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1st Editorial Decision 

November 24, 2020 

Dr. Tania Dot torini 
University of Nottingham 
Loughborough 
United Kingdom 

November 24, 2020 

 
 
Re: mSystems00913-20 (Genome-scale metabolic models and machine learning reveal genet ic 
determinants of ant ibiot ic resistance in Escherichia coli and unravel the underlying metabolic 
adaptation mechanisms.) 

 
Dear Dr. Tania Dot torini: 

 
 
 
Below you will find the comments of the reviewers. 

 
To submit your modified manuscript , log onto the eJP submission site at                          
ht tps://msyst ems.msubmit .net /cgi-bin/main.plex. If you cannot remember your password, click the 
"Can't remember your password?" link and follow the instruct ions on the screen. Go to Author 
Tasks and click the appropriate manuscript t it le to begin the resubmission process. The informat ion 
that you entered when you first submitted the paper will be displayed. Please update the 
informat ion as necessary. Provide (1) point-by-point responses to the issues raised by the 
reviewers as file type "Response to Reviewers," not in your cover letter, and (2) a PDF file that 
indicates the changes from the original submission (by highlight ing or underlining the changes) as 
file type "Marked Up Manuscript - For Review Only." 

 
Due to the SARS-CoV-2 pandemic, our typical 60 day deadline for revisions will not be applied. I 
hope that you will be able to submit a revised manuscript soon, but want to reassure you that the 
journal will be flexible in terms of t iming, part icularly if experimental revisions are needed. When you 
are ready to resubmit , please know that our staff and Editors are working remotely and handling 
submissions without delay. If you do not wish to modify the manuscript and prefer to submit it to 
another journal, please notify me of your decision immediately so that the manuscript may be 
formally withdrawn from considerat ion by mSystems. 

 
If your manuscript is accepted for publicat ion, you will be contacted separately about payment  
when the proofs are issued; please follow the instruct ions in that e-mail. Arrangements for payment 
must be made before your art icle is published. For a complete list of Publication Fees, including 
supplemental material costs, please visit our website. 

 
Corresponding authors may join or renew ASM membership to obtain discounts on publicat ion fees. 
Need to upgrade your membership level? Please contact Customer Service at  
Service@asmusa.org. 

 
 
Thank you for submit t ing your paper to mSystems. 

https://msystems.asm.org/content/publication-fees
https://www.asm.org/membership
mailto:Service@asmusa.org


Sincerely, 

Xiaoxia "Nina" Lin 

Editor, mSystems 

Journals Department 
American Society for Microbiology 
1752 N St ., NW 
Washington, DC 20036 
E-mail: peerreview@asmusa.org 
Phone: 1-202-942-9338 

 
 
Reviewer comments: 

 
Reviewer #1 (Comments for the Author): 

 
This work presents a series of novel, flux balance analysis methods to better understand the 
metabolic effects of E. coli genes associated with AMR as determined by machine learning (or 
potent ially any GWAS method). These analyses are technically sound and dist inct from other 
approaches towards integrat ing FBA with ML, and appear to only require a metabolic model for the 
organism of interest to implement. However, the manuscript is in need of clarificat ion regarding 
specifics of the data and methods employed, as well as potential improvements in how some of the 
key results are presented. 
● (Line 165) Was there any filt ering for assembly quality or completeness when select ing which 
genomes to use? Please specify. 
● (Line 167) State Which AMR standard(s) the data comprised of (i.e. CLSI, EUCAST). 
● (Line 182-193) What statistical test was used to determine correlat ion between AMR phenotype 
and sequence type/clonal complex? Are they significant under mult iple hypothesis correct ion, 
assuming all ant ibiot ic x organism x clonal complex cases were tested? Please specify. 
● (Line 208) Can the authors comment on why the piperacillin (and possibly also cefuroxime) cases 
were more challenging for the GBC model? 
● (Line 212) Were there any modificat ions to the GBC to achieve more robust and/or sparse models 
for feature select ion, such as subsampling or limit ing max features? 
● (Line 215) How were features ranked to extract the top 10/50 features for each ant ibiot ic? The 
methods ment ion that the number of non-zero importance cases, mean importance, and maximum 
importance were recorded for all features. 
● (Line 230) Can the authors comment on why the kmer-based approach appears to consistent ly 
outperform the SNP-based approach for phenotype predict ion? Please specify. 
● (Line 240/Table S3) Future analysis of these AMR-associated SNPs may benefit from being 
characterized with respect to a reference genome. For example, what are the parE SNPs/result ing 
amino acid substitutions that are linked to fluoroquinolone AMR, relat ive to K12 MG1655? 
● (Line 267) The analysis of metabolic systems among AMR genes may be strengthened by 
applying associat ion tests for whether the AMR genes (across all or individual drugs) are enriched 
for a part icular metabolic system compared to all other genes in iML1515. 
● (Line 267/Figure 3d) For the hierarchical clustering, what data is being clustered and which 
distance metric and linkage were used? Please specify. 
● (Line 434) "first computat ional pipeline that combined machine learning and genome-scale 
metabolic model analysis." Update this sect ion with a comparison to another recent approach to 

mailto:peerreview@asmusa.org


integrat ing FBA with ML for AMR: ht tps://doi.org/10.1038/s41467-020-16310-9 
● (Line 439) "first t ime by integrat ing the GSM with the ML" see above 
● (Line 461) The discussion of GSM-related results does a good job of highlight ing metabolic 
systems that are associated with mult i-drug AMR through broad mechanisms. Drug-specific 
associat ions discovered here should also be emphasized. 
● (Line 559) Assessing the metabolic effects of a given gene using the methods here appear to 
depend only on a metabolic model and not on the sequence or AMR data. A near-term extension of 
this work that may be worth discussing is the prospect of precomput ing all of these deeper 
metabolic effects for each gene in a given GSM(s), so that future AMR GWAS studies can readily 
draw insights on potential AMR gene metabolic effects as predicted by these methods without 
needing to setup and and solve all the GSM problems independent ly. 
● (Line 615-616) What are "variants having <=95% constant nucleot ides"? 
● (Line 699-700) 100 carbon atom restrict ion could be made more clear with a formal descript ion of 
the corresponding linear constraint (s) added to the model. Can the authors explain the rat ionale 
behind allowing the model to use any carbon sources in the FVA analysis? 

 
● Minor edits 
○ (Line 52) Current wording suggests that 52 known AMR genes were recovered, but Table 1+2 
reports that only 22+3 known AMR genes were matched to the correct drug. Update to report 
separate counts for correct ly associated genes and other AMR genes detected. 
○ (Line 83) "bacterias" -> "bacteria's" 
○ (Line 128) See above regarding known vs. correct ly matched AMR genes. 
○ (Line 200) "which st rongly correlated to" -> "which are st rongly correlated with" 
○ (Line 244) See above regarding known vs. correct ly matched AMR genes 
○ (Line 273) Reference Supplement Table 1 for carbon sources tested 
○ (Line 457) See above regarding known vs. correct ly matched AMR genes 
○ (Line 528) "effects" -> "affects" 
○ (Figure 1) Make plot arrangement and dimensions consistent with Figure 2 
○ (Figure 3b) May be useful to also present rat ios between shared vs. combined metabolic genes 
(i.e. Jaccard index for each pair) 
○ (Figure 3d) Update capt ion, current ly reads "number of genes" but heatmap shows non-integer 
values 
○ (Figure 5b-c) An alternat ive presentation of pie chart data that may better highlight which 
mechanisms/ant ibiot ics are associated with which clusters is a heatmap or clustermap similar to 
Figure 3d, showing what fract ion of each cluster is of a given mechanism/ant ibiot ic. 
○ (Figure 6b-c) See comment on Figure 5b-c 

 
 
Reviewer #2 (Comments for the Author): 

 
This art icle combines available knowledge, statistical inference and metabolic modeling to provide 
an increased understanding of specific metabolic processes that may contribute to confer 
resistance to specific ant ibiot ics in E. coli. The work presented is overall creat ive and thought- 
provoking, and I feel it contributes an original and thorough analysis that could inform and inspire 
other researchers. However, I also think that there are mult iple aspects of the writ ing that need 
substantial clarificat ion and rephrasing: 

 
1. A major point that I would like to bring up is that the rat ionale and hypothesis underlying the GSM 
analysis that is central to the paper is not clearly just ified in the int roduct ion and beginning of the 
result sect ion, and barely just ified later in the results. As a reader t rying to follow the rat ionale of the 



approach, I found it hard to figure out how and why the ML and GSM analysis can inform each other. 
For example, at line 117, the authors ment ion that GSM "offers a way of mechanist ically evaluat ing 
the genet ic determinants ident ified using ML". It is not clear what it means to evaluate a genet ic 
determinant . If I understand correct ly, what you are evaluat ing is really the role of that gene (or even 
more precisely the presence/absence, or different variants of that gene) on the resistance 
phenotypes. Furthermore, it is not clear nor obvious why the delet ion of a gene should inform the 
resistance phenotype. A mutat ion/k-mer pattern could be in principle associated with the increase 
of expression of a gene. So it is not clear (as somehow implied in the text) if and why the delet ion of 
a gene whose variat ion is correlated with resistance would help inform the underlying mechanisms 
of resistance. It is ent irely possible (and, apparent ly consistent with the findings) that gene  
delet ions end up being informat ive, but - again - to me this was not self-evident at the start. I would 
expect the authors to revise their presentation of the underlying mot ivat ion and hypothesis with 
more details, and a more precise descript ion of why they would expect GSM to be informat ive. A 
similar unsatisfactory descript ion of this link is also appearing in the first sect ion of the results, 
where, towards the end (lines 156-158) the not ion that GSM lethalit y of AMR-related genes would 
yield interest ing results is ment ioned very briefly and without a real rat ionale. The first hint to a 
rat ionale (one of many possible) appears only at line 273-275. 

 
2. I am curious whether the authors considered using experimental gene delet ion data to cross- 
validate some of the predict ions used in the analysis. I understand that such data may not be 
available for all st rains and condit ions, but it may be nice to a t least see a ment ion of how the 
availabilit y of such data could impact your analysis or help refine it . 

 
3. The phylogenet ic analysis (start ing at line 160) is potent ially interest ing but fairly disconnected 
from the rest of the manuscript . At first I was confused in t rying to figure out whether and how that 
analysis informed the subsequent ML inference. I would suggest that the authors consider 
embedding that sect ion different ly in the flow of the manuscript , or at least make it very clear how it 
connects (or doesn't connect) to other port ions. 

 
4. Lines 256-259: It would be important to make port ion clearer. If I understand correct ly, SNPs are in 
(annotated) genes only, whereas k-mers could be anywhere in the genome. However it is not clear 
whether SNPs are only in the coding regions of the genes (it doesn't have to be the case). Also, I 
expect many genes to be non-metabolic and therefore not in the GSM, because only a port ion 
(~1/4th?) of genes in E. coli are metabolic enzymes. So it is not clear what are the genes that the 
authors call "accessory genes": all the non-metabolic ones? In short, this whole part seems either 
misinformed about the connect ion between SNPs, k-mers and GSM, or just poorly explained. 

 
5. Lines 289-290: The opening sentence of this paragraph doesn't make sense to me, making the 
whole paragraph a bit shaky. 

 
6. Lines 307-308: There is no effect of a gene on a metabolite. Again, the setup of this port ion could 
be much clearer with a sharper and more rigorous opening sentence. I gather from reading on 
(especially the methods) that the author meant effect of a gene on the producibilit y of a metabolite. 
Also: what metabolites? All metabolites or biomass components only? What is the rat ionale for 
either choice? These points can be clarified with minor sentence tweaks, but they can great ly 
enhance clarity. 

 
7. Prior work (Brynildsen et al., Nature Biotechnology volume 31, pages 160-165) had used extended 
FBA models that included the product ion of ROS to study in detail the metabolic processes 
associated with cell death upon ant ibiot ic killing. I would expect the authors to comment on the 



relevance of this prior work to their study. Is there an overlap of emerging pathways, despite the 
dist inct approaches? Would it be beneficial to extend the new methodology to an FBA model that 
explicit ly includes ROS product ion? 

 
Minor points: 

 
Line 83: bacterias -> bacteria's 

 
Line 145: Provide references for gradient boost ing classifier 



Dear Prof. Xiaoxia (Nina) Lin, 
 
Manuscript # mSystems00913-20 

 
“Genome-scale metabolic models and machine learning reveal genetic determinants of 
antibiotic resistance in Escherichia coli and unravel the underlying metabolic adaption 
mechamisms” by Nicole Pearcy, Yue Hu, Michelle Baker, Alexandre Maciel Guerra, Ning Xue, 
Wei Wang, Jasmeet Kaler, Zixin Peng, Fengqin Li and Tania Dottorini. 

 
We wish to thank the reviewers for the useful insight and comments, which no doubt 
contributed to improving this paper. We hope we have addressed all the issues identified. 
Before answering the specific questions, we would like to make the reviewers aware of some 
minor errors found in the AMR phenotype labels, which were identified when addressing the 
the comments posed by the reviewers (see below), but required a complete re-run of the 
pipeline to ensure robustness of results. 

 
Firstly, when searching for the additional information to include in the metadata file as 
requested by the first two comments from Reviewer 1, we identified some isolates that had 
been labelled with incorrect AMR phenotypes. Fortunately, this error occurred in only 22 of 
the isolates, and therefore very unlikely to have a major impact on the results, but 
nevertheless we considered it important to re-run the entire pipeline to avoid any bias with 
the results. Additionally, when investigating the reason for the poor performance of the 
piperacillin AMR model, as requested by Reviewer 1, we also identified that some antibiotic 
classes included isolates that had a mixture of AMR phenotypes for the single drug, as well as 
the drug combined with a compound (piperacillin + tazobactam, for example), which may 
have introduced some bias. 

 
Furthermore, when making these corrections and re-collecting the data we found that the 
number of E. coli isolates included in the PATRIC database had been updated in September 
2020 with 100s more isolates for some antibiotic classes. Due to the substantial change in 
data availability of the updated database, and since we had to rerun our analysis anyway due 
to the error described above, we decided to incorporate in latest updated list of E. coli 
isolates present in PATRIC into our new analysis. Although this caused a delay in submitting 
our response, the use of a larger dataset dramatically improved the performance of the 
machine learning models, whilst also demonstrating that our approach is robust as we found 
similar findings in both versions, as explained in the next answers. The main changes to 
results are summarised in the following: 

 
• A total of 3616 isolates up from 1520 in the original manuscript. 
• Number of isolates in each antibiotic class increased to the following: 

 

 
Antibiotics 

Original 
manuscript 

Updated 
manuscript 

ampicilin 436 2490 
aztreonam 397 763 
cefepime 267 1028 
cefoxitin 240 592 



 

cefuroxime 494 1903 
ciprofloxacin 1043 2600 
gentamicin 434 2579 
levofloxacin 152 427 
meropenem 105 1118 
piperacillin 414  
tetracycline 177 494 
tobramycin 236 1185 
trimethoprim 309 978 

 
 
 

• Average AUC for k-mer models increased from 76%-98% to 88%-98% (see also 
results lines 248-252). 

• Average AUC for SNP models increased from 47%-99% to 75%-98% (see also results 
lines 346-372). 

• Total known AMR genes identified increased from 139 (in total from all features) to 
225 (which were just in the top ranked 10% of features) (see also results lines 330-333 
and lines 381-386) 

• 289 of the genetic determinants identified in iML1515 GSM, compared to 361 
 
 
Note that due to the significant improvements to the performance of the supervised 
learners, we were able to use a more stringent threshold criteria of AUC > 95% for each 
antibiotic classifier (before we selected classifiers with AUC > 80%). Likewise, we limited our 
GSM analysis to the genetic determinants corresponding to the top 10% ranked features 
(before we used a 20% threshold) identified, for each antibiotic classifier with AUC >95%, by 
both the k-mers and SNPs ML based methods. With reduced selection criteria, we aimed at 
embracing more certainty in the shared results by increasing robustness and reproducibility 
of claimed associations. 

 
Importantly, many of the metabolic pathways, identified through the GSM analysis, which 
were described in the original manuscript, including lipolysaccharides metabolism, 
phospholipid metabolism, purine and pyrimidine metabolism pathways, folate metabolism 
pathways (tetrahydrofolate), heme metabolism and energy metabolism pathways were 
coming out as significant, showing that our approach consistently identified similar 
metabolic processes in the previous and updated datasets. Due to re-running the pipeline, 
which meant the genes and clusters required re-analysing, and since we also improved the 
way in which we analysed the clusters (i.e. significance test based on the pathways in BioCyc 
and the model) as suggested by Reviewer 1, the results for the metabolite reproducibility 
and flux variability analysis, were partially rewritten. We provide the new results for the gene 
clustering analysis (metabolite reproducibility analysis and FVA analysis) under Reviewer 1’s 
comment where the pathway enrichment analysis tests were suggested, or please see the 
revised main manuscript lines 606-889. 

 
In the following, a point-by-point response to all the questions is provided. The original 
questions from the reviewers are in blue, whilst our responses are in black. 



 
Reviewer #1 (Comments for the Author): 

 
This work presents a series of novel, flux balance analysis methods to better understand the 
metabolic effects of E. coli genes associated with AMR as determined by machine learning 
(or potentially any GWAS method). These analyses are technically sound and distinct from 
other approaches towards integrating FBA with ML, and appear to only require a metabolic 
model for the organism of interest to implement. However, the manuscript is in need of 
clarification regarding specifics of the data and methods employed, as well as potential 
improvements in how some of the key results are presented. 

 
● (Line 165) Was there any filtering for assembly quality or completeness when selecting 
which genomes to use? Please specify. 

 
The E. coli isolates were filtered for assembly quality and status, as defined in PATRIC, when 
selecting which genomes to use. A 100% of the genomes we used in the new dataset have a 
‘good’ quality labelling in PATRIC, which meet the following criteria, as described in Parrello 
et al., 2019 (https://doi.org/10.1186/s12859-019-3068-y): contamination -less than or equal 
to 10%, fine consistency – greater than or equal to 87% and completeness – greater than or 
equal to 80%. We also included an additionally filtering that removed out any ‘plasmid-only’ 
isolates and isolates with a contig number greater than 250, as also was done by Hyun et al., 
2020 (1). Using this filtering criteria resulted in a total of 3616 isolates fulfilling all the above 
quality and completeness criteria. We have now updated the supplementary excel file 
provided on the dropbox folder ‘PATRIC_metadata.xlsx’ to include this new list of isolates 
and their resistance phenotypes, genome status and quality. The manuscript has been edited 
to describe the quality and completeness criteria used for collecting the new dataset (see 
Results lines 209-211, Methods lines 1310-1320 and below 

 
Results - Line 209-211: Importantly, the genome sequences of these strains were all listed in 
PATRIC as ‘good’ quality assemblies, had less than 250 contigs and were labelled as either 
‘WGS’ or ‘Complete’ as the genome status in PATRIC. 

 
Methods – Lines: 1310-1320: All the genome sequences of the isolates that were used in this 
study were listed in PATRIC as ‘good’ quality assemblies. Isolates labelled ‘good’ quality in 
PATRIC meet the criteria set by Parrello et al., 2019 (117) that contamination is less than 10%, 
fine consistency is greater or equal to 87% and the completeness of the sequence is greater 
or equal to 80% We have also only included isolates that were labelled ‘WGS’ or ‘Complete’ in 
the genome status in PATRIC, which removes any cases that are ‘plasmid-only’. Finally, we 
also included an additionally filtering that removed out any ‘plasmid-only’ isolates and 
isolates with a contig number greater than 250, as previously done by Hyun et al., 2020 (25). 

 
 
25. Hyun JC, Kavvas ES, Monk JM, Palsson BO. 2020. Machine learning with random 

subspace ensembles identifies antimicrobial resistance determinants from pan- 
genomes of three pathogens. PLoS Comput Biol 16:e1007608. 

https://doi.org/10.1186/s12859-019-3068-y


117. Parrello B, Butler R, Chlenski P, Olson R, Overbeek J, Pusch GD, Vonstein V, Overbeek 
R. 2019. A machine learning-based service for estimating quality of genomes using 
PATRIC. BMC Bioinformatics 20:486. 

 
 
 
● (Line 167) State Which AMR standard(s) the data comprised of (i.e. CLSI, EUCAST). 

 
Thanks for the suggestion we have now updated the manuscript to include this information. 
AMR phenotypes were recorded based on PATRIC records. PATRIC collects AMR phenotype 
data generated using antimicrobial susceptibility testing methods (AST) from published 
studies and collaborators. From the records in PATRIC, the AMR standards included a mixture 
of CLSI and EUCAST standards. However, 1503 strains from the study PMID:28720578,          
27 strains from study PMID:27208899, and 3 strains without publication records          
available were not supplied with the AMR standards information from both PATRIC    
database or the literature. For these isolates for which we could not find the AMR standard 
information we have written to the authors asking for this information to be provided if 
possible. We have since received information that the 27 strains from study PMID:27208899 
were using EUCAST testing standard, but we are still waiting to hear back for the remaining. 
We have now added an additional column to the ‘PATRIC_metadata.xlsx’ file, available on the 
dropbox folder, which lists the laboratory method standard used to determine the AMR 
phenotypes, where available. We have updated the manuscript to include this information in 
the results lines 211-212 and methods lines 1305-1310, see also below 

 
Results Lines 211-212: The genomes have experimentally measured AMR phenotype, which 
are annotated as either “susceptible” or “resistant”. 

 
Methods Lines 1305-1310: These AMR phenotypes were derived from laboratory analyses 
only and included a mixture of both Clinical and Laboratory Standard Institute (CLSI) and 
European Committee on Antimicrobial Susceptibility Testing (EUCAST) AMR standards. The 
list of the laboratory method standard used to determine the AMR phenotypes is detailed 
for each isolate in the supplementary excel file ‘PATRIC_metadata.xlsx’, which is provided on 
the dropbox folder. 

 
 
● (Line 182-193) What statistical test was used to determine correlation between AMR 
phenotype and sequence type/clonal complex? Are they significant under multiple hypothesis 
correction, assuming all antibiotic x organism x clonal complex cases were tested? Please 
specify. 

 
Chi-squared testing was used to test for significant correlations between groups. Bonferroni 
correction was applied to test for significance under multiple hypothesis correction. To make 
this clearer in the text the adjusted p values have now been supplied and the methods 
clarified. 

 
However, Reviewer 2 correctly pointed out that this section of the manuscript had no link to 
other parts of the paper, so we therefore have removed this section. 



● (Line 208) Can the authors comment on why the piperacillin (and possibly also cefuroxime) 
cases were more challenging for the GBC model? 

 
As correctly pointed out by the reviewer this information was indeed relevant but missing in 
the manuscript. To address this question, we found that many of the isolates that were used 
for the piperacillin machine learning model, were actually resistant to piperacillin with 
tazobactam. After further inspection, we found that only 4 isolates were included that had an 
AMR phenotype for just piperacillin on its own, whilst 163 isolates had the AMR phenotype 
for the combined piperacillin and tazabactam. Tazobactam acts to inhibit the beta- 
lactamases, which are found in the piperacillin resistance isolates. One possible hypothesis is 
that that the resistance mechanisms for bacteria exposed to a combination of antibiotics and 
drugs may not be occurring at the DNA level, but are more complex mechanisms that are 
changing the RNA expression. The paper https://doi.org/10.1038/s41467-020-18668-2 found 
that isolates resistant to piperacillin with tazobactam occur due to higher expression of 
translocatable units, which results in a higher beta-lactamase copy-number. This suggests that 
additional features are required, and not just the DNA sequence, to identify such differences 
between the resistant and susceptible isolates. When rerunning the pipeline, due to             
the error identified thanks to Reviewer 1’s first comment, we decided to use isolates that    
had single antibiotics for simplicity and consistency. Since the majority of isolates with 
available AMR phenotype are for piperacillin-tazobactam, we removed piperacillin when 
rerunning through the pipeline with the updated set of PATRIC isolates. This reduced the 
number of antibiotic classes in the new analysis to 12. We have slightly edited the methods 
lines 1303-1304, to make it clear that just single antibiotics were used, see also below 

 
Methods  lines  1303-1304:  We  selected  genomes  which  were  annotated  as  either 
“susceptible” or “resistant” to a single antibiotic. 

 
● (Line 212) Were there any modifications to the GBC to achieve more robust and/or sparse 
models for feature selection, such as subsampling or limiting max features? 

 
Again, thanks for the useful suggestion, as this part was indeed missing. We used the default 
parameters in the ‘sklearn.ensemble.GradaientBoostingClassifier’ function. The subsampling 
parameter the default value is 1, which means that all the samples were used to fit the 
individual base learners. The default value for the maximum number of features is ‘None’, 
which means the maximum number of features is equal to the number of features in the  
input data. We did however, use a synthetic minority oversampling technique (SMOTE) 
(https://dl.acm.org/doi/10.5555/1622407.1622416) in the GBC to oversample data of   
minority class, compensating for unbalanced classes and hence to achieve more robust  
results for prediction for both k-mer and SNP analysis. SMOTE was implemented on the 
training part of the classifier to ensure the classes were balanced during the training phase to 
make sure the results were robust and not bias to any class. To obtain robust feature 
importance values, 50 simulations were conducted on random training (70%) and test (30%) 
split for each run for each antibiotic for the SNPs analysis. The mean of these 50 iterations was 
then used as the result statistic for the performance. Feature importance was calculated by 
the maximum importance score of each feature and ranked according to their maximum 
feature importance score over the 50 runs of the GBC. That is the maximum weighting that 

https://doi.org/10.1038/s41467-020-18668-2


the feature contributed in any of the 50 runs of the GBC. For the k-mers analysis, to obtain 
robust feature importance, the data were split randomly using a 5-fold stratified cross- 
validation. We have now updated the Methods to provide more details about the 
methodology. Thanks for this comment, this has given us the opportunity to improve our 
results lines 243-248 and lines 342-345 and the methods section lines 1388-1418 to make it 
more clear what was used, see also below 

 
Results – Lines 243-248: For each classifier, 10000 features were selected based on the chi- 
square test. We used the performance metrics: accuracy, area under the curve (AUC), 
precision and recall to evaluate each model. A synthetic minority oversampling technique 
(SMOTE) was used to reduce the impact of unbalanced classes in the antimicrobial label 
groups and achieve robust classification results. The performance metrics were calculated as 
the mean of 50 simulations (Figure 1). 

 
Results- Lines 342-345: Synthetic Minority Oversampling Technique (SMOTE) was applied to 
oversample data of minority class, compensating for unbalanced classes. The performance 
metrics were calculated as the mean of 50 simulations (Figure 2). 

 
Methods – Lines 1388-1418: The k-mers and SNPs (features) were analysed using the 
gradient boosting classifier (GBC) model in scikit-learn (121) (v0.19.1) in Python (v3.6) using 
the default parameters. For both analyses, initially, the features were standardized by 
removing the mean and scaling to unit variance. Synthetic Minority Oversampling Technique 
(SMOTE) (122) was applied to oversample data of minority class, compensating for 
unbalanced classes. For the k-mer analysis, the data were split randomly using a 5-fold 
stratified cross-validation; while for the SNP analysis the data was split in 70% for training 
and 30% for testing. In both analyses, 50 iterations were carried out and the following four 
performance metrics were recorded for each classifier, P and N indicating positive and 
negative cases respectively, T indicating true (correct) and F false (wrong) predictions: 

 
 

• Recall (TPR - true positive rate) = TP/P 
 

• Precision (PPV - positive predictive value) = TP/(TP + FP) 
 

• Accuracy (ACC) = (TP + TN)/(P + N) 
 

• Area under the received-operator characteristic curve (AUC) 
 

The mean of these 50 iterations was then used as the result statistic for the performance. Box 
plots from the Seaborn (123) package were used to show the final prediction metrics. While 
the model was being simulated, we captured the maximum importance of each k-mer or 
SNP, as well as the number of times each k-mer or SNP was assigned an importance greater 
than zero. The features were ranked using the maximum importance, that is, the maximum 



weight that the feature contributes to the GBC in the 50 runs. Features that had a maximum 
importance of zero were removed from the results. 

 
121. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, 

Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher 
M, Perrot M, Duchesnay É. 2011. Scikit-learn: Machine Learning in Python. J Mach 
Learn Res 12:2825–2830. 

 
122. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. 2002. SMOTE: synthetic minority 

over-sampling technique. J Artif Int Res 16:321–357. 
 
123. Waskom ML. 2021. Seaborn: statistical data visualization. Journal of Open Source 

Software 6:3021. 
 
 
● (Line 215) How were features ranked to extract the top 10/50 features for each antibiotic? 
The methods mention that the number of non-zero importance cases, mean importance, and 
maximum importance were recorded for all features. 

 
As correctly pointed out by the reviewer, in the original manuscript we have indeed given a 
misleading definition of how the features were ranked. The features were ranked according 
to their maximum feature importance. That is the maximum weighting that the feature 
contributed in any of the 50 runs of the GBC. We have updated the results lines 325-330 and 
methods lines 1407-1418 to make it clearer which measure was used, see also below. 

 
Results- Line 325-330: The maximum importance in the 50 runs was captured for each k-mer. 
To identify important genes, the k-mers with a maximum importance greater than 0 for each 
antibiotic model, were cross referenced to the pan-genome for each antibiotic class. The 
identified k-mers, their corresponding genes and maximum importance obtained by the GBC 
are shown in Supplementary Table 1 and Supplementary Figure 3. 

 
Methods – Lines 1407-1418: The features were ranked using the maximum importance, that 
is, the maximum weight that the feature contributes to the GBC in the 50 runs. Features that 
had a maximum importance of zero were removed from the results. 

 
● (Line 230) Can the authors comment on why the kmer-based approach appears to 
consistently outperform the SNP-based approach for phenotype prediction? Please specify. 

 
This is an interesting question. Thanks for the useful suggestion as we have now updated the 
manuscript to reflect this comment (See Discussion lines 962-1000 and below). 
The SNP-based approach considered mutational changes in genes from the core genome of 
the isolates only and lacks the ability to consider the accessory genes (i.e. variable genes that 
do not occur in all strains). The k-mer based approach on the other hand considered the 
genes from both core and accessory genome. For this reason, resistance genes such as beta- 
lactamases, acquired by the bacteria via horizontal gene transfer, will only be identified as 



strong discriminants of resistance/susceptibility via the K-mer based approach. Isolates 
resistant to ciprofloxacin and levofloxacin have previously been found to acquire 
chromosomal mutational in the genome and therefore likely the reason why the SNP-based 
approach performed very well for these two antibiotic classes. We suggest however, that 
using only the k-mer based approach, where often the acquired resistant genes are highly 
discriminant, is likely to dilute the importance of other additional resistance mechanisms, and 
so emphasise the advantage of combining both approaches. Importantly, we found the 
machine learning models for both levofloxacin and ciprofloxacin as two of the highest 
performers in our new and old results. The following was added to the discussion (lines 962- 
1000) of the manuscript to highlight this interesting point: 

 
Discussion - Lines 962-1000: Notably, the k-mer based approach outperformed the SNP- 
based approach for 8 of the 11 antibiotics (AUC > 0.95), specifically: 8% higher in aztreonam, 
17% higher in ampicillin, 2% higher in cefepime, 5% higher in cefoxitin, 6% higher in 
gentamicin, 28% higher in trimethoprim, 10% higher in tobramycin and 21% higher in 
tetracycline. A possible reason for this is due to the inclusion or exclusion of accessory genes 
in the two approaches. That is, the k-mer based approach allows for discriminating between 
resistance and susceptible according to both the core and accessory genome, whereas the 
SNP-based approach is restricted to the core genome only. The antibiotics that performed 
well only via the k-mer based approach may therefore be highly dependent on acquired 
resistance genes, such as the highly discriminant beta-lactamases. The SNP-based approach, 
however, successfully predicted AMR resistance for the two fluoroquinolone antibiotics 
ciprofloxacin and levofloxacin, and for the beta-lactam antibiotic, meropenem. Importantly, 
the SNP-based approach performed extremely well (AUC > 0.98) for ciprofloxacin, 
suggesting that the antibiotic induces mutations, which is consistent with the literature (50). 
Importantly, the k-mer- and SNP-based approaches identified different known AMR genes, 
validating the advantage of combining the important features from both approaches. 

 
50. Bhatnagar K, Wong A. 2019. The mutational landscape of quinolone resistance in 

Escherichia coli. PLoS One 14:e0224650. 
 
● (Line 240/Table S3) Future analysis of these AMR-associated SNPs may benefit from being 
characterized with respect to a reference genome. For example, what are the parE 
SNPs/resulting amino acid substitutions that are linked to fluoroquinolone AMR, relative to 
K12 MG1655? 

 
We would like to thank to reviewer for this suggestion which supports the idea behind our 
ongoing research. We are currently working on developing a tool that can rank the AMR- 
associated SNPs based on their functional and 3D structural effects on the target protein that 
are linked to specific AMR phenotypes and relative to a reference genome such as K12 
MG1655. As pointed out by the reviewer this would benefit the entire pipeline. We hope to 
be able to use this information to predict the functional changes to the genes, which could 
then lead to a deeper integration with the genome scale model (i.e. identifying whether a 
SNP has potentially caused an increase or decrease in reaction flux). More advanced GSM 
frameworks (GEM-PRO), are already available for integrating protein-structure information 



into the models and therefore offer a way of developing our pipeline for future work. We 
now have added this suggestion to the discussion lines 1259-1276 (see also below), and we 
are now looking at developing a tool that will allow us to integrate this into our pipeline. 

 
Discussion - Lines 1269-1276: The characterisation of the AMR-associated SNPs, in respect to 
a reference genome such as K12 MG1655, and would allow us to link the specific amino acid 
substitutions or deletions to antibiotic resistance. 1D-3D Structure-function prediction 
analysis may then enable us to determine whether the SNPs result in a loss or gain of 
function, which is directly integrated as constraints into models such as GEM-PRO. The 
effects of the SNPs on the genes (i.e. loss of function or gain of function) is not determined 
in our approach and if considered would allow further insights into the biological 
interpretation. 

 
● (Line 267) The analysis of metabolic systems among AMR genes may be strengthened by 
applying association tests for whether the AMR genes (across all or individual drugs) are 
enriched for a particular metabolic system compared to all other genes in iML1515. 

 
We would like to thank the reviewer for this useful point for improving the analysis. We have 
now added gene pathway enrichment analysis using a hypergeometric test to the analysis, as 
was carried out in https://doi.org/10.1038/s41467-020-16310-9. We carried out the test using 
the 40 defined metabolic subsystems in the iML1515 model as well as the gene- pathway 
association list included in the EcoCyc specialised SMART tables. The manuscript has        
been updated (see Results lines 448-462, discussion lines 1015-1026 and methods line 1520-
1528, also see below). This useful point, as well as the paper  https://doi.org/10.1038/s41467-
020-16310-9 that was also pointed out by Reviewer 1, also gave us the idea to test for the 
significance of the metabolic pathways that are enriched in each of the clusters in Figure 5 
and Figure 6. In the previous analysis we considered the number of metabolites/reactions 
involved in each cluster and commented on metabolic pathways based on the frequency. 
However, we feel by considering a hypergeometric pathway enrichment test on the number 
of metabolites/reactions within each pathway strengthens our findings. Similar to the gene 
enrichment analysis, we used the 40 pathways already defined in the iML1515 model, as well 
as the metabolite-pathway and reaction- pathway association lists available in the SMART 
tables of the EcoCyc database. Notably, the reactions in BioCyc database are poorly 
annotated in the reactions of the iML1515, and therefore additional reaction-pathway 
associations were extracted using the gene-pathway annotation list, again downloaded from 
the EcoCyc database. To complement the text, for describing the most significantly enriched 
pathways, we have now included two new supplementary figures (Supplementary Figure 4 
and 5). These figures show a network diagram created in Cytoscape of the genes in each 
cluster linked by edges to pathways that were significantly enriched in each pathway. Note 
that the colour of each cluster is co- ordinated with the clusters presented in the gene-
metabolite and gene-reaction bipartite networks in Figure 5 and 6 of the main text. 
Importantly, using the significance tests found many of the pathway that were already being 
discussed in the previous results. A few additional pathways were identified, which were not 
discussed in the previous manuscript, including biotin and ppGpp. We have updated the 
results lines 607-749 and lines 753-889 and discussion lines 1104-1197 for the metabolite 
reproducibility analysis and the FVA 

https://doi.org/10.1038/s41467-020-16310-9
https://doi.org/10.1038/s41467-020-16310-9
https://doi.org/10.1038/s41467-020-16310-9


analysis, respectively. We also provide two new figure captions for the two supplementary 
figures 4 and 6. Note that these results (see below also) have undergone a considerable 
rewrite for these sections, due to firstly the clusters involving different genes due to updating 
the dataset and secondly due to the including this additional significance tests, however, the 
main findings and relation to AMR resistance, in general, remains the same as the previous 
manuscript. 

 
 
Results – Lines 448-462: We performed gene pathway enrichment tests using the 40 
metabolic subsystems included in iML1515 and also using the 352 gene-pathway annotation 
list downloaded from EcoCyc (52). The significant pathways with a false discovery rate (FDR) 
of less than 1% are provided in Supplementary Table 3. 

 
We found genes enriched in amino acid metabolism (histidine and arginine), the pyrimidine 
salvage pathway, putrescine biosynthesis pathway and transport metabolism. Importantly, 
histidine metabolism has been found to play an important role in stress resistance in E. coli 
(53, 54), whilst the polyamine putrescine has been found to relieve the effects of oxidative 
stress in E. coli (55). Additionally, changes to genes involved in the pyrimidine salvage 
pathway have been found linked to the production of important biofilm components in E. 
coli (56), and therefore induce persistence (57). Furthermore, transport reactions are known 
to play a role in multidrug resistance by restricting the uptake of the antibiotic to reduce the 
toxicity (58, 59). 

 
Results – Lines 607-749: The lethality of each genetic determinant on all metabolites in the 
iML1515 model was determined using flux balance analysis (FBA), as described in Materials 
and Methods. The results are represented as a bipartite graph of 98 genes and 508 
metabolites. A gene is connected to a metabolite via an edge if its knockout results in 
preventing the metabolite’s production. Using the Clauset-Newman-Moore greedy 
modularity maximisation algorithm, we clustered the genres and metabolites into groups of 
similar phenotypes (Supplementary Table 3). The largest 6 clusters are shown in Figure 5. The 
metabolites within each cluster are involved with a variety of metabolic processes, including 
cell wall metabolism, nucleotides metabolism, transport metabolism, alternative carbon 
metabolism, amino acid metabolism and cofactor and prosthetic group metabolism (Figure 
5b). To test which of these metabolic systems was significantly being affected, we performed 
a pathway enrichment hypergeometric test on the metabolites in each cluster (see Materials 
and Methods). The most significant pathways associated with each cluster (FDR < 0.01) are 
shown in Supplementary Figure 4a-b. 

 
A number of clusters could be linked to cell wall metabolites (Supplementary Figure 4, 
Supplementary Figure 5). Firstly, all 12 genes in cluster 5 affect the production of metabolites 
involved in lipolysaccharide (LPS) metabolism. LPS are important compounds on the outer 
membrane and therefore have been found to play an important role in virulence (70, 71). 



Additionally, the genes murC, ftsI, dapE, glmM, murB, murG, mraY and mpl in cluster 2 had a 
significant effect on the production of the metabolites involved in peptidoglycan (PG) 
metabolism. Peptidoglycan is a mesh-like structure that provides the strength and shape of 
the outer cell membrane, as well as providing protection against osmotic pressure. 
Modifications to PG can prevent the release of cell wall components, which initiate the host 
immune response (72), whilst also protecting the cell against antibiotic uptake (73). Similarly, 
changes to fatty acid oxidation and phospholipid (specifically CDP-diacylglycerol), whose 
production is affected by the 6 genes purM, purD, ilvD, panD, purA and purL in cluster 1, may 
also provide protection against the immune response. The immune system, for instance, has 
been found to take advantage of the antimicrobial properties of long chain fatty acids, which 
disrupt cell wall permeability when in excess in the extracellular environment (74). Pathogens 
have been found capable of modifying the biophysical properties of the cell membrane via 
changes to fatty acid structure, to increase the resistance to these antimicrobial peptides 
produced by the immune system (74). 

 
In addition to cell wall metabolism, the genes in cluster 1 and cluster 4 are associated to a 
large number of pathways involved in purine and pyrimidine metabolism. Purine and 
pyrimidine are involved in the generation of DNA and RNA production, therefore changes to 
the genes in this cluster may be important in repairing DNA from ROS (75). Importantly, 
metabolomics analysis showed purine metabolism pathways were highly enriched in 
multidrug resistant E. coli strains (76). The genes involved in purine metabolism in cluster 1, 
purL, purD, purM and purA in particular, also have a downstream effect on many other 
metabolic pathways, including nitrogen metabolism, ppGpp metabolism and allantoin 
biosynthesis, all of which can be linked to the regulation of the stringent response (77-79). 
Importantly, changes in ppGpp concentration plays an important role in controlling cellular 
growth, and depletion of this metabolite has been found to trigger dormant cell metabolic 
state, promoting antibiotic-tolerant persistence cells (80, 81). E. coli cells starved of nitrogen 
have been found to increase ppGpp,which again has been found to induce tolerance to 
ciprofloxacin (78). Allantoin degradation has then been found as an important adaptive 
response to recovery after nitrogen starvation (77). Furthermore, these genes, as well as the 
gene folP, also affect metabolites involved in folate metabolism, tetrahydrofolate (THF) 
biosynthesis in particular. Importantly, point mutations in folP have been identified  to 
prevent sulfonamides from inhibiting THF production (82). We identified folP in the 
trimethoprim, tetracycline and ampicillin ML models. Folate metabolism, including THF, 
however, are again important for nucleotides biosynthesis and have in fact been found 
important for persistence in E. coli cells exposed to ampicillin (83).  The  production  of 
coenzyme A (CoA) is also affected by these genes, as well as the genes ilvD and panD. CoA is 
an important cofactor in many metabolic processes including fatty acid biosynthesis, which 
are used in lipolysaccharides, and the TCA cycle. The concentration of acetyl-CoA, an 
important derivative of CoA, has also been found to play a key role in assessing the cell 



metabolic state, which, in turn, determines the fate of either cell growth, survival or death 
(84). 

 
The production of metabolites relating to iron metabolism were affected by genes in both 
clusters 2 and 6. The 4 genes in cluster 6 affect metabolites involved in heme biosynthesis. 
The capability (or improved capability) for heme synthesis may provide pathogens with a 
competitive advantage for colonisation, since heme is the largest source of iron for the cell. 
Excess heme however, increases the level of ROS and therefore is extremely toxic to the cell, 
so the regulation of heme concentration is essential (85). The genes menD, entS, aroC, dxr, 
pheA, menC, menE, ispA and entD in cluster 2 for instance, all affect enterobactin 
biosynthesis, either directly or via the chorismate biosynthesis pathway. Enterobactin is an 
iron scavenging siderophore and has been found important for pathogen virulence (86-88). 
An important response of the immune system is to use nutrient immunity by limiting iron 
availability, which has an important function in energy metabolism and DNA replication (89, 
90). Changes to genes affecting iron metabolism may therefore enhance the resistance by 
improving their ability to scavenge iron from the environment. The genes menD, dxr, aroC, 
menE, ispA and menC also affect metabolites involved in the electron transport chain (ETC). 
Importantly, previous work has found reduced respiration via the ETC resulted in mutant 
strains highly resistant against ampicillin and gentamicin (91). The ETC reduces the proton 
motive force that is necessary for gentamicin uptake. Reduced flux through ETC however, 
also reduces the growth rate, which as previously discussed enables multidrug level 
persistence (60-62). 

 
The genes in cluster 3 are also affecting metabolites involved in electron carriers metabolism. 
The 8 genes cysJ, metK, asd, gss, cysH, cydC, metF and gshB for instance are all affecting 
metabolites involved in glutathionylspermidine (GSP) biosynthesis. Importantly, GSP can be 
recycled back to glutathione and spermidine. Glutathionine is an important antioxidant 
metabolite required for detoxifying ROS (92, 93), whilst spermidine is a polyamine also found 
to provide protection against ROS exposure (87). A subset of these genes, cysJ, metK, asd, 
cysH and metF, are also affecting biotin production. Importantly, biotin has been identified as 
important for the virulence of enteropathogenic (EPEC) E. coli strains, due to its involvement 
in the regulation of the locus of enterocyte enfacement (LEE). The LEE system is essential to 
these pathogenic bacteria in order to attach and infect host epithelium cells (95). Increased 
biotin concentrations have been shown to limit EHEC infections in mice (96). 

 
In general, the metabolic processes described here are affected by genes identified in the ML 
models for diverse antibiotic classes (Figure 5c, Supplementary Figure 4c). This is not too 
surprising however, since these processes are suggested to increase antibiotic resistance via 
protection from the immune response, oxidative stress and/or the stringent response, which 
are multidrug adaption mechanisms for enhancing fitness, persistence and/or virulence (97- 
99). 



 

Results – Lines 753 – 889: Next, we investigated the system level effect of the  AMR 
conferring genes on metabolic fluxes. Specifically, flux variability analysis (FVA) was used to 
identify the biochemical reactions whose flux span was affected by mutations in the genetic 
determinants. The results are represented as a bipartite graph of 145 genes and 861 affected 
reactions. (Supplementary Table 3). A gene is connected to a reaction via an edge if its 
knockout results in reduced flux span through the reaction. As before, the Clauset-Newman- 
Moore greedy modularity maximisation algorithm was used to cluster the genes and 
reactions into groups of similar phenotypes (Supplementary Table 3). The largest 9 clusters 
are shown in Figure 6a-b, i.e. those with greater than 10 nodes (genes and metabolites). A 
variety of metabolic processes were enriched in the clusters (Figure 6b), similar to the gene- 
metabolite clusters. To test which of these metabolic systems was significantly being 
affected, we performed a pathway enrichment hypergeometric test on the reactions in each 
cluster. The most significant pathways associated with each cluster (FDR < 0.01) are shown in 
Supplementary Figure 6a-b. 

 
The gene-reaction network was clustered into similar groups of genes to the gene- 
metabolite network. Again, the clusters were enriched with metabolic processes including 
cell wall metabolism (LPS, PG, fatty acids and phospholipids), nucleotides metabolism 
(purine, pyrimidine and folate metabolism) and iron metabolism (heme). The main 
differences between networks involve the set of genes in cluster 1. Unlike before, this 
analysis reveals the genes gmhB, waaC, waaP, accA, lptG, lptF, waaF, hldD, fabG, lpxL, hlpE, 
fabD and glmM are affecting the biosynthesis of nucleotide sugars. These sugars are 
incorporated into the O antigens region of LPS, which is located in immunodominant part of 
LPS (100). Furthermore, the genes accA, nuoL, nuoN, fabG, tesA and fabD are affecting fatty 
acid biosynthesis, as well as biotin biosynthesis. As discussed previously, both fatty acids and 
biotin metabolites can affect the host immune response and bacterial virulence. 

 
Furthermore, the FVA analysis also revealed that the genes in cluster 7 all affect iron 
transport, which, as previously discussed, may be important for scavenging iron from the 
host. Additionally, disruptions to the genes in cluster 2, specifically asd, gcvP, gcvT, serA, 
metF, cysH, cysJ, and serB, were found to affect amino acid metabolism (cysteine, serine, 
glycine, aspartate and/or methionine), all of which are involved in folate transformation of E. 
coli. As previously discussed, folate metabolism can affect persistence to antibiotic exposure. 
Alternatively, however, sulfur amino acid residues in proteins, including methionine and 
cysteine, are found to be extremely reactive with reactive oxidative species, therefore 
changes to the genes specifically affecting these amino acids may play a role in ROS 
detoxification (101). 



Again, these metabolic pathways could be associated to a diverse set of antibiotic classes 
(Figure 5c, Supplementary Figure 5c), suggesting the changes in these genes are linked to 
secondary multidrug adaption mechanisms. 

 
Discussion – Lines 1015-1026: The 289 total metabolic genes were significantly enriched in 
various metabolic pathways, including transport metabolism, nucleotides metabolism and 
amino acid metabolism. To understand the mechanistic effect of these 289 genes, we used 
flux balance analysis (FBA) to predict the system-level metabolic changes that result from 
genetic variants of the genes (i.e. mutations or absense). More specifically, we predicted 
metabolic phenotypes of genetic variants via gene knockouts and identified the metabolic 
processes that were being affected. Importantly, using our new ML-FBA integrated approach, 
we could reveal interesting links between genes and potential metabolic adaption 
mechanisms that, importantly, were not identified using standard gene pathway enrichment 
analysis. 

 
Discussion – Lines 1104-1197: Furthermore, clustering of genes according to metabolic 
phenotypes also revealed a strong link to cell wall metabolism adaptions. Genes were found 
to affect phospholipids, lipopolysaccharides, fatty acids and peptidoglycan metabolism, all of 
which can be associated to increased antibiotic tolerance via increased permeability of the 
membrane, as well as playing a role in virulence by manipulating the host immune response 
(73). Pathogens have been found to modify the cell wall components, for instance, that are 
usually recognised by the hosts innate immune response (74, 107). Changes to a number of 
genes that were affecting cofactor biosynthesis may also be involved in immune response 
manipulation, including the biosynthesis of biotin and iron. Increased biotin concentrations, 
for example, has been found to reduce the ability of EHEC E. coli to attach and infect host 
epithelium cells (95, 96). Furthermore, genes affecting both enterobactin metabolism and 
heme metabolism were also found, both of which may improve resistance to nutrient 
immunity by increasing the pathogens ability to scavenge iron from the environment (108, 
109). Iron is important for many enzymes in bacteria, particularly those involved in oxidative 
phosphorylation and DNA synthesis, therefore is essential for the bacteria’s survival. 

 
Purine and pyrimidine metabolism was also enriched in the gene clusters. Modifications to 
these genes may limit the inhibitory effect of antibiotics that target DNA replication, such as 
ciprofloxacin and levofloxacin. Importantly however, the genes encoded  by  purine  and 
pyrimidine biosynthesis enzymes have a large system-level effect involving many different 
metabolic processes. The genes, purL, purD, purA and purM in particular, affect the 
production of DNA building blocks, which may be important for DNA repair against 
antibiotic-induced ROS (75). Furthermore, these genes also affect ppGpp metabolism, which 
is important for regulating cellular growth and inducing antibiotic-induced persistence (80, 
81). Additionally, these genes also affect the production of important cofactors of energy 
metabolism, such as ATP, NAD and NADPH, which are important for the electron transport 



chain (ETC). Other ETC metabolites, including ubiquinone, menaquinone and flavin, were also 
being affected by the important genetic determinants. Changes in the flux through ETC may 
contribute to antibiotic resistance in a number of ways. Reduced ETC reduces the PMF 
required for aminoglycoside uptake (110), whilst also reducing the growth rate for increased 
persistence (56-58). Furthermore, the ETC reactions are also responsible for ROS-production. 
A related study that applied gene KO simulations on an extended GSM of E. coli, which 
included specific ROS-producing reactions, identified genes associated to the ETC as ROS- 
inducing targets for improved antibiotic killing (111). Further evidence to suggest adaption 
to ROS was found by a number of additional genes, whose knockout was found to affect 
glutathionine, spermidine, methionine or cysteine biosynthesis. Importantly, these 
metabolites have all previously been found to provide protection of E. coli cells by acting as 
antioxidants (92, 93, 101). 

 
Methods – Lines 1520-1227: We identified metabolic pathways that were enriched in each 
cluster of the bipartite networks using hypergeometric enrichment tests using the scipy 
function hypergeom (132). We considered a pathway as significantly enriched in a cluster if 
the false discovery rate (FDR) was less than 1% and used the Benjamini-Hochbery method for 
correction against multiple testing. We considered two sets of pathway lists ffor the 
enrichment. The first used the 40 subsystems as defined in the iML1515 GSM. A second list 
of pathways was downloaded from the BioCyc database using the SMART tables for E. coli 
(52), which provided a more extensive list of specific metabolic pathways. 

 
Figure caption for new supplementary Figure 4 - S4 Fig. a) Network diagram showing the 
significantly enriched pathways in each cluster in Figure 5a. Genes are connected to a 
metabolic pathway, if the gene affected the production of at least 1 metabolite in the 
pathway. Note that the colours of the gene clusters are co-ordinated with the clusters in 
Figure 5a. b) Heatmap showing the number of genes in each cluster that is connected, by at 
least 1 metabolite, to the significant metabolic pathway. c) Heatmap showing the number 
genes in each antibiotic ML model that affected at least 1 metabolite in the significant 
pathway. 

 
 
Figure caption for new supplementary Figure 6: S6 Fig. a) Network diagram showing the 
significantly enriched pathways in each cluster in Figure 6a. Genes are connected to a 
metabolic pathway, if the gene affected the flux span of at least 1 reaction in the pathway. 
Note that the colours of the gene clusters are co-ordinated with the clusters in Figure 6a. b) 
Heatmap showing the number of genes in each cluster that is connected, by at least 1 
reaction, to the significant metabolic pathway. c) Heatmap showing the number genes in 
each antibiotic ML model that affected at least 1 reaction in the significant pathway. 
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● (Line 267/Figure 3d) For the hierarchical clustering, what data is being clustered and which 
distance metric and linkage were used? Please specify. 

 
The seaborn python package was used to carry out the hierarchical clustering in Figure 3d. 
This package calls the scipy python package with the default parameters set as: single linkage 
and Euclidean distance as the metric. We have added this information to the legend of  
Figure 3d, see below. Note also that the number of genes presented in the matrix has 
undergone columns standardisation. That is, for each column the minimum is subtracted and 
then divided by the maximum value. 



Figure 3 (legend): (d) Heatmap showing the normalised number of genes associated to each 
metabolic system. Note that the number of genes was normalised via column 
standardisation. Note that hierarchical clustering was applied to both rows (metabolic 
systems) and columns (antibiotic classes) using the single linkage method and Euclidean 
distance as the metric. Each subplot shows the results for the top 10% of genes identified in 
each AMR classifier. Subplot b, c, and d show the results for the 289 genes found by 
combining the genes that correspond to the features in the top 10% of the k-mer and SNPs 
classifications. 

 

● (Line 434) "first computational pipeline that combined machine learning and genome-scale 
metabolic model analysis." Update this section with a comparison to another recent approach 
to integrating FBA with ML for AMR: https://doi.org/10.1038/s41467-020-16310-9 

 

Thank you for highlighting this paper, their approach is very interesting. We have modified 
the discussion lines 898-957, see also below: 

 
Discussion - Lines 898-957: Kavvas (30) have recently developed the first computational 
pipeline that combines machine learning with genome scale metabolic models to enable 
biochemical interpretation of genetic determinants. In their pipeline, the effect of alleles on 
the flux solution space was used to successfully classify AMR phenotypes of Mycobacterium 
tuberculosis strains. In our work, we take an alternative two-step approach. First, a 
combination of a k-mer and SNP-based machine learning approach is used to identify 
genetic determinants. Second, a genome scale metabolic model is used to assess the effect 
of genetic determinants on metabolite producibility and biochemical fluxes to elucidate 
possible metabolic adaptive mechanisms. Our approach produced AMR models of E. coli that 
achieved performance accuracies competitive with the current approaches. Moreover, we 
were able to reveal novel biomarkers based on the systemic effect the genetic determinants 
have on growth, metabolite yields and metabolic fluxes. 

 
 
30. Kavvas ES, Yang L, Monk JM, Heckmann D, Palsson BO. 2020. A biochemically- 

interpretable machine learning classifier for microbial GWAS. Nature Communications 
11:2580. 

 
● (Line 439) "first time by integrating the GSM with the ML" see above 
See above. 

 
● (Line 461) The discussion of GSM-related results does a good job of highlighting metabolic 
systems that are associated with multi-drug AMR through broad mechanisms. Drug-specific 
associations discovered here should also be emphasized. 

 
As before with the old analysis, genes linked to the primary antibiotic resistance mechanisms 
for each antibiotic were identified and presented in Table 1 and 2, validating that the 

https://doi.org/10.1038/s41467-020-16310-9


machine learning models are good classifiers of AMR. The genes involved in primary 
mechanisms, however, are often acquired genes, such as the beta-lactamase, and for that 
reason not included in the iML1515 GSM. Changes (i.e. absence/presence or mutations) to the 
289 genes identified in the metabolic model iML1515 appear to be responsible for   
secondary adaption mechanisms, such as adapting to the host immune response, persistence 
and reduction of reactive oxidative stress. We have analysed whether any metabolic processes 
could be linked to single antibiotics or antibiotic classes, but could not find any correlations, 
instead we expect these metabolic adaptions are a more generic response to antibiotic 
exposure, and in that way may be useful for developing new treatments that                   
induce antibiotic efficacy by reducing the adaption capability that provides the bacteria 
resistance. We have modified the discussion lines 1199-1203 and lines 1211-1237 to highlight 
this point: 

 
 
Discussion - Lines 1199-1203: Importantly, the genetic determinants associated with the 
metabolic adaption mechanisms described here, were identified in the ML-models  for 
diverse antibiotic classes. Changes in these genes are therefore suggested to be contributing 
to secondary resistance mechanisms via a generic response against toxicity and stress, which 
is nonetheless essential for their survival (97-99). 

 
Discussion – Lines 1211-1237: Targeting the most important genetic determinants with the 
highest effect on these secondary adaption mechanisms, whilst simultaneously targeting 
essential metabolic, processes however, may provide novel new treatments that increase 
antibiotic efficacy (112). 

 
97. Keren I, Shah D, Spoering A, Kaldalu N, Lewis K. 2004. Specialized persister cells and 

the mechanism of multidrug tolerance in Escherichia coli. Journal of bacteriology 
186:8172-8180. 

 
98. Koutsolioutsou A, Peña-Llopis S, Demple B. 2005. Constitutive soxR mutations 

contribute to multiple-antibiotic resistance in clinical Escherichia coli isolates. 
Antimicrobial agents and chemotherapy 49:2746-2752. 

 
99. Maisonneuve E, Gerdes K. 2014. Molecular Mechanisms Underlying Bacterial 

Persisters. Cell 157:539-548. 
 
112. Martin II JK, Sheehan JP, Bratton BP, Moore GM, Mateus A, Li SH-J, Kim H, Rabinowitz 

JD, Typas A, Savitski MM. 2020. A dual-mechanism antibiotic kills gram-negative 
bacteria and avoids drug resistance. Cell 181:1518-1532. e14. 

 
 
● (Line 559) Assessing the metabolic effects of a given gene using the methods here appear 
to depend only on a metabolic model and not on the sequence or AMR data. A near-term 
extension of this work that may be worth discussing is the prospect of precomputing all of 
these deeper metabolic effects for each gene in a given GSM(s), so that future AMR GWAS 



studies can readily draw insights on potential AMR gene metabolic effects as predicted by 
these methods without needing to setup and solve all the GSM problems independently. 

 
We would like to thank the reviewer for this interesting suggestion, which we had not 
thought about previously. We shall explore ways in which we can develop a new tool for 
storing this data and analysing/visualising the results, which would be easy for other 
researchers to use, without the need for genome scale modelling experience. We have 
included the following sentence in the discussion lines 1239-1249, see also below: 

 
Discussion - Lines 1239-1249: Our new approach can be applied to study genetic 
determinants of any pathogen of interest, providing a large cohort of AMR phenotypes are 
available and a genome scale metabolic model exists for a reference genome. The second 
step of our approach depends only on the GSMM and therefore precomputing the 
metabolic changes (e.g. effects on metabolite yields or metabolic fluxes) for the entire set of 
genes in the model is possible, which could be readily available for future AMR studies to 
draw insights on potential new AMR genes. Future efforts may precompute all of these 
deeper metabolic effects for each gene in a given GSM(s). Such future endeavours will offer 
the possibility to future AMR GWAS studies to readily draw insights on potential AMR gene 
metabolic effects as predicted by these methods without needing to setup and solve all the 
GSM problems independently. 

 
● (Line 615-616) What are "variants having <=95% constant nucleotides"? 

 
The features in the SNPs based approach were selected based on this criterion. The features 
relate to the aligned position of single nucleotide variants. An allele (with a specific nucleotide 
variant) was included in the analysis it was frequent in more than 5% of the population         
of strains. As an example, let’s say we have 100 strains in the population set each               
with either the nucleotide A or G in position 1 of gene X. If 95 of these strains have 
nucleotide A in position 1 and 5 of the strains have nucleotide G in position 1, then position 
1of gene X would be selected as a feature for the classifier. If, however, the number of strains 
with A in position 1 was 96 or greater, then position 1 would not be included. We have added 
some additional information to the methods lines 1378-1381 to hopefully make this     
clearer. 

 
Methods- Lines 1378-1381: Each core gene nucleotide sequence was further aligned, and 
single nucleotide variants were identified. The position of a SNP in a gene was selected as a 
feature in the machine learning if the nucleotide varied in more than 5% of strains (i.e., was 
constant in less than 95% of strains). 

 
 
● (Line 699-700) 100 carbon atom restriction could be made more clear with a formal 
description of the corresponding linear constraint(s) added to the model. Can the authors 
explain the rationale behind allowing the model to use any carbon sources in the FVA 
analysis? 

 
We agree that the reasoning behind using a 100 carbon atom restriction for the FVA analysis 
and not for the metabolite yields was confusing and inconsistent. Our original reasoning was 



to allow for a rich media to be considered, and alternative carbon sources, to be taken into 
account in flux changes. We have carried out the analysis for the FVA on the new set of 289 
genes using rich media (i.e. 100 carbon atom restriction with all carbon sources open) and 
also on minimal media with glucose as the carbon source. We found a difference of only 27 
genes, all of which related to alternative carbon metabolism. In the previous section of the 
manuscript titled “GSM knockout analysis reveals genes related to growth-limitation, 
auxotrophic behaviour and alternative carbon source utilisation”, we already investigated 
which genes were affecting growth on alternative carbon metabolism. In this analysis, we 
identified the majority (22/27) of these genes that differed between the two environmental 
conditions. For that reason, we used glucose minimal media conditions for both metabolite 
and FVA analysis, to ensure consistency. The approach was re-ran on a standard laptop and 
so we also removed the sentence referring to using the University of Nottingham’s HPC. The 
methods lines 1494-1496 has been changed to the following: 

 
Methods - Lines 1494-1496: FVA was simulated using glucose as the only carbon source in 
aerobic minimal M9 media conditions. Note that reaction loops in the solution were not 
allowed. 

 
● Minor edits 
○ (Line 52) Current wording suggests that 52 known AMR genes were recovered, but Table 
1+2 reports that only 22+3 known AMR genes were matched to the correct drug. Update to 
report separate counts for correctly associated genes and other AMR genes detected. 

 
The number of known AMR genes cross-matched with CARD and mutationDB databses was a 
lot higher in the new results. We found 225 genes that were found in the machine learning 
models in the top ranked 10% of features, which are also a known AMR gene in the database 
for any antibiotic class. The number of AMR genes that have been found specifically for the 
matching antibiotic is 35. Note however, that some genes will not have been tested for that 
specific antibiotic or may not be listed in CARD and mutationDB. The gene folP is one 
example where it is listed in mutationDB only for sulfonamide, but evidence in the literature 
has reported the resistance to ampicillin from changes to this gene. Also, note that for 
mutationDB there are no entries for levofloxacin or meropenem, hence this is why the  
‘Known AMR genes to the antibiotic’ column in Table 2 is empty for these antibiotics. We 
have updated the abstract lines 39-40, the introduction lines 152-156, the results lines 330- 
333 and lines 381-386 and the discussion lines 1002-1003 to the new values and to make it 
more clear. Tables 1 and 2 have also been updated to the new list of AMR genes, see below 
also. In the previous manuscript, we don’t think we made it clear what the AMR genes in the 
table 1 and 2 corresponded to. We have now listed in the Tables the AMR genes found in the 
top 10% of features, since this matches what was being used for the GSM analysis. 

 
Abstract – Lines 39-40: First, our approach corroborates 225 known AMR-conferring genes, 
35 of which are known for the specific antibiotic. 



Introduction – Lines 152-156: Using our approach we firstly were able to accurately predict 
AMR resistant and susceptible phenotypes against 12 different antibiotics, as well as 
identifying 225 (35 of which were matching to the specific antibiotic class reported in AMR- 
related databases) known AMR-conferring genes in 3616 E. coli isolates. 

 
Results – Lines 330-333: When mapped to the CARD (48) and MutationDB databases (49), 84 
unique AMR genes were identified in the top 10% of features (ranked according to the 
maximum weight found in the 50 runs), 25 of which had evidence of the AMR gene for the 
specific antibiotic class (Table 1). 

 
Results – Lines 381-386: By comparisons with the CARD and mutationDB databases, we 
identified 146 unique AMR genes associated to at least 1 antibiotic (Table 2) that were in the 
top 10% of features (ranked according the maximum feature importance in the 50 runs). Out 
of these 146 genes, 8 had evidence in the database of the AMR gene for the specific 
antibiotic class (Table 2). Note however, that mutationDB does not include entries for AMR 
genes for the levofloxacin and meropenem antibiotics. 

 
Discussion – Lines 1002-1003: The combined approaches identified 225 known AMR genes 
corresponding to the top 10% of ranked features recognised as discriminant by the AMR 
classifiers. Out of these 225 genes, 35 were matching to the specific antibiotic class that has 
been reported in the databases. 

 
44. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, Huynh W, 

Nguyen AV, Cheng AA, Liu S, Min SY, Miroshnichenko A, Tran HK, Werfalli RE, Nasir 
JA, Oloni M, Speicher DJ, Florescu A, Singh B, Faltyn M, Hernandez-Koutoucheva A, 
Sharma AN, Bordeleau E, Pawlowski AC, Zubyk HL, Dooley D, Griffiths E, Maguire F, 
Winsor GL, Beiko RG, Brinkman FSL, Hsiao WWL, Domselaar GV, McArthur AG. 2020. 
CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic 
resistance database. Nucleic Acids Res 48:D517-D525. 

 
45. Wang X, Zorraquino V, Kim M, Tsoukalas A, Tagkopoulos I. 2018. Predicting the 

evolution of Escherichia coli by a data-driven approach. Nat Commun 9:3562. 
 
 
 

Table 1: Known AMR genes identified by the k-mer-based AMR classifiers 
 

 

Antibiotic Drug Class Known AMR genes 
 

to the antibiotic 

Known AMR genes associated 
 

to other antibiotics 
 

 

Ampicillin beta-lactam TEM-1**, CTX-M-15, 
 

yicJ* 

sul1**, folP**, APH(3’’)-Ib, katE*, 
 

yadV*, arnC, fsr, nmpC, pepT, 



 
 

yeeJ, yhdJ 
 

Aztreonam beta-lactam CTX-M-55* AAC(6’)-Ib-cr, acrD, catIII, nmpC, 
 

pitA, yicI, cpdB, yoaE, rapA, dinG, 

yeeJ, oppA, arnC 

Cefepime beta-lactam CTX-M-1**, CTX-M- 
 

15, CTX-M-55 

dfrA25*, AAC(6’)-Ib10*, AAC(3)- 
 

IId, catB3, AAC(6’)-Ib-cr, folA*, 

yadV*, citF, yeeJ, ftsI 

Cefoxitin beta-lactam CMY-2*, ybiW*, betT, 
 

chiP, cra, envZ, htrE, 

lyxK, mdlA, yeeJ, 

yghA 

dfrA25, AAC(3)-IId, catIII, blc, 

yaiY, folA, putA, lpoA 

Ciprofloxacin fluoroquinolone gyrA**, OXA-1*, CTX-M-15*, arnC, nmpC, 
 

htrE, cpdB, arcA, flu 
 

Gentamicin aminoglycoside AAC(3)-IId**, AAC(6’)- 
 

Ib7**, aadA13*, 

AAC(3)-IIe*, AAC(6’)- 

Ib9*, aadA7, ANT(2’’)- 
 

Ia 

floR, CTX-M-15, dfrA17, mphA, 

intS*, fliC*, arnC, yicJ 

 

Levofloxacin fluoroquinolone gyrA**, lacI*, yqiK, flu, arcA, fimC, 

phoE, ybiH, dadA 

Tetracycline tetracycline tet(A)**, tet(B)**, mdfA APH(6)-Id, sul2, yeeJ, folP, csiD 
 

Tobramycin aminoglycoside AAC(3)-IId**, AAC(6’)- 
 

Ib-cr**, AAC(3)-IIe, 

AAC(6’)-Ib7 

catB3*, CTX-M-55, dfrA17, OXA- 
 

1, fliC*, pinR, ydfU, dnaQ 

Trimethoprim diaminopyrimidi 
 

ne 

ANT(2’’)-Ia**, sul2*, aadA16*, 

aadA25*, APH(3’’)-Ib*, TEM-1, 

tet(A), APH(6)-Id, mphA, TEM- 
 

150, sul1, folP*, dosP, valS, 
 

 



nmpC, htrE, groL, putP 
 

 

Genes in the top 10% features, ranked according to their maximum feature important assigned by the GBC 
classifier, are presented only. 
**Gene was associated to feature in the top 10 
*Gene was associated to feature in the top 50 

 
 
 
 

Table 2: Known AMR genes identified by the SNP-based AMR classifiers 
 

 

Antibiotic Known AMR genes to the 
antibiotic 

Known AMR genes associated to other 
antibiotics 

 
 
 
 

 

Ciprofloxacin gyrA**, parC**, parE*, 
typA*, hofN, valS, pnp, gyrB 

speB**,   yegU*,   ugpB*,   ampH*,   fhuB*, 
poxB*, gss*, hybB*, phoE, speC, bglX, 
ftnA, pphA, yjfF, yjaB, yjjV, hofQ, yidC, 
prmB, hisF, plaP, truC, gcvP, mltC, rstB, 
mtlD, folA, metH, rnd, waaA, upp, putP, 
yohK, aidB, yegQ, uvrB, trmH, ulaG, yqjG, 
cpxA, proC, uvrA, recJ, hflX, tamB, cysK, 
metC, nrdB, mutM, mpl, osmF, mrcA, dcd, 
ravA, pepD, yejA, ribC, cstA, yeiQ, nusA, 
hemA, yaiZ, hybF, mglA, ysaA, potA, 
hemY, yjjP, recG, yebY, aroC 

Levofloxacin parC**, gyrA**, hemF*, recG*, mysB*, 
metC*, tktA*, aceF*, yicR*, blgX*, fabD*, 
mutS*, chaA*, msyB*, rbsA*, gcvP, glnE, 
pcnB, mdtB, hisF, purT, menD, nikC, ftnA, 
frwB, yjiN, nadR, cyoB, fumC, mdtD, citG, 
glgX, valS, ldcC, yebQ, adiA 

Meropenem parC**, gyrA**, creC**, yrfF**, valS**, 
bglX**, fucI*, hisF*, parE*, plaP*, nikA*, 
pykF*, aidB*, yjjG*, gcvP*, yjfF*, dsbD*, 
lepA*, thrA*, hybB, yccS, mdtB, murC, 
yegR, ravA, yjjV, yjjK, mscM, menD, mutS, 
metF, mglA, yjcD, nuoL, nadR, rplL, dusB, 
yegU, sufB, nudI, ulaG, ccmD, rnr, tamB, 
pdxA, dld, asd, ychO, soxR, yebK, nrdB, 
argD, baeS, glgX, osmF, trmI, yegS, dnaX, 
yejH, waaC, fhuE, aroP, folA, ycbZ, rbbA, 
polA, recJ, speC 

 

Genes in the top 10% features, ranked according to their maximum contribution to the classifier, are presented 
only. 
**Gene was associated to feature in the top 10 
*Gene was associated to feature in the top 50 

 
 
 
○ (Line 83) "bacterias" -> "bacteria's" 
Corrected. 



○ (Line 128) See above regarding known vs. correctly matched AMR genes. 
See above. 

 
○ (Line 200) "which strongly correlated to" -> "which are strongly correlated with" 
Corrected. 

 
○ (Line 244) See above regarding known vs. correctly matched AMR genes 
See above. 

 
○ (Line 273) Reference Supplement Table 1 for carbon sources tested 
Corrected - we added a reference to Supplementary Table 3 see line 452. 

 
○ (Line 457) See above regarding known vs. correctly matched AMR genes 
See above. 

 
○ (Line 528) "effects" -> "affects" 
Corrected. 

 
○ (Figure 1) Make plot arrangement and dimensions consistent with Figure 2 
Corrected. 

 
○ (Figure 3b) May be useful to also present ratios between shared vs. combined metabolic 
genes (i.e. Jaccard index for each pair) 

 
We have edited Figure 3b to include the number of shared genes in the right triangular 
matrix, whilst the jaccard index for each pair are provided in the left triangular matrix, please 
see below. 

 
Figure 3b (legend): (b) Heatmap showing the number of metabolic genes in the intersection 
(right triangular matrix) and the jaccard index (left triangular matrix) between pairs of 
antibiotic classes. The diagonal values correspond to the total number of metabolic genes in 
each class. 

 
○ (Figure 3d) Update caption, currently reads "number of genes" but heatmap shows non- 
integer values 
Corrected. 

 
(d) Heatmap showing the normalised number of genes associated to each metabolic system. 
Note that the number of genes was normalised via column standardisation. 

 
○ (Figure 5b-c) An alternative presentation of pie chart data that may better highlight which 
mechanisms/antibiotics are associated with which clusters is a heatmap or clustermap similar 
to Figure 3d, showing what fraction of each cluster is of a given mechanism/antibiotic. 

 
Changed the new Figure 5b-c to heatmaps instead. Updated the Figure legend, please see 
below 



 
Figure 5. Effect of genetic determinants on metabolite yields. (a) Bipartite network with 
genes and metabolites as nodes. A gene and metabolite are connected by an edge if the 
deletion of the gene blocks the metabolite production. Genes and metabolites are 
highlighted according to the cluster they were assigned to via the Networkx modularity 
algorithm. Note that the number of clusters in the figure was reduced by considering only 
those of size greater than 10. (b) Heatmap showing the metabolic systems associated to 
each of the 6 clusters. A gene was associated with a metabolic system, if at least 1 metabolite 
associated with the system could no longer be produced after the gene was deleted. (c) 
Heatmap showing the antibiotics associated with each cluster. Note that genes occurring in 
multiple antibiotics will be accounted for twice. Hierarchical clustering was applied to the 
rows of each heatmap (metabolic systems or antibiotic class) using the  single  linkage 
method and Euclidean distance as the metric. 

 
 
○ (Figure 6b-c) See comment on Figure 5b-c 
Changed the new Figure 6b-c to heatmaps instead. Updated the Figure legend as below: 

 
 
Figure 6. Effect of genetic determinants on reaction fluxes. (a) Bipartite network with 
genes and reactions as nodes. A gene and reaction are connected by an edge if the deletion 
of the gene reduces the reaction flux by at least 10%. Genes and reactions are highlighted 
according to the cluster they were assigned to via the Networkx modularity algorithm. Note 
that to reduce the initial size of the network, we only included clusters of size greater than 
10. (b) Heatmap showing the metabolic systems associated to each of the 9 clusters. A gene 
was associated with a metabolic system, if the flux span of at least 1 reaction associated with 
the system was reduced after the gene was deleted. (c) Heatmap showing the antibiotics 
associated with each cluster. Note that genes occurring in multiple antibiotics will be 
accounted for twice. Hierarchical clustering was applied to the rows of each heatmap 
(metabolic systems or antibiotic class) using the single linkage method and Euclidean 
distance as the metric. 



Reviewer #2 (Comments for the Author): 
 
This article combines available knowledge, statistical inference and metabolic modeling to 
provide an increased understanding of specific metabolic processes that may contribute to 
confer resistance to specific antibiotics in E. coli. The work presented is overall creative and 
thought-provoking, and I feel it contributes an original and thorough analysis that could 
inform and inspire other researchers. However, I also think that there are multiple aspects of 
the writing that need substantial clarification and rephrasing: 

 
1. A major point that I would like to bring up is that the rationale and hypothesis underlying 
the GSM analysis that is central to the paper is not clearly justified in the introduction and 
beginning of the result section, and barely justified later in the results. As a reader trying to 
follow the rationale of the approach, I found it hard to figure out how and why the ML and 
GSM analysis can inform each other. For example, at line 117, the authors mention that GSM 
"offers a way of mechanistically evaluating the genetic determinants identified using ML". It 
is not clear what it means to evaluate a genetic determinant. If I understand correctly, what 
you are evaluating is really the role of that gene (or even more precisely the 
presence/absence, or different variants of that gene) on the resistance phenotypes. 
Furthermore, it is not clear nor obvious why the deletion of a gene should inform the 
resistance phenotype. A mutation/k-mer pattern could be in principle associated with the 
increase of expression of a gene. So it is not clear (as somehow implied in the text) if and 
why the deletion of a gene whose variation is correlated with resistance would help inform 
the underlying mechanisms of resistance. It is entirely possible (and, apparently consistent 
with the findings) that gene deletions end up being informative, but - again - to me this was 
not self-evident at the start. I would expect the authors to revise their presentation of the 
underlying motivation and hypothesis with more details, and a more precise description of 
why they would expect GSM to be informative. A similar unsatisfactory description of this  
link is also appearing in the first section of the results, where, towards the end (lines 156- 
158) the notion that GSM lethality of AMR-related genes would yield interesting results is 
mentioned very briefly and without a real rationale. The first hint to a rationale (one of many 
possible) appears only at line 273-275. 

 
Thank you for this comment. We agree that the original manuscript lacked motivation  
behind using the GSM and didn’t clearly explain how knocking out a gene related to the 
SNPs or k-mers. To answer the question related to the rationale and hypothesis underlying 
the GSM analysis, please consider that the machine learning output lacks any biological 
interpretation for how the genetic determinants are related to resistance or susceptibility. 
Some cases, such as the beta-lactamases and drug efflux pumps, which are found via ML- 
classifiers can be simply linked to AMR since they allow for drug degradation and excretion 
of the drug. However, the majority of ML approaches lack the ability to investigate alleles 
that are associated with metabolic changes, which are advantageous for the bacteria to 
adapt to the antibiotic exposure and therefore important for revealing novel insights which 
could help develop drugs with higher efficacy. This limitation has also been addressed by 
Kavvas et al. (2018) (https://doi.org/10.1038/s41467-018-06634-y). Genome scale models 
provide a way of predicting genotype-phenotype relationships at the system-level. These 
models include the information regarding the enzyme that is associated to the gene of 
interest and so by blocking the flux through this enzyme, we can predict how changes to the 

https://doi.org/10.1038/s41467-018-06634-y


genetic determinants may affect the entire metabolic network. A limitation of this approach, 
however, is that we do not know whether the highly discriminant SNPs and k-mers are 
related to an increase or decrease in activity, or complete loss function of the corresponding 
enzyme. A SNP may have caused changes in enzyme activity via changes to the ligand 
binding active site or may have resulted in a complete loss of function if the SNP resulted in 
unfolding the 3-D protein structure, for example. A k-mer may result in the same changes, 
whilst additionally it may be due to the absence/presence of a gene in resistant strains. 
Without this information however, we are just assuming the enzymatic activity changed, and 
investigate which the metabolic pathways are being affected as a result. (Note that we 
address this limitation in the discussion Lines 1270-1274, in response to Reviewer 1, also see 
below.) We therefore use gene knockout simulations, not to assume the enzymatic activity 
has been completely lost, but to identify which metabolic pathways are being disrupted if   
the genetic determinant was causing the associated reaction to change (simulated here by 
blocking the flux completely). This provides a means for linking the genetic variants found as 
highly discriminant of AMR phenotype by the ML-classifiers to biochemical pathways that are 
potentially being disrupted (they have potentially increased, decreased or been complete 
blocked). From this analysis, we can identify which genetic determinants are having the 
largest system level effect (i.e. effect the largest number of pathways and therefore targeting 
them for new drugs may have the largest disruption to the bacteria’s metabolism), whilst we 
can also infer whether any genetic determinants are effecting similar metabolic processes, 
and therefore providing alternative routes for the bacteria to adapt for increasing resistance. 
In our results, for example, we found a number of genes that are suggested to effect iron 
metabolism, suggesting iron is particularly important for resistance. As discussed above, we 
can infer that iron metabolism is being affected but we can’t determine if the activity of iron 
metabolism has increased, decreased or been completely blocked. By using more advanced 
GSMs, such as GEM-PRO, which take into account changes to protein structure, we could 
improve our method to infer this information regarding an increase or decrease in activity, 
which we are currently working on for our future work. We have updated the introduction 
lines 74-161, results lines 188-203 and lines 464-469 and the discussion lines 1017-1026 and 
1269-1276 to make clearer the motivation and rationale behind the GSM-ML integration,  
also see below 

 
 
Introduction – Lines 74-161: Antimicrobial resistance is a major threat to global health. 
Worryingly, a growing number of pathogens exhibit an extraordinary capacity for acquiring 
new antibiotic resistance traits in the bacteria population worldwide (1). New multi-drug 
resistance mechanisms have emerged and spread globally, resulting in current treatments 
becoming less effective against common bacteria, which cause severe and often deadly 
infections. Consequently, the development of new drugs and novel treatment strategies are 
urgently needed (2, 3). 

 
The opportunistic pathogen Escherchia coli plays a major role in the AMR global health crisis. 
Firstly, the ability of E. coli to acquire resistance via single nucleotide polymorphisms (SNPs) 
in its existing genome (4-7) and via acquisition of resistance genes through horizontal gene 
transfer (HGT) from surrounding species (8-10) has resulted in increased levels of resistance 



to many antibiotic classes, including penicillins, carbapenems, cephalosporins, 
fluoroquinolones, aminoglycosides and tetracyclines (11-15). Secondly, the ease of its 
transmission from humans and environmental sources has resulted in alarming numbers of 
multidrug resistant E. coli strains being reported worldwide (16, 17). Thirdly, the ease by 
which the bacteria can transfer genetic material via HGT, combined with the bacteria’s ability 
to colonise different environments, including the gut where it has particularly close 
interaction with many other species, allows E. coli to act as a reservoir of AMR genes for 
other opportunistic pathogens, whilst also acquiring further resistance (18-21). For these 
reasons, the World Health Organization (WHO) have recently classified E. coli as a critical 
priority pathogen whereby the development of a new treatment is of high priority (22). 

 
Recent advances in data generation and data mining, combined with machine learning (ML), 
have led to invaluable results in the identification of specific genomic markers which could 
be used to effectively predict resistant strains and to detect AMR genes (23-30). Most of 
these methods work to identify known AMR mutations giving rise to the phenotypic 
resistance. This has great potential for fast diagnostic evaluation of bacteria compared to 
laboratory methods. However, ML-based approaches offer further powerful opportunities 
compared to conventional methods as they allow for the genome-wide identification of truly 
novel features (i.e. k-mers and SNPs) ranked on strength of correlation with the resistance 
phenotype. Recently several studies have used these approaches (29, 30), which not only 
allow the identification of genes with known functional relationship with the resistance 
phenotype, but also allow the identification of genes which have no prior association to a 
specific resistance phenotype.  This creates a  path for generating  non-intuitive  testable 
hypotheses about the association of antibiotic resistance to a wider repertoire of genes, 
including deletions and functional mutations altering metabolism, and therefore provides a 
significant advantage in comparison with the conventional use of annotated gene databases. 

 
Recent findings have shown the interconnectivity of antibiotic resistance with metabolism 
and emphasize the importance of considering this relationship in the design of new 
antibiotic regimens (31-33). Through its ease of HGT, E. coli has been able to adopt a highly 
flexible carbon and energy metabolism for adaption against stresses in niche environments 
(34, 35). For this reason, the bacteria is an ideal organism for investigating the interplay 
between AMR and metabolic adaption mechanisms. Connecting antimicrobial genes, specific 
mutations and alleles to metabolic phenotypes, however, still remains a significant challenge 
(36, 37). Black-box ML predictions lack biological interpretation of the genetic determinants 
(30), and therefore previous methods have often not accounted for the characterisation of 
new advantageous genetic variants occurring in targets beyond annotated drug resistant 
genes (29, 38), therefore neglecting important metabolic adaptions that allow resistance and 
tolerance to antibiotic stress (39-41). 



A genome-scale metabolic model (GSM) offers a way of mechanistically evaluating the 
genetic determinants identified using ML. A GSM is a computational model of metabolism, 
which includes all known biochemical reactions and their corresponding gene-protein- 
reaction (GPR) rules. The GPR rules provide the important information linking genes to the 
reactions that are catalysed by the enzymes they encode and provides a means of simulating 
the metabolic system-level behaviour of the bacteria to perturbations in the gene. Whilst 
GSMs have proven invaluable tools for predicting genotype-phenotype relationships (42), 
they lack the power of machine learning algorithms (30). Recent studies have therefore been 
developing new approaches that integrate the power of ML with GSMs to allow for a 
mechanistic interpretation of the genetic associations discovered by machine learning, which 
offers a significant advantage over ML approaches alone (30, 43). 

 
In this study, we developed a computational solution integrating the discriminant power of 
ML with GSM models to reveal the systemic relationships connecting the genetic 
determinants of AMR to important metabolic evolutionary adaptions in E. coli. Using our 
approach, we firstly were able to accurately predict AMR resistant and susceptible 
phenotypes against 12 different antibiotics, as well as identifying 225 (35 of which were 
matching to the specific antibiotic class reported in AMR-related databases) known AMR- 
conferring genes in 3616 E. coli  strains.  Secondly, by elucidating  the  effect  of genetic 
discriminants on bacterial growth, metabolite yields and biochemical fluxes using the GSM, 
we were able to relate genetic determinants to a number of metabolic adaption mechanisms, 
including reduced growth, alternative carbon source utilisation, changes to energy 
metabolism, iron metabolism, nucleotides metabolism and modifications to cell wall 
metabolism. 

 
 
Results – Lines 188-203: The interconnectivity of antibiotic resistance, antimicrobial genes, 
specific mutations and alleles to metabolic phenotypes, as well as the identification of new 
advantageous genetic variants occurring in targets beyond annotated drug resistant genes 
was determined using the GSM (Supplementary Figure 1). Specifically, flux balance analysis 
(FBA), a constraint-based approach, was used to predict the effects of the genetic 
determinants on the metabolic network. Importantly, we considered the protein-coding 
regions only in the ML-classifiers, and therefore the genetic variants are potentially 
increasing or decreasing enzymatic activity, or in some cases completely block the function 
of the gene. Here, we evaluate the effect of each genetic determinant by blocking the flux 
through its corresponding enzyme, and assessed the propagation of this ‘loss of function’ 
through the entire metabolic network. Specifically, we used the GSM to predict the effect of 
each genetic determinant on bacterial growth, the production of individual metabolites and 
the feasible flux range through individual reactions. Changes to metabolic phenotype 
capabilities in each  gene  KO  model  (i.e. reduction in growth rate, reduced metabolite 



production or reduction in flux span through a reaction) were assed using the wild type 
model of E. coli K-12 MG1655. 

 
Results – lines 464-469-Y: Next, using the GSM, we investigated the system-level effect of 
each important gene on metabolism, beyond the pathways they are encoded for. To this aim, 
we blocked the flux through reactions associated with an important gene (gene knockout) 
and evaluated the metabolic processes that were being affected. In doing so, we can infer 
potential metabolic adaption mechanisms that can be linked to a change in gene function 
(i.e. down-regulation, over-expression or deletion). 

 
Discussion – lines 1017-1026: To understand the mechanistic effect of these 289 genes, we 
used flux balance analysis (FBA) to predict the system-level metabolic changes that result 
from genetic variants of the genes (i.e. mutations or absense). More specifically, we predicted 
metabolic phenotypes of genetic variants via gene knockouts and identified the metabolic 
processes that were being affected. Importantly, using our new ML-FBA integrated approach, 
we could reveal interesting links between genes and potential metabolic adaption 
mechanisms that, importantly, were not identified using standard gene pathway enrichment 
analysis. 

 
Discussion – lines 1269-1274: The characterisation of the AMR-associated SNPs, in respect to 
a reference genome such as K12 MG1655, and would allow us to link the specific amino acid 
substitutions or deletions to antibiotic resistance. 1D-3D Structure-function prediction 
analysis may then enable us to determine whether the SNPs result in a loss or gain of 
function which is directly integrated as constraints into models such as GEM-PRO. The effects 
of the SNPs on the genes (i.e. loss of function or gain of function) is not determined in our 
approach and if considered would allow further insights into the biological interpretation. 
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2. I am curious whether the authors considered using experimental gene deletion data to 
cross-validate some of the predictions used in the analysis. I understand that such data may 
not be available for all strains and conditions, but it may be nice to a t least see a mention of 
how the availability of such data could impact your analysis or help refine it. 

 
We would like to thank the reviewer for this suggestion. From this point, we realised that 
some genes did not always agree with the experimental data, but this was because the 
experimental data was carried out in rich media. We have therefore improved this section 
by running FBA knockout simulations under both rich and minimal media         
conditions. We validated the gene knockouts using KEIO collection for E. coli  (63) for rich 
and using the study (4) for minimal media conditions. Our results are in good agreement 
with these results. 20 of the 289 genes were found in the GSM that were esse              
ntial under rich media, 20 of which were also essential in the experimental data (true 
positives). Just 3 of the essential genes predicted by the GSM were not essential in the 
experimental results (false positives). A further 26 genes were identified that were essential 
under minimal media conditions. These were compared to the experimental results on 
minimal media for E. coli in (64). 25 of the 26 essential genes in the model were also essential 
in these in vivo results. We have updated Table 3 to include two columns. One for the 
essential genes in rich media, and another column for the essential genes in minimal media. 
Validated genes are highlighted in blue (true positives) and red (false positives). From this 
change in analysis, we also thought it would be interesting to identify whether there were 
specific substrates in the rich media that were restoring growth (i.e. were any of the gene 
KOs potentially leading to auxotrophic growth). To do this, we fixed glucose as the 
carbon source and looped through to allow for an additional carbon source to be 
available. We have therefore also added the following to the results lines 474-475 
(updated title), results lines (480-539) the discussion lines 1028-1102 , the methods lines 
1452- 1459 and a new Table 4 presenting the results for any gene in each antibiotic that 
restored growth using one additional carbon source, see also below. These results also 
show the new results based on the updated dataset of isolates. Table 3 is below, as well 
as a new Table 4 that shows the auxotrophy results. 

 
Results (Title) – Lines 474-475: GSM knockout analysis reveals genes related to growth- 
limitation, auxotrophic behaviour and alternative carbon source utilisation 

 
Results – lines 480-539: Identifying those that are essential for growth, whilst also being 
highly important in the ML models, may therefore provide a novel opportunity to selecting 
targets with dual-mechanism. 

 
To this aim, the GSM was used to simulate the behaviour of E. coli with mutations in the 289 
genes. Single gene deletions under rich environments conditions were carried out in 
iML1515 to mimic the effect of a ‘loss of function’ mutation on the entire system (see 
Material and Methods). Importantly, we found a total of 20 genes that were lethal to the 



bacteria. These genes show a high level of agreement with in vivo gene essentiality study 
(63), as shown in Table 3. The lethal genes with the highest contribution (i.e. associated to 
the top 50 features) to the ML models, and therefore of greatest interest, included: accA and 
metK for ciprofloxacin, fabD and fabG for levofloxacin, murG, lptG and mraY for meropenem, 
folP for ampicillin and trimethoprim and glmM for gentamicin. These genes play essential 
roles in fatty acid elongation (fabD, fabG and accA), peptidoglycan metabolism (murG, mraY 
and glmM), lipolysaccharides biosynthesis (lptG), S-adenosyl-L-methionine metabolism and 
folate metabolism (folP) (Figure 4). Importantly, folP, lptG, fabG and murG are already known 
AMR-conferring genes, as shown by Tables 1 and 2. 

 
Next, we considered genes that were growth limiting under minimal media with glucose as 
the carbon  source. We found an additional 26 genes that were essential  under these 
conditions (Table 3), which again showed high agreement with the in vivo results (64). Under 
poor nutrient conditions of the host, changes in the function of these genes may contribute 
to slowing the growth rate, as before. However, if the environment is rich in nutrients, then a 
loss of function of these genes may have lead to advantageous auxotrophic behaviour. To 
test this hypothesis, we re-ran the KO simulations for growth on glucose, whilst also allowing 
for individual metabolites to be utilised. Importantly, we found that 17 of these genes could 
be linked to auxotrophic behaviour to the amino acids, including cysteine (meropenem, 
gentamicin), histidine (levofloxacin, ciprofloxacin, meropenem), phenyl-alanine (ciprofloxacin) 
and proline (ciprofloxacin). Auxotrophy for the vitamins thiamine (levofloxacin, tobramycin, 
meropenem), and panthanoate (ciprofloxacin) was also found. Auxotrophy to peptidoglycan 
precursors was also found for the antibiotics ciprofloxacin and meropenem, whilst purine 
and pyrimidine precursors were found for ciprofloxacin and cefepime. Importantly, 
auxotrophy for histidine and thiamine have previously been found to elevate fitness (65). 

 
Discussion – Lines 1028-1102: Using the GSM, we found 20 genes essential for growth under 
rich environmental conditions. The essential genes with the highest importance in the ML- 
models may be promising targets for generating dual-mechanism antibiotics. That is, the 
antibiotic targets pathways that would lead to inhibition of an essential metabolic process, 
whilst simultaneously reducing the ability of the pathogen to adapt. The most promising new 
candidates as targets included: accA and metK for ciprofloxacin, fabD and fabG for 
levofloxacin, murG, lptG and mraY for meropenem, folP for ampicillin and glmM for 
gentamicin. Modifications to these genes may result in slower growth, which has previously 
been found advantageous to pathogenic bacteria, including E. coli and Salmonella, for 
reducing the damage that occurs as a result of being the primary target of antibiotics (60-62, 
103). Alternatively, however, the genes accA, fabG, fabD, lptG, murG, mraY and glmM affect 
biosynthesis of cell wall components and therefore may have had an effect on membrane 
properties for antibiotic uptake or manipulation of the hosts immune response (73, 74). The 
gene folP, which is involved in folate metabolism, has previously been identified to prevent 
sulfonamide  drugs  from  inhibiting  folate  metabolism  (82).  Importantly,  however,  we 



identified folP in the trimethoprim, tetracycline and ampicillin ML models. Folate metabolism, 
including THF, however, are again important for nucleotides biosynthesis and have in fact 
been found important for persistence in E. coli cells exposed to ampicillin (83). Importantly, a 
number of additional genes affecting folate metabolism were also identified in the 
metabolite reproducibility analysis and flux variability analysis. 

 
Interestingly, we also found a number of gene KOs which resulted in auxotrophic behaviour 
to a number of amino acids and vitamins, as well as peptidoglycan precursors and purine 
and pyrimidine precursors. The production of these metabolites are particularly energy 
intensive, and therefore their acquisition from the host may provide pathogens with a 
competitive fitness advantage against commensal bacteria (104). Alternatively, auxotrophy 
may have developed due to the critical role the metabolite plays in host-pathogen 
interactions. Using these genes as new drug targets has the disadvantage that the pathogen 
may be able to utilise exogeneous nutrients from the host environment. 

 
Methods – Lines 1452-1459: We considered the essentiality of a gene under both rich media 
conditions and m9 minimal media conditions. To mimic rich media conditions, the model 
was constrained to allow all carbon sources into the system, with a fixed uptake tare of 1 
mmol/gDCW/h. If a feasible solution exists, whilst maximising the biomass equation as the 
objective function, then the KO of the gene was not essential. To mimic m9 minimal media 
conditions, the model was constrained so one individual carbon source had a maximum 
uptake of 10 mmol/gDCW/h. This simulation (minimal media condition) was repeated for 
each carbon source in the model. 
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Table 3. In silico predicted gene lethality from the top-ranked discriminant 
genes in k-mer-based and SNP-based classifiers listed for each antibiotic. 

 
 

Antibiotic Essential genes (rich media) Essential genes (glucose 
minimal media only) 

 

Ampicillin folP* 
 

Aztreonam asd, purL 
 

Cefepime pyrF 
 

Cefoxitin 
 

Ciprofloxacin murJ*, lptG, hemG, ribC, accA*, 
 

cysG, aroC, waaA, hemA, metK*, 

lptF 

purA, pheA, hisD, hisG, purL*, 

hisF, dapE, panD, purM, hisI*, 

ilvD, iscS, thiD, hisA, hisB*, hisH*, 

proC, purD 

Levofloxacin fabG*, fabD* hisF*, purL*, thiD* 
 

Gentamicin glmM*, cysG cysH 
 

 



 

Meropenem lptG*, mraY*, murG*, ispA cysJ,  hisD*,  pdxA,  hisC*,  asd, 

  hisF*,  metF,  murC,  iscS,  hisA, 

 
 
Tetracyline 

 
 

folP, murB 

hisB, hisH*, hisG 

Tobramycin 

Trimethoprim 

 
 

folP*, ftsI 

iscS 

* Genes are associated with top 50 ranked features of antibiotic AMR model 
Genes  highlighted  in  red  were  have  not  been  found  essential  in  experimental 
studies. 
Genes highlighted in blue did not have the experimental phenotype available for that 
environmental condition. 

 
 
 

Table 4. In silico predicted genes knockouts that lead to auxotrophy from the 
top-ranked discriminant genes in k-mer-based and SNP-based classifiers 
listed for each antibiotic. 

 

Antibiotic Genes leading to specific auxotrophy 
 

 

Ampicillin 
 

Aztreonam 
 

Cefepime Pyrimidine compounds (pyrF) 

Cefoxitin 

Ciprofloxacin Phenyl-alanine (pheA), histidine (hisA, hisB*, hisD, hisF, hisG, hisI*, 

hisH*), pantothenate (panD), thiamine (iscS, thiD), proline (proC), 

nucleosides (purA), peptidoglycan precursors (dapE) 

Levofloxacin Histidine (hisF), thiamine (thiD*) 

Gentamicin Cysteine-derived compounds (cysH) 

Meropenem Histidine (hisA, hisB,  hisD*,  hisC*,  hisF*,  hisH*),  S-Methyl-L- 

methionine (metF), thiamine (iscS), pyridoxine (pdxA), cysteine (cysJ), 

peptidoglycan precursors (murC) 

Tetracyline 
 

 



 
 

Tobramycin Thiamine (iscS) 
 

Trimethoprim 
 

 

 
 

Update to Figure 4 legend: Figure 4. An overview of the metabolic pathways involving 
potential gene targets for E. coli. The genes accA, lptG, fabD, fabG, murG, mraY, folP and 
metK were all found as essential in the GSM of E. coli, whereas knockout of the genes hisA 
and thiD all resulted in auxotrophic behaviour. The genes fucK, fucI, nupG, speB, uxaA, uxaB, 
dgoD, uidB and ttdB were all found as essential to the growth on alternative carbon sources. 

 
 
 

3. The phylogenetic analysis (starting at line 160) is potentially interesting but fairly 
disconnected from the rest of the manuscript. At first I was confused in trying to figure out 
whether and how that analysis informed the subsequent ML inference. I would suggest that 
the authors consider embedding that section differently in the flow of the manuscript, or at 
least make it very clear how it connects (or doesn't connect) to other portions. 

 
We have added the phylogenetic analysis to only give a descriptive overview of the data 
used in this study. In particular, to show the genetic relatedness featuring the data to better 
appreciate the performance of the learners. However, we agree that the detail here from the 
phylogenetic tree analysis did not connect with the rest of the manuscript. We have 
therefore removed this section. The title of the results section starting line 205 and methods 
lines 1327-1328 have therefore changed, see all below 

 
Results (Title) – Line 205: Genomic and metadata characteristics of the E. coli cohort 

 
Methods (Title) – Lines 1327-1328: Genome assembly and annotation, in silico subtyping 
identification, pangenome construction and core genome alignment 

 
4. Lines 256-259: It would be important to make portion clearer. If I understand correctly, 
SNPs are in (annotated) genes only, whereas k-mers could be anywhere in the genome. 
However it is not clear whether SNPs are only in the coding regions of the genes (it doesn't 
have to be the case). Also, I expect many genes to be non-metabolic and therefore not in the 
GSM, because only a portion (~1/4th?) of genes in E. coli are metabolic enzymes. So it is not 
clear what are the genes that the authors call "accessory genes": all the non-metabolic ones? 
In short, this whole part seems either misinformed about the connection between SNPs, k- 
mers and GSM, or just poorly explained. 

 
 

As correctly pointed out by the Reviewer this part was poorly explained. The reviewer is 
correct that the SNPs are in (annotated) genes only, whereas k-mers could be anywhere in 
the genome. Please consider that we considered the core genome as conventionally defined 
as those genes present in all isolates, and an accessory genome, which includes the genes 



absent from one or more isolates or unique to a given isolate 
(https://doi.org/10.1371/journal.pcbi.1003788). 

 

The variable or accessory genome (also: flexible, dispensable genome) refers to genes not 
present in all strains of a species. So, our definition of accessory genes is not related to 
metabolic or not metabolic but to the way their presence/absence in the strains considered  
in our cohort. The pan-genome we considered in this study, consists of a core genome as 
conventionally defined as those genes present in all isolates and accessory genome as 
defined above. For extracting the complete pan-genome in this study we classified the 
annotated gene catalogue of the strain sets for each antibiotic into core (99% of the strains 
have this gene present in the genome) and accessory genes (<99% of the strains have this 
gene present in the genome) by using the default parameters in Roary version 3.13.0 . Note 
that when we generated the pan-genome we used the protein-coding sequences, this is 
because we were interested in providing a global picture of the potentially functional alleles 
implicated in the AMR phenotypes and more importantly because the SNPs and k-mers 
identified as correlated to the AMR phenotypes by means of the machine learning  
approaches were then matched and tested for their functional role to the gene catalogue, 
which are associated to reactions in the iML1515 genome scale model of E. coli. Hence, we 
could only consider the coding regions and not the non-coding regions of the genomes to 
build up the pan-genome. We recognize that not accounting for the non-protein coding 
genes represent a limitation of our study as there are evidence in literature, such as eis and 
rrs, showing how non-protein coding genes can confer resistance. Likewise, we are not 
considering synonymous changes in the protein that also have been related to resistance 
(doi:10.1038/ng.2743). However, as previously explained our aim was to integrate the 
reactions in the iML1515 genome scale model of E. coli, we opted for only studying the 
protein-coding genes as also previously done by Kavvas et al., (2018) 
(https://doi.org/10.1038/s41467-018-06634-y). However, these types of computational 
platforms are open to account for non-protein coding genes and synonymous SNPs (which 
was also pointed out by Kavvas et al., (2018) in https://doi.org/10.1038/s41467-018-06634-y), 
and are actually the target of our future works. We have acknowledged this in the discussion. 

 
Concerning the SNPs analysis done in this study, the SNPs were only searched in the coding 
regions of the pan-genome for the reasons explained above. In addition, the SNPs were only 
searched in the core genome (defined as those genes present in all isolates core genome) of 
the pan-genome because the SNPs variants across the strains could only be extracted via 
multiple alignment across the strains. In particular, to extract the SNPs variants each core 
gene nucleotide sequence had to be aligned, and single nucleotide variants were identified. 
The position of a SNP in a gene was selected as a feature in the machine learning if the 
nucleotide varied in more than 5% of isolates (i.e., was constant in less than 95% of strains). 
The features relate to the aligned position of single nucleotide variants. An allele (with a 
specific nucleotide variant) was included in the analysis if it was frequent in more than 5% of 
the population of isolates. Hence, such variation could only be determined if only including 
genes present in 100% of isolates (core genome) within the study population and by aligning 
the core genome (the genes present in all isolates). Since the accessory genome represents 
the genes not present in all strains, the 95%-5% variation criteria cannot be applied if using 
the accessory genome. For the k-mers analysis, these are lists of k-mers of length 13 bp which 
occurred in at least one of the genome files, which were generated for each antibiotic 

https://doi.org/10.1371/journal.pcbi.1003788
https://doi.org/10.1038/ng.2743


using all the genomes associated to that antibiotic. Hence, for the k-mers we had less 
restrictions in how to capture them. The k-mers differently from the SNPs are 13 bp strings 
present in the genomes so their identification is done by estimating their presence/absence 
and consequently the presence/absence of the genes containing that string in each genome 
independently from all the other genomes in the cohort, while the SNPs are captured by 
their variation (i.e. if the nucleotide varied in more than 5% of strains). Hence, while for the 
SNPs we had to have the same gene content (core genome) in all strains to be able to make 
a comparative analysis of their variation across strains, the k-mers could be mapped 
anywhere in the genome (coding, non-coding, core or accessory) and each genome was 
independent from the others. This is why for the k-mers we could also incorporate the 
variable or accessory genome (also: flexible, dispensable genome) that includes genes not 
present in all strains of a species. 

 
 
The important features (i.e. those in the top 10% of the features, ranked according to the 
maximum importance in the 50 runs of the GBC) from both the SNP and k-mer-based 
approaches were then matched to the gene catalogue, which are associated to reactions in 
the iML1515 genome scale model of E. coli. We agree that this is confusing as we don’t 
properly explain this until the methods section. We have added some additional detail to the 
results lines 231-234, lines 340-342 and lines 407-425 and to the discussion lines 1005-1014 
and lines 1258-1269 and to the methods lines 1334-1341 see also below 

 
Results- Lines 231-234: Next, the pan-genome was extracted for the selected strains using 
the default parameters in Roary version 3.13.0 (47), which classified the catalogue of 
annotated genes as either core (i.e. occurring in >99% of strains) or accessory (i.e. missing 
from >99% of strains). 

 
Results- Lines 340-342: The variant sites (SNPs) in the protein-coding genes of the core 
genome of the pan-genome were identified using SNPsites tool (www.github.com/sanger-  
pathogens/snp-sites) and used as the features in the GBC model for fitting AMR labels. 

 

Results- Lines 407-425: The ratio of metabolic genes to total genes corresponding to the top 
ranked 10% of features was considerably higher for the SNPs-based models than the k-mer 
based models (Figure 3a, Supplementary Figure 3). The percentage of metabolic genes 
accounted for in iML1515 from the top features, for example, ranged from 43% 
(ciprofloxacin) to 48% (levofloxacin) in SNP-based AMR models. The percentage of metabolic 
genes identified by the k-mer based approach and present in iML1515, were considerably 
lower, ranging from 5% (tobramycin) to 19% (levofloxacin). A large number of genes 
identified by the k-mer approach, however, were from the accessory genome, which 
currently lack many functional annotations, as shown in Supplementary Figure 4 (see the 
decrease in cyan bars to yellow bars). Additionally, since the genome scale model is based on 
the K-12 strain, accessory genes missing from this reference genome will not be included in 
the analysis. Nevertheless, a total of 289 genes present in iML1515 were identified by 
combining the genes that were associated to the top ranked 10% of genes in the two 
machine learning approaches, which motivates the integration with GSMM analysis. 

http://www.github.com/sanger-pathogens/snp-sites
http://www.github.com/sanger-pathogens/snp-sites
http://www.github.com/sanger-pathogens/snp-sites


 

The contribution of genes from each AMR classifier ranged between 1 (tobramycin) and 123 
(ciprofloxacin), with a small number of genes overlapping between antibiotic AMR models 
(Figure 3b). 

 
Discussion – Lines 1005-1014: Importantly, a number of the genes identified in both the k- 
mer and SNP-based models were associated to metabolic reactions. Using the GSM 
iML1515, we found a total of 289 metabolic genes from the top 10% of features from both 
the k-mer and SNP-based models. The number of metabolic genes from the SNP-based 
models was considerably higher than the number of metabolic genes from the k-mer-based 
models. This is not too surprising however, since the k-mer-based approach included the 
important accessory genes responsible for drug target modifications, drug efflux and 
enzymatic inhibition. Metabolic-specific mutations provide a secondary adaption mechanism 
to reduce the antibiotic efficacy. Importantly, previous studies have also found that 
metabolic-specific mutations are present in the core genes of E. coli (102). 

 
Discussion: 1258-1269: Furthermore, our approach was limited to protein-coding genes only, 
and therefore lacks the ability to identify important non-protein coding regions, which have 
previously been found to confer resistance, such as eis and rrs (113). Likewise, we are not 
considering synonymous changes in the protein that also have been related to resistance 
(114). However, as also pointed out by Kavvas (2018) (29) these types of computational 
platforms are open to account for non-protein coding genes and synonymous SNPs in future 
work. Using more advanced GSM frameworks, such as regulatory FBA (115) and GEM-PRO 
(116), for example, would allow us to investigate the effect of genetic determinants on 
metabolic phenotypes via changes to gene regulation and protein structure. 

 
Methods- Lines 1334-1341: Each core gene nucleotide sequence was further aligned, and 
single nucleotide variants were identified. The position of a SNP in a gene was selected as a 
feature in the machine learning if the nucleotide varied in more than 5% of strains (i.e., was 
constant in less than 95% of strains). Such variation could only be determined if only 
including genes present in 100% of isolates (core genome) within the study population and 
by aligning the core genome (the genes present in all isolates). This is why we only 
considered the core genome of the pan-genome for this analysis. 
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5. Lines 289-290: The opening sentence of this paragraph doesn't make sense to me, making 
the whole paragraph a bit shaky. 

 
We agree that the above sentence is very unclear. We have revised the results lines 541-553 
to make motivation behind the analysis clearer and also to show the changes in the results 
using the new updated dataset. Similarly, we have also updated the discussion lines 1095- 
1102 and the new Table 4. 

 
Results - Lines 541 – 553: Additionally, gene modifications that affect the utilisation of 
alternative carbon sources was also investigated. Alternative carbon source utilisation has 
been found advantageous for pathogenic survival of bacteria including E. coli, Salmonella, 
Vibrio cholerae and Campylobacter jejuni (66-68). To this aim, we used the GSM to test the 
effect of the 289 genes on the 297 different carbon sources in the iML1515 model. Single 
gene knockouts were repeated for each individual carbon source, under minimal media 
conditions. We found 39 genes whose deletion blocked growth on a variety of alternative 
carbon source (Table 5). The carbon sources that were blocked by the genes with the highest 
importance (i.e.  associated to the top 50  features) in the ML models included: fucose 
(cefoxitin   and   meropenem),   galactonate   (cefoxitin),   tartrate   (levofloxacin),   agmatine 



(ciprofloxacin), galacturonate (ciprofloxacin and levofloxacin), methyl-beta-D-glucuronate 
(cefoxitin) and a variety of nucleosides (ciprofloxacin). 

 
Discussion – Lines 1095-1102: Additionally, we identified 39 genes whose KO affected the 
growth of E. coli on for growth on alternative carbon sources. The genetic determinants with 
the highest importance in the ML-models affected growth on various carbohydrates. 
Interestingly, a previous study found that various carbohydrates, including fucose, promote 
natural transformation of E. coli, therefore potentially contributing to the acquisition of 
antibiotic resistance and virulence (105). Fucose is particularly interesting as it has also been 
found to positively regulate microbiome bacterial colonisation and host immune activation 
(106). 
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Table 5. In silico predicted essential genes on specific carbon sources from 
the top-ranked discriminant genes in k-mer-based and SNP-based classifiers 
listed for each antibiotic. 

 
 

Antibiotic Lethal  genes  for  growth  on  specific  carbon  sources 

important in AMR model 
 



 
 

Ampicillin gatC, mhpB 
 

Aztreonam adiC, yihP, cpdB, garD, mngB, paaK 
 

Cefepime 
 

Cefoxitin garD, kgtP, fucK*, ulaC, putA, fecA, mngB, uidB*, dgoD* 
 

Ciprofloxacin malF,  ulaG,  nupG*,  nanE,  deoA,  pepD,  deoC,  tonB,  nanA, 

mtlD, xylA, uxaA*, putP, speB*, mngB, cpdB, lamB 

Levofloxacin adiC, ttdT, uxuB, uxuA*, ttdB* 
 

Gentamicin hcaB 
 

Meropenem manZ, adiC, ulaG, exuT, fucI* 
 

Tetracyline 

Tobramycin 

Trimethoprim putP, emrE 
 

 

 
 
 
 

6. Lines 307-308: There is no effect of a gene on a metabolite. Again, the setup of this 
portion could be much clearer with a sharper and more rigorous opening sentence. I gather 
from reading on (especially the methods) that the author meant effect of a gene on the 
producibility of a metabolite. Also: what metabolites? All metabolites or biomass 
components only? What is the rationale for either choice? These points can be clarified with 
minor sentence tweaks, but they can greatly enhance clarity. 

 
We again agree that this paragraph lacked clarity. Here, we apply the analysis to compare the 
difference between the maximum production (or maximum theoretical yield) of a    
metabolite in the wild type model against the knockout model. We then construct a bipartite 
network, which connects a gene to a metabolite, if the metabolite is produced (i.e. MTY > 0) 
in the wild type model but its production is blocked when the gene is knocked out (MTY = 0).  
We carried out this analysis on all metabolites in the model, which included biomass 
metabolites. We have edited/extended the results lines 559-605 to hopefully make this 
clearer and added some rationale for considering all metabolites and reactions for the 
analysis. 

 
Results - Lines 559-605: Next, the GSM was used to investigate whether the genetic 
determinants could be linked to additional metabolic adaption mechanisms, beyond those 
affecting the growth rate and alternative carbon utilisation. For this analysis, we examined 
the effect of each gene on metabolite reproducibility and reaction fluxes. More specifically, 



we simulated single gene knockouts as before, however this time, we captured the effect on 
metabolite yields and flux spans (i.e. the variation of possible flux values for a given reaction) 
for all metabolites and reactions in the iML1515 model. The output of this analysis is twofold: 
i) identify clusters of genes that have similar metabolic phenotypes and ii) elucidate the 
metabolic adaptions that are important in providing bacteria with possible resistance to 
antibiotic stress. Genes that have a similar phenotype could give rise to higher variation of 
strains, whilst providing similar advantages for resistance (69). Determining the most 
important metabolic adjustments that provide resistance to antibiotic stress may provide 
useful information for the development of novel treatments. The genetic determinants that 
have the largest  system-level impact, i.e. an increase or decrease in their functionality 
(modelled here via gene knockouts) disrupts the largest number of metabolite yields and/or 
reaction fluxes, could provide promising new targets. 
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7. Prior work (Brynildsen et al., Nature Biotechnology volume 31, pages 160-165) had used 
extended FBA models that included the production of ROS to study in detail the metabolic 
processes associated with cell death upon antibiotic killing. I would expect the authors to 
comment on the relevance of this prior work to their study. Is there an overlap of emerging 
pathways, despite the distinct approaches? Would it be beneficial to extend the new 
methodology to an FBA model that explicitly includes ROS production? 

 
We would like to thank the reviewer for this suggestion. To reflect the reviewers comment we 
have compared the results found in (Brynildsen et al., Nature Biotechnology volume 31, pages 
160-165) to the significant pathways identified in our approach. Interestingly, both our work 
and their work identified genes involved in the electron transport chain as targets for 
improving antibiotic killing by increased ROS. We have therefore updated the results lines 
1173-1194. In addition, we agree with the reviewer that It would be very interesting to use the 
iML1515-ROS model with the genetic determinants from the machine learning, to   
investigate further the role of resistance via reduction of damage via ROS. We think that 
would make a great future study for potentially identifying the most important genetic 
determinants that would increase antibiotic efficacy by targeting genes that induce ROS. We 
have edited the discussion lines 1280-1284 to acknowledge this in future work: 

 
Results - Lines 1173-1194: Additionally, these genes also affect the production of important 
cofactors of energy metabolism, such as ATP, NAD and NADPH, which are important for the 
electron transport chain. Other ETC metabolites, including ubiquinone, menaquinone and 
flavin, were also being affected by the genes. Changes in the flux through ETC may 
contribute to antibiotic resistance via reduction of aminoglycoside uptake (110), increase in 
persister cells by reduced growth rate (60-62) and/or reduction in ROS. Importantly, a related 
study that applied gene KO simulations on an extended GSM of E. coli, which included 



specific ROS-producing reactions, identified genes associated to the ETC as ROS-inducing 
targets for improved antibiotic killing (111). 

 
Discussion - Lines 1280-1284: Furthermore, an extended version of iML1515 has been 
developed that includes ROS specific reactions (111). Applying the approach developed here 
to this model would therefore be useful future work for exploring the most important 
genetic determinants for improving antibiotic efficacy via ROS associated cell death (111). 
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resistance in Salmonella enterica. Sci Signal 12. 
 
61. Brauner A, Fridman O, Gefen O, Balaban NQ. 2016. Distinguishing between resistance, 

tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 14:320-30. 
 
62. Greulich P, Scott M, Evans MR, Allen RJ. 2015. Growth-dependent bacterial 

susceptibility to ribosome-targeting antibiotics. Mol Syst Biol 11:796. 
 
110. Taber HW, Mueller JP, Miller PF, Arrow AS. 1987. Bacterial uptake of aminoglycoside 

antibiotics. Microbiol Rev 51:439-57. 
 
111. Brynildsen MP, Winkler JA, Spina CS, MacDonald IC, Collins JJ. 2013. Potentiating 

antibacterial activity by predictably enhancing endogenous microbial ROS 
production. Nature biotechnology 31:160-165. 

 
 
 
Minor points: 

 
Line 83: bacterias -> bacteria's 
Corrected. 

 
Line 145: Provide references for gradient boosting classifier 

 
We have updated the results lines 180-184 to include references for the GBC, see also below. 

 
Results – Lines 180 - 184: A gradient boosting classifier (GBC) (44, 45) was chosen as it is a 
powerful approach to quickly and efficiently scan entire genomes against selected 
phenotypes, allowing for the identification of arbitrary numbers of genomic features ranked 
on strength of correlation with the antimicrobial resistant and susceptible phenotype. 

 
42. Friedman JH. 2001. Greedy function approximation: A gradient boostingmachine. The 

Annals of Statistics 29:1189-1232, 44. 
 
43. Friedman JH. 1999. Stochastic Gradient Boosting 

doi:https://statweb.stanford.edu/~jhf/ftp/stobst.pdf. 

https://statweb.stanford.edu/%7Ejhf/ftp/stobst.pdf


Items included in this submission: 
i. Response to reviewers; 
ii. Revised manuscript marked-up copy (Revised Article with Changes Highlighted.docx); 
iii. Revised manuscript clean copy (Manuscript.docx); 
iv. Supplementary Tables 1, 2 and 3 – new supplementary files with new results using 

the updated list of strains; 
v. Figure 1 – updated results from re-run of pipeline with updated datasets, and 

according to Reviewer 1’s suggestion. 
vi. Figure 2 - updated results from re-run of pipeline with updated datasets 
vii. Figure 3 – updated results from re-run of pipeline with updated datasets; 
viii. Figure 4 – updated results from re-run of pipeline with updated datasets, and 

different method used based on suggestion from Reviewer 2 
ix. Figure 5 – updated results from re-run of pipeline with updated datasets 
x. Figure 6 - updated results from re-run of pipeline with updated datasets 
xi. Supplementary Figure 1 – updated figure based on small changes to pipeline (AUC 

cutoff increased to 0.95 from 0.8 and select top 10% of strains reduced from 20%. 
xii. Supplementary Figure 2 – updated results from re-run of pipeline with updated 

datasets; 
xiii. Supplementary Figure 3 (previously Supplementary Figure 4) – updated results from 

re-run of pipeline with updated datasets; 
xiv. Supplementary Figure 4 (new based on suggestion by Reviewer 1) – new figure 

showing the genes linked to metabolic pathways they were found associated to via 
the metabolite reproducibility analysis. 

xv. Supplementary Figure 5 (new based on suggestion by Reviewer 1) – new figure 
showing the genes linked to metabolic pathways they were found associated to via 
the FVA analysis. 

xvi. Supplemental Figure 6 (previously Supplementary Figure 5) – updated results from 
re-run of pipeline with updated datasets; 

xvii. Supplemental Figure 7 (previously Supplementary Figure 6) – updated results from 
re-run of pipeline with updated datasets; 

xviii. Supplementary Table 1 – updated results from re-run of pipeline with updated 
datasets; 

xix. Supplementary Table 2 – updated results from re-run of pipeline with updated 
datasets; 

xx. Supplementary Table 3 – updated results from re-run of pipeline with updated 
datasets; 

xxi. PATRIC_metadata.xlsx and code provided on the dropbox have been updated to 
include the new list of updated strains and inclusion of new analysis, and additional 
information as requested by the reviewers; 
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Re: mSystems00913-20R1 (Genome-scale metabolic models and machine learning reveal genet ic 
determinants of ant ibiot ic resistance in Escherichia coli and unravel the underlying metabolic 
adaptation mechanisms.) 

 
Dear Dr. Tania Dot torini: 

 
Thank you for submit t ing your revised manuscript to mSystems. We have completed our review and 
I am pleased to inform you that, your revisions have adequately addressed comments raised by 
both reviewers previously. Therefore, in principle, we expect to accept it for publicat ion in  
mSystems. However, Reviewer #1 has provided addit ional minor comments. Please address them to 
render your manuscript completely acceptable for publicat ion. 

 
Thank you for the privilege of reviewing your work. Below you will find instruct ions from the 
mSystemseditorial office and comments generated during the review. 

 
Preparing Revision Guidelines 
To submit your modified manuscript , log onto the eJP submission site at                        
ht tps://msyst ems.msubmit .net /cgi-bin/main.plex. Go to Author Tasks and click the appropriate 
manuscript t it le to begin the revision process. The informat ion that you entered when you first 
submitted the paper will be displayed. Please update the informat ion as necessary. Here are a few 
examples of required updates that authors must address: 

 
• Point-by-point responses to the issues raised by the reviewers in a file named "Response to 
Reviewers," NOT IN YOUR COVER LETTER. 
• Upload a compare copy of the manuscript (without figures) as a "Marked-Up Manuscript" file. 
• Each figure must be uploaded as a separate file, and any mult ipanel figures must be assembled 
into one file. 
• Manuscript : A .DOC version of the revised manuscript 
• Figures: Editable, high-resolut ion, individual figure files are required at revision, TIFF or EPS files are 
preferred 

 
For complete guidelines on revision requirements, please see the Inst ruct ions to Authors at 
ht tps://msyst ems.asm.org/sit es/default /files/addit ional-assets/mSys-ITA.pdf. Submissions of a 
paper that does not conform to mSystems guidelines will delay acceptance of your 
manuscript. 

 
Corresponding authors may join or renew ASM membership to obtain discounts on publicat ion fees. 
Need to upgrade your membership level? Please contact Customer Service at  
Service@asmusa.org. 

https://www.asm.org/membership
mailto:Service@asmusa.org


Thank you for submit t ing your paper to mSystems. 
 
The ASM Journals program strives for constant improvement in our submission and publicat ion 
process. Please tell us how we can improve your experience by taking this quick Author Survey. 

 
Sincerely, 

Xiaoxia "Nina" Lin 

Editor, mSystems 

Journals Department 
American Society for Microbiology 
1752 N St ., NW 
Washington, DC 20036 
E-mail: peerreview@asmusa.org 
Phone: 1-202-942-9338 

 
 
Reviewer comments: 

 
Reviewer #1 (Comments for the Author): 

 
This work presents a series of novel methods based around genome scale metabolic modeling to 
better understand the metabolic effects of E. coli genes associated with AMR as determined by 
machine learning (or potent ially any GWAS method). These analyses are technically sound, dist inct 
from other approaches towards integrat ing ML, FBA, and network analysis to understand AMR, and 
backed with detailed biological interpretat ions. 

 
The authors have painstakingly addressed my previous comments with both a refined methodology 
and numerous new clarificat ions in text. Aside from only a few minor clarificat ions on updated 
results and typo correct ions, this manuscript is considerably stronger. 

 
 
Minor edits 
(Line 101) "aprproaches" -> "approaches" 
(Line 181) Expand abbreviat ion, first use of "KO" for knockout 
(Line 293) Not sure what "decrease in cyan bars to yellow bars" is referring to, cannot find them in 
Supplementary Figure 4. 
(Line 298) "GSMM" -> "GSM", or expand first use of GSMM abbreviat ion 
(Line 341) "environmentsl" -> "environmental" 
(Line 344) "genes that were lethal" -> "gene KOs that were lethal" 
(Line 372) Reference Table 4, current ly unreferenced in results 
(Line 412) "The lethality of each genet ic determinant on all metabolites" - not clear what this refers 
to, is this whether a gene KO completely disables the abilit y of a st rain to produce a metabolite? 
(Line 417) "genres" -> " genes" 
(Line 433) "affect" -> "effect" 
(Line 578) "affect" -> "effect" 
(Line 740) "GSMM" -> "GSM"? 
(Line 836) "GenenomeTester4" -> "GenomeTester4" 

https://www.surveymonkey.com/r/ASMJournalAuthors
mailto:peerreview@asmusa.org


(Line 1014) Fig 1 legend: Clarify values shown. Does mean = mean from 5-fold CV, or across the 50 
iterat ions? Do the boxplots show those 50 iterat ions? 
(Line 1020) Fig 2 legend: Same quest ions as for Fig 1 legend. 
(Line 1074) Fig 5 legend: Are unlabeled nodes metabolites? 
(Line 1087) FIg 6 legend: Are unlabeled nodes react ions? 

 
(Figure 3b) Add color bars. May be necessary to make separate scales for Jaccard indices and raw 
gene overlap counts, or report ing only Jaccard indices here and moving overlap counts to a 
supplementary figure or table. 
(Figure 3c) Use different color schemes for gene funct ions vs ant ibiot ics. 
(Figure 5b-c/6b-c) Add color bars. May be worth normalizing counts to the total number of genes 
within each cluster to better highlight enrichment. 

 
 
(Table 1) Not 100% sure, but should gyrA be listed as a known AMR gene for levofloxacin (switch 
column for that entry)? 
(Table 2) Similar to Table 1, should parC and gyrA be listed as known AMR genes for levofloxacin? 
(Table 4/5) Ment ion what asterisks indicate as in previous tables 

 
 
Reviewer #2 (Comments for the Author): 

 
The authors have addressed my concerns thoroughly, and have increased significant ly the dataset 
used for their analysis, st rengthening the results. 



Dear Prof. Xiaoxia (Nina) Lin, 
 
Manuscript # mSystems00913-20 

 
“Genome-scale metabolic models and machine learning reveal genetic determinants of 
antibiotic resistance in Escherichia coli and unravel the underlying metabolic adaption 
mechamisms” by Nicole Pearcy, Yue Hu, Michelle Baker, Alexandre Maciel Guerra, Ning Xue, 
Wei Wang, Jasmeet Kaler, Zixin Peng, Fengqin Li and Tania Dottorini. 

 
We wish to thank the reviewers for their kind comments regarding our revised manuscript 
and their identification of minor corrections. We feel the manuscript is considerably stronger 
after their input. 

 
In the following, a point-by-point response to all the minor comments is provided. The 
original questions from the reviewers are in blue, whilst our responses are in black. 

 
 
Reviewer #1 
Minor edits 
(Line 101) "aprproaches" -> "approaches" 
Corrected. 

 
(Line 181) Expand abbreviation, first use of "KO" for knockout 
Thank you for identifying. We have changed all occurrences of ‘KO’ to ‘knockout’ since for the 
majority we used the expanded version. 

 
(Line 293) Not sure what "decrease in cyan bars to yellow bars" is referring to, cannot find them 
in Supplementary Figure 4. 
Apologies, we had incorrectly referred to Supplementary Figure 4 instead of Supplementary 
Figure 3. We have corrected this in the revised manuscript. 

 
(Line 298) "GSMM" -> "GSM", or expand first use of GSMM abbreviation 
Corrected. 

 
(Line 341) "environmentsl" -> "environmental" 
Corrected. 

 
(Line 344) "genes that were lethal" -> "gene KOs that were lethal" 
Corrected. 

 
(Line 372) Reference Table 4, currently unreferenced in results 
Added reference to Table 4 to line 380. 

 
(Line 412) "The lethality of each genetic determinant on all metabolites" - not clear what this 
refers to, is this whether a gene KO completely disables the ability of a strain to produce a 
metabolite? 
We agree that the lethality of a gene knockout on the metabolites was not clearly defined. We 
have added the following sentence to the results section, lines 427 – 430, see also below 

 
Results - Lines 427-430: The lethality of each genetic determinant on all metabolites in the 
iML1515 model was determined using flux balance analysis (FBA). A gene knockout was 
considered lethal to the production of a specific metabolite if it results in blocking the biosynthesis 
of the metabolite (see also Materials and Methods). 



(Line 417) "genres" -> " genes" 
Corrected. 

 
(Line 433) "affect" -> "effect" 
Corrected. 

 
(Line 578) "affect" -> "effect" 
Corrected. 

 
(Line 740) "GSMM" -> "GSM"? 
Corrected. 

 
(Line 836) "GenenomeTester4" -> "GenomeTester4" 
Corrected. 

 
(Line 1014) Fig 1 legend: Clarify values shown. Does mean = mean from 5-fold CV, or across the 
50 iterations? Do the boxplots show those 50 iterations? 

 
We agree with Reviewer 1 that the boxplot was poorly explained by the figure legend. The 
boxplot shows the performance metrices for the 50 iterations. We incorrectly included the word 
‘mean’ and so have revised the legend to the following: 

 
Figure 1. K-mer-based supervised machine learning prediction of antibiotic resistance 
signature profiles to 12 antibiotics in the E. coli cohort. Boxplots showing the prediction 
performance results of the gradient boosting classifier for the 50 iterations. The performance 
indicators (Y axis) are accuracy, precision, recall, and AUC. Predictive models were generated to 
classify the resistance vs. susceptibility profiles of twelve different antibiotics (X axis). 

 
 
(Line 1020) Fig 2 legend: Same questions as for Fig 1 legend. 

 
As before, with Figure 1, we incorrectly included the word ‘mean’ in the legend and have 
therefore slightly modified the legend to the following: 

 
Figure 2. SNP-based supervised machine learning prediction of antibiotic resistance 
signature profiles to 12 antibiotics in the E. coli cohort. Boxplots showing the prediction 
performance results of the gradient boosting classifier of the 50 iterations. The performance 
indicators (Y axis) are accuracy, precision, recall and AUC. Predictive models were generated to 
classify the resistance vs. susceptibility profiles of twelve different antibiotics (X axis). 

 
 
(Line 1074) Fig 5 legend: Are unlabeled nodes metabolites? 
Yes, the labelled nodes are genes and unlabelled nodes are metabolites as the reviewer 
correctly suggests. We thank the reviewer for identifying that this information was excluded. We 
have added the following to Figure legend 6: 

 
Lines 1120-1121: Labelled nodes represent the genes, whereas unlabelled nodes represent 
metabolites. 

 
(Line 1087) FIg 6 legend: Are unlabeled nodes reactions? 
Yes, the labelled nodes are genes and unlabelled nodes are reactions as the reviewer correctly 
suggests. We thank the reviewer for identifying that this information was excluded. We have 
added the following to Figure legend 6: 



Line 1136-1137: Labelled nodes represent the genes, whereas unlabelled nodes represent 
reactions. 

 
 
(Figure 3b) Add color bars. May be necessary to make separate scales for Jaccard indices and 
raw gene overlap counts, or reporting only Jaccard indices here and moving overlap counts to a 
supplementary figure or table. 
We agree that having the Jaccard index and the overlapping counts was difficult to show due to 
the different scales. We have therefore replaced Figure 3b with a heatmap that shows just the 
Jaccard index scores, as suggested by the Reviewer. The legend for Figure 3 has been updated 
accordingly, as shown below. We have also added an extra sheet, named ‘Antibiotics vs 
metabolic genes’, in Supplementary Table 3, which includes two tables. The first table, titled 
‘Metabolic genes identified in each AMR classifier’, presents a matrix of the total 289 genes 
(rows) and 11 antibiotic classes (columns), which were used in the GSM analysis. If the ith gene 
was identified in the AMR classifier for the jth antibiotic class, then the ith, jth position of the 
matrix is 1, and 0 otherwise. The second table, titled ‘Number of overlapping genes between 
antibiotic classes’, shows the total number of common genes that were identified in the AMR 
classifiers for pairs of antibiotic classes. Note that this table includes the information that was 
previously in Figure 3b, which was previously combined with the Jaccard Index. The diagonal 
entries show the total number of genes in the genome scale model that were identified in each 
AMR classifier. 

 
Figure 3. Number of metabolic genes occurring in the 11 AMR classifiers. (a) Bar chart 
showing proportions of metabolic genes compared to the entire set of genes found in each AMR 
model. The blue lines represent gene proportions from the k-mer AMR models, whereas the red 
lines represent gene proportions from the SNP AMR models (AUC>95%). (b) Heatmap showing 
the Jaccard index comparing the gene sets between two antibiotic classes. (c) Pie chart showing 
the proportions of genes associated with 10 metabolic systems (outer ring presented using the 
‘tab10’ color theme in Matplotlib). The inner ring shows the proportion of genes from each 
antibiotic class associated to each metabolic system and is presented using the ‘Set3’ color 
theme in Matplotlib. Note that genes contributing to multiple antibiotic classifications will 
contribute multiple times in the pie chart, and therefore the total area of the pie chart does not 
amount to 289. (d) Heatmap showing the normalised number of genes associated to each 
metabolic system. Note that the number of genes was normalised via column standardisation. 
Note that hierarchical clustering was applied to both rows (metabolic systems) and columns 
(antibiotic classes) using the single linkage method and Euclidean distance as the metric. Each 
subplot shows the results for the top 10% of genes identified in each AMR classifier. Subplot B, 
C, and D show the results for the 289 genes found by combining the genes that correspond to 
the features in the top 10% of the k-mer and SNPs classifications. 

 
 
 
(Figure 3c) Use different color schemes for gene functions vs antibiotics. 
Edited the figure to use the ‘tab10’ matplotlib color theme for the outer ring and the ‘Set3’ 
matplotlib color theme for inner ring of pie chart. This information has also been updated in the 
legend for Figure 3, please also see this update in the response to the previous comment. 

 
 
(Figure 5b-c/6b-c) Add color bars. May be worth normalizing counts to the total number of genes 
within each cluster to better highlight enrichment. 
We have added color bars to Figure 5b-c and Figure 6b-c. We have also normalised the gene 
counts by the total number of genes in each cluster, as suggested by the Reviewer. We have 
also updated the figure legends for Figure 5 and 6 to the following. We had also missed 
colorbars off of Supplementary Figure 4B-C and Supplementary Figure 6B-C so have also 
updated these figures. 



Figure 5. Effect of genetic determinants on metabolite yields. (a) Bipartite network with 
genes and metabolites as nodes. Labelled nodes represent genes, whereas unlabelled nodes 
represent metabolites. A gene and metabolite are connected by an edge if the deletion of the 
gene blocks the metabolite production. Genes and metabolites are highlighted according to the 
cluster they were assigned to via the Networkx modularity algorithm. The number of clusters in 
the figure was reduced by considering only those of size greater than 10. (b) Heatmap showing 
the metabolic systems associated to each of the 6 clusters. A gene was associated with a 
metabolic system, if at least 1 metabolite correlated with the system could no longer be produced 
after the gene was deleted. (c) Heatmap showing the antibiotics associated with each cluster. 
Note that genes occurring in multiple antibiotics were accounted for twice. Hierarchical clustering 
was applied to the rows of each heatmap (metabolic systems or antibiotic class) using the single 
linkage method and Euclidean distance as the metric. The gene counts have been normalised by 
the total number of genes in each cluster in each heatmap. 

 
Figure 6. Effect of genetic determinants on reaction fluxes. (a) Bipartite network with genes 
and reactions as nodes. Labelled nodes represent the genes, whereas unlabelled nodes 
represent reactions. A gene and reaction are connected by an edge if the deletion of the gene 
reduces the reaction flux by at least 10%. Genes and reactions are highlighted according to the 
cluster they were assigned to via the Networkx modularity algorithm. Note that to reduce the 
initial size of the network, we only included clusters of size greater than 10. (b) Heatmap showing 
the metabolic systems associated to each of the 9 clusters. A gene was associated with a 
metabolic system, if the flux span of at least 1 reaction correlated with the system was reduced 
after the gene was deleted. (c) Heatmap showing the antibiotics associated with each cluster. 
Genes occurring in multiple antibiotics were accounted for twice. Hierarchical clustering was 
applied to the rows of each heatmap (metabolic systems or antibiotic class) using the single 
linkage method and Euclidean distance as the metric. The gene counts have also been 
normalised by the total number of genes in each cluster in each heatmap. 

 
 
(Table 1) Not 100% sure, but should gyrA be listed as a known AMR gene for levofloxacin 
(switch column for that entry)? 
Reviewer 1 is correct in that gyrA is a known AMR for fluoroquinolone antibiotics, which includes 
levofloxacin. We have corrected Table 1 to take this information into account. 

 
(Table 2) Similar to Table 1, should parC and gyrA be listed as known AMR genes for 
levofloxacin? 
Reviewer 1 is correct in that gyrA and parC are known AMR for fluoroquinolone antibiotics, which 
includes levofloxacin. We have corrected Table 2 to take this information into account. 

 
(Table 4/5) Mention what asterisks indicate as in previous tables 
Corrected. 

 
Please note that we have also updated Figure 4 due to finding a metabolite incorrectly 
labelled. The reaction encoded by hisI was incorrectly presented as ‘PRFAR’ being produced 
from ‘PRFAR’, so we have updated this to now show ‘PRFAR’ being produced from ‘PRBATP’ 
(which is the abbreviation used for phosphoribosyl-ATP). We have updated the abbreviation 
list in the legend for Figure 3 to include this additional metabolite. 
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Re: mSystems00913-20R2 (Genome-scale metabolic models and machine learning reveal genet ic 
determinants of ant ibiot ic resistance in Escherichia coli and unravel the underlying metabolic 
adaptation mechanisms.) 

 
Dear Dr. Tania Dot torini: 

 
 
 
Your manuscript has been accepted, and I am forwarding it to the ASM Journals Department for 
publicat ion. For your reference, ASM Journals' address is given below. Before it can be scheduled for 
publicat ion, your manuscript will be checked by the mSystems senior product ion editor, Ellie 
Ghat ineh, to make sure that all elements meet the technical requirements for publicat ion. She will 
contact you if anything needs to be revised before copyedit ing and product ion can begin. 
Otherwise, you will be not ified when your proofs are ready to be viewed. 

 
As an open-access publicat ion, mSystems receives no financial support from paid subscript ions and 
depends on authors' prompt payment of publicat ion fees as soon as their art icles are accepted. 
You will be contacted separately about payment when the proofs are issued; please follow the 
instruct ions in that e-mail. Arrangements for payment must be made before your art icle is 
published. For a complete list of Publication Fees, including supplemental material costs, please 
visit our website. 

 
Corresponding authors may join or renew ASM membership to obtain discounts on publicat ion fees. 
Need to upgrade your membership level? Please contact Customer Service at  
Service@asmusa.org. 

 
For mSystems research art icles, you are welcome to submit a short author video for your 
recent ly accepted paper. Videos are normally 1 minute long and are a great opportunity for junior 
authors to get greater exposure. Import ant ly, this video will not hold up the publicat ion of your 
paper, and you can submit it at any t ime. 

 
Details of the video are: 

 
· Minimum resolut ion of 1280 x 720 
· .mov or .mp4. video format 
· Provide video in the highest qualit y possible, but do not exceed 1080p 
· Provide a st ill/profile picture that is 640 (w) x 720 (h) max 
· Provide the script that was used 

 
We recognize that the video files can become quite large, and so to avoid quality loss ASM 

https://msystems.asm.org/content/publication-fees
https://www.asm.org/membership
mailto:Service@asmusa.org


suggests sending the video file via ht tps://www.wet ransfer.com/. When you have a final version of 
the video and the st ill ready to share, please send it to Ellie Ghat ineh at eghat ineh@asmusa.org. 

 
 
Thank you for submit t ing your paper to mSystems. 

 

Sincerely, 

Xiaoxia Lin 
Editor, mSystems 

 
Journals Department 
American Society for Microbiology 
1752 N St ., NW 
Washington, DC 20036 
E-mail: peerreview@asmusa.org 
Phone: 1-202-942-9338 
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