq, and GSI-resistant scRNA-seq data are existing, publicly available data. The accession numbers for

these datasets are listed in the Key resources table.

All original software code has been deposited at https://github.com/faryabib/too-many-cells#too-many-peaks (source), https://hub.

docker.com/repository/docker/gregoryschwartz/too-many-cells/ (Docker), https://cran.r-project.org/web/packages/TooManyCellsR

(R wrapper), and https://github.com/faryabib/CellReports_TooManyPeaks_analysis (analysis code) and is publicly available as of the

date of publication. DOIs are listed in the Key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

GSI-resistant T-ALL cell culture
DND-41 cells (DSMZ, cat# ACC525) were purchased from the Leibniz-Institute DSMZ-German Collection of Microorganisms and

Cell Lines. These male cells were cultured in RPMI 1,640 (Corning, cat# 10-040-CM) supplemented with 10% fetal bovine serum

(Thermo Fisher Scientific, cat# SH30070.03), 2 mM L-glutamine (Corning, cat# 25-005-CI), 100 Ug/mL and 100 mg mL�1 peni-

cillin/streptomycin (Corning, cat# 30-002-CI), 100 mM nonessential amino acids (GIBCO, cat# 11140-050), 1 mM sodium pyruvate

(GIBCO, cat# 11360-070) and 0.1 mM of 2-mercaptoethanol (Sigma, cat# M6250). All cells were grown at 37+C and 5% CO2 with

media refreshed every 3-4 days. Cells were regularly tested for mycoplasma contamination.

IC50 values for gamma-secretase inhibitor (GSI) compound E (Calbiochem, cat# 565790) were calculated from dose-response

curves using CellTiter Glo Luminescent Cell Viability Assay (Promega, cat# G7571). Briefly, 1,000 treatment-naive DND-41 cells in

5 replicates/condition were plated in 96-well plates with vehicle or increasing concentrations of GSI (0.016, 0.031, 0.062, 0.125,

0.25, 0.5, 1, 2 mM). Luminescence was measured on day 7 with CellTiter Glo Luminescent Cell Viability Assay according to the man-

ufacturer’s instructions. DND-41 IC50 of GSI was determined to be 5 nM.

To generate GSI-resistant cells, DND-41 treatment-naive cells were cultured in the presence of 125 nM GSI for at least six weeks.

The establishment of GSI-resistance was determined with IC50 assay as described above. GSI-resistant DND-41 cells can tolerate

10mMGSI with less than 20% cell death. Short-term DMSO treatment was performed on treatment-naive DND-41 cells with 125 nM

DMSO for 24 hours.

METHOD DETAILS

GSI-resistant T-ALL single-cell ATAC-sequencing
We performed single-cell ATACseq for parental and GSI-resistant DND-41 cells following manufacture’s instructions for Chromium

Single Cell ATAC Library & Gel Bead Kit and Chromium Chip E Single Cell ATAC Kit (10x Genomics). Briefly, we loaded cells onto

independent channels of a ChromiumController for targeted recovery of 4,000 cells per condition. We assessed libraries with Agilent

TapeStation using High sensitivity D1000 chip and quantified using KAPA Library Quantification Kits for Illumina platform (KAPA Bio-

systems, Roche, cat# KK4824). We performed paired-end sequencing on NextSeq 550 using 150 cycles High Output kit.

We performed FASTQ file generation and alignment to hg19 using Cell Ranger ATAC v1.2.0 (Satpathy et al., 2019) default argu-

ments. We aggregated these cells using Cell Ranger. We sequenced parental and GSI-resistant cells at 253,594,800 and

252,343,254 read pair depth, respectively. In total, 8,041 cells passed the Cell Ranger QC and showed the typical ‘‘knee’’ plots indi-

cating high quality from DMSO-treated parental (3,887) and GSI-resistant (4,154). We used sequence fragments of parental and

resistant cells, with median of 13,238 and 33,523 per cell respectively, either directly as TooManyPeaks and SnapATAC inputs, or

indirectly as Cicero, CisTopic, EpiScanpy, Cusanovich2018, APEC, Signac, and PAGA via pseudo-bulk ATAC-seq peak calling.

H3K27ac ChIP-seq
We performed H3K27ac ChIP-seq as previously described (Petrovic et al., 2019). Briefly, we sonicated and cleared chromatin

samples prepared from 107 fixed cells with recombinant protein G–conjugated Agarose beads (Invitrogen, cat# 15920-010) and
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subsequently immunoprecipitated these cells with antibodies recognizing H3K27ac (Active Motif, cat# 39133). We captured Anti-

body-chromatin complexes with recombinant protein G–conjugated Agarose beads, washed them with Low Salt Wash Buffer,

High Salt WashBuffer, LiClWashBuffer and TE buffer with 50mMNaCl and eluted them. After reversal of cross-linking, we performed

RNase and Proteinase K (Invitrogen, cat# 25530-049) treatment and purified DNA with QIAquick PCR Purification Kit (QIAGEN, cat#

28106). We then prepared libraries using the NEBNext Ultra II DNA library Prep Kit for Illumina (NEB, cat# E7645S). We validated in-

dexed libraries for quality and size distribution using a TapeStation 2200 (Agilent). We performed paired-end sequencing

(38 bp+38 bp) on a NextSeq 550.

Reads fromH3K27acChIP-seq experiments were trimmedwith TrimGalore (version 0.4.1, https://www.bioinformatics.babraham.

ac.uk/projects/trim_galore/) with parameters -q 15–phred33–gzip–stringency 5 -e 0.1–length 20. Trimmed reads were aligned to the

Ensembl GRCh37.75 primary assembly including chromosome 1-22, chrX, chrY, chrM and contigs using BWA (version 0.7.13) (Li and

Durbin, 2009) with parameters bwa aln -q 5 -l 32 -k 2 -t 6 and paired-end reads were group with bwa sampe -P -o 1000000. Reads

mapped to contigs, ENCODE blacklist and marked as duplicates by Picard (version 2.1.0, https://broadinstitute.github.io/picard/)

were discarded and the remaining reads were used in downstream analyses and visualization. Bedgraph of reads normalized to

reads permillion (RPM) fromChIP-seqwere generatedwith bedtools genomecov (Quinlan andHall, 2010). Genome-wide uploadable

bigWig files were generated with UCSC tools (version 329) (Kent et al., 2010) bedGraphToBigWig.

QUANTIFICATION AND STATISTICAL ANALYSIS

TooManyPeaks analysis of scATAC-seq data
TooManyPeaks is a collection of specialized functionalities and entry points for the parent suite TooManyCells, and extends TooMa-

nyCells to analyze chromatin accessibility of individual cells. TooManyPeaks provides many additional functionalities such as pro-

cessing genomic region features (e.g., parsing regions for merging features) for sequence fragment file and / or peak matrix input,

binning of regions, filtering out ‘‘black list’’ regions, and dimensionality reduction with LSA. In addition TooManyPeaks provides Too-

ManyCells with several new entry points: peaks for peak finding with MACS2 (customizable with any other program), motifs for de

novo or knownmotif search withMEME or HOMER (customizable with any other program), and classify for cell-type assignment from

bulk ATAC-seq. While both MACS2 and MEME are included in the Nix derivation, any command line program can be integrated into

the TooManyPeaks framework for use with these entry points.

Accessibility matrix
Given a sequence fragment file where each line consists of an initial three BED columns followed by cell barcode and duplicate count

columns, TooManyPeaks initially generates anm3nmatrixM ofm observations (cells) and n genomic loci (equal-size genomic bins

or pseudo-bulk ATAC-seq peaks) features, whereMði; jÞ is the number of counts for cell i at feature j. When starting from a fragments

file, ‘‘black list’’ regions of the genome are known to have high signal (Amemiya et al., 2019). All analyses presented here that originate

from a sequence fragment file filter out known ‘‘black list’’ regions with erroneously high signal (Amemiya et al., 2019), unless other-

wise specified using–blacklist-regions-file. The width of genomic bin features across all the cells specified using–binwidth, which is

set here to 5000 bp unless stated otherwise. By default, TooManyPeaks converts the matrix into a binary matrix to represent acces-

sible or inaccessible sites.

Tree of single-cell clades
Potentially due to the ‘‘curse of dimensionality,’’ the large number of features in scATAC-seq data may result in every cell being an

outlier, which in turn leads to low modularity in the initial bi-partitioning and stops the tree generation prematurely. To avoid this sit-

uation, we use latent semantic analysis for dimensionality reduction (here using 50 dimensions with–lsa) (Deerwester et al., 1990).

TooManyPeaks passes this reduced feature spacematrix to TooManyCells, which generates a tree of single-cell relationships based

on the accessibility of their chromatins. Briefly, we generate a tree of cell clade relationships by recursively bi-partitioning the cells

using an efficient matrix-free divisive hierarchical spectral clustering (Schwartz et al., 2020). To simultaneously detect large and small

populations and avoid creating arbitrary small clusters, we use Newman-Girvanmodularity (Newman andGirvan, 2004) as a stopping

criterion for recursive cell bi-partitioning. The TooManyPeaks divisive hierarchical spectral clustering algorithm produces a nested

cluster structure where relationships among the groups are maintained.

Peak calling and downstream analyses
Each node in the tree contains a collection of cells. The TooManyPeaks peaks entry point can be used to directly call peaks using

MACS2 that is integrated into TooManyPeaks. TooManyPeaks calls peaks at each node specified (or all nodes) for downstream dif-

ferential peak calculations. TooManyPeaks can be instructed with the–bedgraph option to generate bedGraph and bigWig files to

visualize chromatin accessibility of each node on a genome browser. Given labels such as cell type or disease state, TooManyPeaks

can also make tracks filtered for a label for a set of nodes. Transcription factor binding sequence motif search programs MEME and

HOMER are integrated into TooManyPeaks and can be used to identify de novo motifs and search for known motifs for each node.

TooManyPeaks motif analysis options can be controlled from the motifs entry point.
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Classification based on reference elements
To assign cell types to individual cells in the TooManyPeaks tree, TooManyPeaks can use peaks from pseudo-bulk scATAC-seq or

bulk ATAC-seq data from FACS-purified cells as reference cis-regulatory elements. Here, we annotated each murine bone marrow

and spleen cells (Cusanovich et al., 2018) based on reference cis-regulatory elements. We generated reference cis-regulatory ele-

ments of 92 phenotypically defined FACS-sorted progenitor and differentiated hematopoietic cell types by analyzing their bulk ATAC-

seq. To this end, fastq files for 186 samples were obtained from ImmGenn GSE100738 (Yoshida et al., 2019), and aligned to mm9

genome with BWA (version 0.7.13) (Li and Durbin, 2009) with parameters bwa aln -q 5 -l 32 -k 2 -t 6, after trimming with Trim Galore

(version 0.4.1) with parameters -q 15–phred33–gzip–stringency 5 -e 0.1–length 20. Readsmapped to contigs, ENCODEblacklist, and

marked as duplicates by Picard (version 2.1.0) were discarded and the remaining reads were used for peak calling and creating

genome tracks.

Reproducible peaks in ATAC-seq replicates were identified following an implementation of ENCODE Irreproducible Discovery

Rate (IDR) pipeline. Peaks in true replicates, pseudoreplicates, and pooled samples were identified using MACS (version 2.0.9)

(Zhang et al., 2008) with parameters -p 1E-5 -gmm9–nomodel–format =BAM–bw=300–keep-dup = 1. IDR cutoffs for true replicates,

pseudoreplicates, and pooled samples were 0.05, 0.05 and 0.005 respectively. Replicates with Np/Nt ¸ 2 and N1/N2 ¸ 2 were consid-

ered reproducible. The resulting ATAC-seq peaks were used as reference cis-regulatory elements of 92 phenotypically defined pro-

genitor and differentiated hematopoietic cell types.

Given a set of observations (cells) O = f1.mg, a set of features (regions or genes) F = f1.ng, a set of reference regulatory el-

ements (pseudo-bulk scATAC-seq or bulk ATAC-seq FACS-purified populations) R = 1.r, an m3n observation feature matrix M

and a new r3n reference matrix R, TooManyPeaks first normalizes each row in M and R such that for some m3n matrix X,

pðXÞði; jÞ = e�1
i Xði; jÞ; (Equation 1)

where ei =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k = 1X
2ði; kÞ

q
is the Euclidean norm of X row i. Then we can generate a new matrix S representing a bipartite graph of

relationships between the observations in M and bulk populations in R with

S = pðMÞpðRÞT ; (Equation 2)

where �1%Sði; jÞ%1 is the score (cosine similarity) of relatedness between observation 1%i%m to reference 1%j%r, with higher

score indicating higher relatedness. Then the set of cell-type assignments A of length m by maximum score is defined by

Ai = max
j˛R

Sði; jÞ: (Equation 3)
Clustering benchmarks
We adapted the clustering benchmark for scRNA-seq as previously described (Schwartz et al., 2020) to scATAC-seq . Briefly, using

TooManyPeaks, APEC (Li et al., 2020), Cicero (Pliner et al., 2018), CisTopic (Bravo González-Blas et al., 2019), CisTopic with Louvain,

Cusanovich2018 (Cusanovich et al., 2018), EpiScanpy (Danese et al., 2019), Signac (Stuart et al., 2020), and SnapATAC (Fang et al.,

2021), we clustered separately two datasets of phenotypically defined cells within bone marrow and blood samples profiled using

10x Genomics (Satpathy et al., 2019) (starting from a cell-by-peak file generated by TooManyPeaks to keep cells consistent) or Fluid-

igm C1 (Buenrostro et al., 2018) (starting from peaks as given in the dataset) scATAC-seq platforms. To increase the robustness of

our benchmark, we additionally clustered a simulated bone marrow dataset with a moderate noise level of 0.2 (Chen et al., 2019). As

Cicero and CisTopic focused on generating features, we also ensured a version of CisTopic using Louvain clustering from Signac

instead of densityClust. We based this clustering benchmark on the assumption that similar cell types should cluster together. As

such, we used purity (Manning et al., 2008), entropy (Tan et al., 2019), mutual information (Kvålseth, 2017), adjusted rand index

(ARI), homogeneity (Rosenberg and Hirschberg, 2007), and residual average Gini index (RAGI) (Chen et al., 2019) to compare clus-

tering performances between algorithms. In summary, entropy and homogeneity assess the extent of cell-type label diversity within

clusters. Purity evaluates the extent of the dominant cell-type labels within the clusters. RAGI evaluates cluster-specificity of enrich-

ment for marker accessible elements. Finally, NMI measures dependency of information of the cell-type labels given the cluster la-

bels. RAGI requires gene activities as well as a list of known marker genes and housekeeping genes, so we used Cicero to generate

the gene activity matrix and the gene lists originally given with RAGI’s introduction (Chen et al., 2019).

Purity is based on the frequency of the most abundant class (e.g., cell type) in a cluster. Let U= fu1;u2;.;uKg be the set of clus-

ters and C= fc1; c2;.; cJg be the set of classes. Then purity is defined as

purityðU;CÞ = 1

N

X
k

max
j

��ukXcj

��;

where N is the total number of cells, uk is the set of cells in cluster k, and cj is the set of cells in class j (Manning et al., 2008). This

measure ranges from 0, poor clustering, to 1, perfect clustering.

Entropy as a measure of cluster accuracy uses Shannon entropy (Shannon, 1948) to measure the expected amount of information

from the clusters. The entropy of each cluster k is defined by
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HðukÞ =
X
j

��ukj

��
juk j log

��ukj

��
juk j ;

where ukj is the set of cells from ukXcj. Then the entropy for the entire clustering is (Tan et al., 2019)

entropyðU;CÞ =
X
k

juk j
N

HðukÞ:

Here, lower entropy of a clustering indicates higher accuracy.

Normalized mutual information (NMI) measures the normalized dependency of the class labels on the cluster labels, or the amount

of information about the class labels gained when the cluster labels are given. Mutual information is defined by

IðU;CÞ =
X
k

X
j

��ukXcj

��
N

log
N
��ukXcj

��
juk j

��cj

�� :

To compare mutual information across clusterings, IðU;CÞ is normalized to the interval ½0;1�. As IðU;CÞ is bounded by min½HðUÞ;
HðCÞ�, where

HðUÞ = �
X
k

juk j
N

log
juk j
N

is the entropy of U along with the analogous HðCÞ, total normalization NMI can be defined by

NMIðU;CÞ = IðU;CÞ
min½HðUÞ;HðCÞ�;

where higher values indicate more accurate clustering based on C (Kvålseth, 2017).

Homogeneity makes the assumption that clusterings assign all members within a single cluster a single label. Therefore, the label

distribution within a single cluster should result in zero entropy. Thus, the perfect case of homogeneity would be the Shannon entropy

ofHðCjUÞ = 0. Then, instead of the raw entropy, homogeneity produces the normalized entropy by themaximum reduction in entropy

from the clustering, namely HðCÞ. As 1 would be desirable as a maximum rather than 0, homogeneity is thus defined as (Rosenberg

and Hirschberg, 2007)

h =

8<
:

1 if HðCjUÞ= 0

1� HðCjUÞ
HðCÞ otherwise

where

HðCjUÞ = �
X
k

X
j

juk jj
N

log
juk jjP
j

���uk j
���
:

Adjusted Rand Index (ARI) is calculated based on the number of pairings between two data clusterings, then adjusted for chance

(Hubert and Arabie, 1985). Specifically, we first compute the Rand index

RI =
TP+TN

TP+FP+FN+TN
;

where TP and FP is the number of true or false positives respectively, while TN and FN is the number of true or false negatives respec-

tively, based on cells in the clustering pairs. Then, we can define the adjustment for chance as (Hubert and Arabie, 1985)

ARI =
RI� Expected RI

maxRI� Expected RI
:

For single-cell clustering accuracy, this measure requires a ‘‘ground truth’’ which was based on the given labels from each pub-

lished dataset which defines coarse labels which some algorithms, such as TooManyPeaks, attempt to further delineate. As such,

TooManyPeaks tends to perform poorly when using this type of measure with ambiguous ‘‘ground truth’’ clusterings.

Residual Average Gini Index (RAGI) is a recently proposed measure to define accuracy based on accessibility between known

housekeeping genes and marker genes (Chen et al., 2019). This method first requires a gene activity matrix generated from the

accessibility data, which we created using Cicero. Next, we calculate the mean accessibility values for all cells in each cluster.

We use the Gini index on this vector of values based on either housekeeping genes or marker genes, both of which we used as pre-

viously reported (Chen et al., 2019). The Gini index (Gini, 1997) measures dispersion based on inequality among values in a distribu-

tion. Briefly, if xi is the mean accessibility of i of all cells in a cluster, then the Gini index of n accessibility sites would be
Cell Reports 36, 109575, August 24, 2021 e6
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G =

Pn
i = 1

Pn
j = 1

��xi � xj
��

2
Pn

i = 1

Pn
j = 1xj

:

Then, we define the RAGI value as the difference in Gini index means between the housekeeping andmarker genes for a clustering

(Chen et al., 2019).

We used all algorithmswith either default parameters as outlined in their function definitions or associated vignettes throughout the

entire study which includes preprocessing with Seurat (Butler et al., 2018), with the exception of: knn = False in epi.pp.neighbors

followed by episcanpy.tl.diffmap and another neighbor identification round for EpiScanpy and PAGA for visualizations to avoid

low nearest neighbor errors as suggested by the Scanpy vignettes, and RunSVD with 3 dimensions to have fewer dimensions

than topics in CisTopic with Louvain in the rare population benchmarks to also avoid an error. Furthermore, while the recommended

latent semantic indexing (LSI, analogous to LSA) transformation through Signac was done to maintain a standard between Cicero

and CisTopic with Louvain clusterings, topics were directly inputted into Signac UMAP for visualization of CisTopic with Louvain

to avoid UMAP artifacts. All UMAP projections of the same data from different tools used the same seed.

Rare population benchmarks
We adapted the rare population benchmark for scRNA-seq as previously described to scATAC-seq (Schwartz et al., 2020). To this

end, we generated ten randomdatasets each from two immune cell datasets using subsampling. The first set of ten samples included

1000 cells each with one commonB cell population (ranging from 900 to 990 cells), one rare CD8+ T population (5 to 50 cells), and one

rare T regulatory cell (Treg) population (5 to 50 cells) (starting from sequencing fragments or peaks, depending on which algorithm

accepts which format as all cells were included) (Satpathy et al., 2019). The second set of ten samples included 500 cells each with

one frequent common myeloid progenitor population (400 to 450 cells), one rare monocyte population (5 to 25 cells), and one rare

plasmacytoid dendritic cell population (5 to 25 cells), with fewer cells due to a smaller dataset (starting from peaks as given in the

dataset) (Buenrostro et al., 2018). Additionally, we benchmarked on synthetic data generated using simATAC (Navidi et al., 2021),

where each of the common and two rare populations were generated from different seeds.

To quantify these benchmarks, we calculated a contingency table of the fraction of pairwise labels. For all rare cell pairs, we called a

true pair if the two cells were of the same cell type (e.g., a Treg with another Treg or a CD8+ T cell with another CD8+ T), while we

assigned a false pair if the two cells were of different cell types (e.g., a Treg with a CD8+ T cell). Then, the measure for accuracy

in this benchmark was the fraction of true pairs in all pairs.

Timing benchmark
We ran each algorithm three times on a dataset of 2,954 cells (Buenrostro et al., 2018) using a machine with Ubuntu 20.04, 512GiB

Memory, Intel� Xeon� CPU E5-2670 v3 @ 2.30GHz, 2 physical processors 24 cores, and 48 threads.

T-ALL scATAC-seq statistical analyses
We used the Kruskal-Wallis test with the Benjamini–Hochberg method for multiple-hypothesis correction (Benjamini and Hochberg,

1995) for differential accessibility between populations normalized by total sequence fragment. For the differential expression anal-

ysis, we used edgeR (Robinson et al., 2010) for normalization and the Benjamini–Hochberg multiple-hypothesis correction with

quasi-likelihood (QL) F-test p value.

T-ALL scATAC-seq motif analyses
We used HOMER findMotifsGenome.pl (Heinz et al., 2010) on the differential accessibility list of resistant-like / other parental cells,

keeping peaks that were considered significant at q< 0:05. This process generated a list HOMER identified as known motifs differ-

ential between these subpopulations. To understand the ontology of thesemotifs, we then performed aMetascape (Zhou et al., 2019)

analysis on the motifs significant at q< 0:05. To identify putative regulatory elements that correlated with differential expression, we

intersected these found elements with the differential gene expression between resistant-like and non-resistant-like parental cells of

this system (Schwartz et al., 2020).

In order to identify motifs for putative regulatory elements at the LINC00977 locus, we used FIMO (Bailey et al., 2009) on the

LINC00977 peak using the JASPAR reference database (Sandelin et al., 2004). To identify regulatory elements correlating with dif-

ferential gene expression as with the global analysis above, we intersected this candidate list with the differential gene expression

between resistant-like and non-resistant-like parental cells (Schwartz et al., 2020).

Statistical parameter definitions
Definitions of statistical parameters such as n and box-plot notations are defined in their respective figure legends.
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Figure S1: Comparison of TooManyPeaks for varying parameters, feature definition algorithms, and timing.
(A-B) Comparison of TooManyPeaks across varying parameters on a human peripheral blood cell population
(n = 44;814 cells) (Satpathy et al., 2019). Performance was measured using a clustering benchmark with, from left
to right, lower entropy, higher purity, higher normalized mutual information (NMI), higher adjusted Rand index (ARI),
and higher homogeneity showing more accurate clustering by varying either the number of bins (A) or the number
of LSA dimensions (B). (C-H) Running TooManyPeaks using features defined from other scATAC-seq algorithms.
(C, F) Clustering benchmark quantification from either the tree generated using CisTopic (D, G) or Cicero (E, H) on
CD34+ hematopoietic progenitor cells profiled using 10x Genomics (n = 7;771 cells) (Satpathy et al., 2019) (C-E),
or Fluidigm C1 (n = 2;954 cells) (Buenrostro et al., 2018) (F-H). (I) Timing benchmark of scATAC-seq algorithms.
Running time of algorithms were compared using a human bone marrow profiled with Fluidigm C1 (n = 2;954 cells)
(Buenrostro et al., 2018). Bar plots (mean plus / minus standard error) quantifies timing for 3 independent runs using
a machine with Ubuntu 20.04, 512GiB Memory, Intel® Xeon® CPU E5-2670 v3 @ 2.30GHz, 2 physical processors
24 cores, and 48 threads. For an unbiased comparison, default or suggested filterings and parameters were used
for all algorithms unless otherwise noted (see STAR Methods). Related to Figure 1.
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Figure S2: TooManyPeaks provides a number of pruning options, including a modularity-guided pruning, to control
the tree depth (Schwartz et al., 2020). Example of controlling the depth of the TooManyPeaks tree with modularity
stopping criteria of mouse spleen and bone marrow cells with modularity-guided pruning when the threshold is set to
no pruning or median(modularity) plus 0, 5, 10, and 15 × MAD(modularity) (from top to bottom in that order). MAD:
median absolute deviations. Related to Figure 2.
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Figure S3: Stratification and annotation of murine marrow and spleen cells. The TooManyPeaks algorithm for cell-
type annotation based on reference cis-regulatory elements was used to predict cell lineages in mouse bone marrow
and spleen (n = 16;749 cells) (Cusanovich et al., 2018). Reference cis-regulatory elements of 92 phenotypically
defined progenitor and differentiated hematopoietic cell types are generated from the analyses of bulk ATAC-seq in
FACS-sorted cells (Yoshida et al., 2019). (A) TooManyPeaks with modularity stopping criteria and no pruning shows
all 92 progenitor and differentiated hematopoietic cell types. At each bipartitioining, darker circle circumference
represents higher modularity. (B-I) PAGA-initiated UMAP (B, left panel) or PAGA network (B, right panel), t-SNE
output of APEC (C), as well as UMAP outputs of CisTopic (D), CisTopic with Louvain (E), Cusanovich2018 (F),
EpiScanpy (G), Signac (H), and SnapATAC (I) are colored by assigned cell-type labels. For an unbiased comparison,
each projection used the corresponding package’s UMAP or t-SNE implementation. Related to Figure 2.
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Figure S4: Comparing localization of hematopoietic stem cells (HSC) in the TooManyPeaks tree and UMAP or
t-SNE outputs of human bone marrow profiled with Fluidigm C1 (Buenrostro et al., 2018). (A) The modularity-guided
pruning threshold is set based on the beginning of the left plateau (marked by dashed red line) in the ranked
modularity curve of the human bone marrow TooManyPeaks tree nodes (n = 2;954 cells). (B) HSC cells are colored
on the pruned TooManyPeaks tree per (A). At each bipartitioining, darker circle circumference represents higher
modularity. (C-K) HSC cells are colored on UMAP or t-SNE outputs (red dots, left panel) generated by APEC (C),
Cicero (D), CisTopic (E), CisTopic with Louvain (F), Cusanovich2018 (G), EpiScanpy (H), Signac (I), SnapATAC (J),
and PAGA (K) initiated UMAP (top two panels) or PAGA network (bottom panels). Coordinates from the UMAP or
t-SNE outputs (C-K, left panels) colored by each algorithm cluster label (C-K, right panels) fails to clearly localize
HSC cells. For an unbiased comparison, each projection used the corresponding package’s UMAP or t-SNE
implementation. Moreover, default or suggested filters and parameters were used for all algorithms unless otherwise
noted (see STAR Methods). Related to Figure 2.
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Figure S5: Comparisons of DND-41 T-ALL scATAC-seq data visualization. (A) The TooManyPeaks tree colored
by resistant-like parental cells. (B-E) projection outputs of APEC (B), Cicero (C), CisTopic (D), and CisTopic with
Louvain (E) colored by resistance status (left), resistant-like parental cells as defined by TooManyPeaks (middle),
or algorithm cluster assignment (right) (n = 7;989 cells). For an unbiased comparison, each projection used the
corresponding package’s UMAP or t-SNE implementation. Moreover, default or suggested filters and parameters
were used for all algorithms unless otherwise noted (see STAR Methods). Related to Figure 3.
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Figure S6: Comparisons of DND-41 T-ALL scATAC-seq data visualization, continued from Figure S5. (A-D)
projection outputs of Cusanovich2018 (A), EpiScanpy (B), Signac (C), and SnapATAC (D) colored by resistance
status (left), resistant-like parental cells as defined by TooManyPeaks (middle), or algorithm cluster assignment
(right). (E) Projection output of PAGA-initiated UMAP colored by resistant status (left), resistant-like parental (second
from left), cluster assignment (second from right). Right panel shows PAGA network colored by resistant-like parental
cells (n = 7;989 cells). For an unbiased comparison, each projection used the corresponding package’s UMAP or
t-SNE implementation. Moreover, default or suggested filters and parameters were used for all algorithms unless
otherwise noted (see STAR Methods). Related to Figure 3.
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Figure S7: MYC and TCF-1 potentially bind differentially accessible elements of resistant-like parental cells. (A)
Metascape analysis with DisGeNET database (left) and Ontology gene sets (right) showing that transcription factors
with enriched binding motifs at the differential accessible elements of resistant-like parental cells are associated
with pathways involved in T cell development and malignancies (highlighted in red, see STAR Methods). (B) MYC
expression levels in GSI-resistant, resistant-like parental, and non-resistant-like parental cells identified in the
TooManyCells tree (n = 7;371 cells). (C) Transcription factors from HOMER with both significant upregulation and
more accessible binding motif recognition sites in resistant-like parental compared to non-resistant-like parental
cells. (D) TooManyPeaks tree of parental and GSI-resistant DND-41 cells as in Figure 3A showing the accessibility
of the Notch-dependent and Notch-independent MYC enhancers (n = 7;989 cells). (E) Transcription factors from
JASPAR (Sandelin et al., 2004) with both significantly lower expression and accessible binding motif recognition
sites at the LINC00977 -proximal enhancer E2 of the resistant-like compared to non-resistant-like parental cells. (f)
TCF-7 expression levels in GSI-resistant, resistant-like parental, and non-resistant-like parental cells identified in the
TooManyCells tree (Schwartz et al., 2020) (n = 7;371 cells). Related to Figure 3.
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