SUPPLEMENTARY INFORMATION

Preparative production of an enantiomeric pair by engineered polyketide synthases

Takeshi Miyazawa¹, Brendan J. Fitzgerald¹, and Adrian T. Keatinge-Clay¹

Department of Molecular Biosciences,

The University of Texas at Austin, 100 E. 24th St., Austin, TX 78712

Email: adriankc@utexas.edu

Page

Methods	3
Table S1. Expression plasmid construction	7
Table S2. Sequences of the engineered PKSs	10
Figure S1. SDS-PAGE gel of PKSs, GDH, and MatB	15
Figure S2. Optimization of culture conditions for <i>in vivo</i> triketide production	16
Figure S3. Calibration curve for triketide lactones	17
Figure S4. ¹ H NMR of 1	18
Figure S5. ¹ H- ¹³ C-HSQC of 1	19
Figure S6. ¹ H NMR of 2	20
Figure S7. ¹ H- ¹³ C-HSQC of 2	21
Figure S8. Analysis of shunt products	22
Figure S9. Triketide lactone crystals	23
References	24

METHODS

Construction of expression plasmids

Gibson assembly and SLiCE¹ were used to join fragments amplified from *Streptomyces venezuelae* ATCC 15439 genomic DNA with vectors (Table S1). Updated junctions were positioned between the 10th and 11th residues following the conserved GTNAH motif of KS; traditional junctions were positioned between the 1st and 2nd residues preceding the PIAIV motif of KS (Table S2).²

Protein expression and purification

All proteins were expressed in *E. coli* K207-3 except for *Streptomyces coelicolor* MatB and *Bacillus subtilis* glucose dehydrogenase (GDH), which were expressed in *E. coli* BL21(DE3).^{3, 4} Transformed cells were shaken at 240 rpm in LB media containing either 50 mg L⁻¹ kanamycin or 50 mg L⁻¹ streptomycin to $OD_{600} = 0.6$ at 37 °C. Cultures were induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and incubated for 18 h at 15 °C. Cells were harvested (4000 x g for 20 min), resuspended in lysis buffer [50 mM potassium phosphate, 500 mM NaCl, 5 mM imidazole, 10% (v/v) glycerol, 1 mM TCEP, pH 7.5] and sonicated. After the cell debris was removed (30,000 x g for 30 min), the supernatant was applied to a Ni-NTA column (2 x 4 cm) and washed with 5 column volumes of lysis buffer containing 15 mM imidazole. Proteins were eluted with 2 column volumes of lysis buffer containing 250 mM imidazole. Each was concentrated (10-18 mg/mL) with an Amicon Ultra centrifugal filter (30 kD MWCO), and the buffer was exchanged for 400 mM potassium phosphate, 150 mM NaCl, 10% (v/v) glycerol, 0.5 mM TCEP, pH 7.5 (synthase polypeptides) or 15 mM HEPES, 150 mM NaCl, 10% (v/v) glycerol, pH 7.5 (MatB and GDH). Each purification was assessed by SDS-PAGE (Figure S1).

In vitro assays

Reactions (100 µL) were performed in 400 mM potassium phosphate, 10 mM MgCl₂, 10 mM ATP, 10 mM D-glucose, 0.5 mM NADP⁺, 0.2 mM CoA, 10 mM methylmalonate or ¹³C methylmalonate, 5 mM TCEP, pH 7.5 with 10 µM MatB, 10 µM GDH, and 10 µM of each synthase polypeptide. Synthase polypeptides were added after all other components had incubated for 5 min at 25 °C. After 1 h reactions were quenched through the addition of 70% (v/v) perchloric acid (5 µL). Precipitate was removed (15,000 × g for 5 min), and the supernatants were extracted with ethyl acetate (2 x 200 µL). The extract was dried *in vacuo*, dissolved in 100 µL methanol, and analyzed by high-resolution mass spectrometry (HRMS) [6230 TOF LC/MS equipped with a Microsorb-MV 300-5 C₁₈ column (4.6 × 250 mm) with a flow rate of 1 mL min⁻¹ (solvent A, water with 0.1 % formic acid; solvent B, acetonitrile with 0.1% formic acid. 5-100% B for 15 min, 100% B for 3 min), positive mode].

In vivo production in optimized conditions

E. coli K207-3 cells transformed with PKS expression plasmids were shaken at 240 rpm in 50 mL LB media containing the appropriate antibiotics (50 mg L⁻¹ kanamycin for 1-polypeptide synthases, 50 mg L⁻¹ kanamycin and 50 mg L⁻¹ streptomycin for 2-polypeptide synthases) in 250 mL flasks at 37 °C. From these precultures, 3 mL was used to inoculate 300 mL of production media (5 g L⁻¹ yeast extract, 10 g L⁻¹ casein, 15 g L⁻¹ glycerol, 10 g L⁻¹ NaCl, and 100 mM potassium phosphate, pH 7.6 with 50 mg L⁻¹ kanamycin or 50 mg L⁻¹ kanamycin and 50 mg L⁻¹ streptomycin) in each 2.8 L non-baffled Fernbach flask. Cells were shaken at 240 rpm at 37 °C until OD₆₀₀ = 0.6. They were then cooled to 19 °C, supplied with 0.1 mM IPTG and 20 mM sodium propionate, and cultured for 6 d. Time points were obtained by adding 5 µL concentrated HCl to 500 µL culture broth, extracting twice with the same volume of ethyl acetate, and concentrating *in vacuo*. The extract was resuspended in 500 µL of water and 10 µL was

analyzed by HPLC [Waters 1525 HPLC system equipped with a Microsorb-MV 300-5 C_{18} column (4.6 × 250 mm) with a flow rate of 1 mL min⁻¹ (solvent A, water with 0.1 % formic acid; solvent B, acetonitrile with 0.1% formic acid. 5-100% B for 15 min, 100% B for 3 min)].

Purification of triketide lactones

Cultures broths were adjusted to pH 3 with HCl and extracted twice with the same volume of ethyl acetate, using centrifugation (4000 x g for 5 min in polypropylene bottles) to separate emulsions. The extract was dried with MgSO₄, filtered, and concentrated *in vacuo*. Propionic acid was removed by passing the extract through a silica gel plug (3×5 cm, EtOAc:hexanes = 30:70), and purification was performed using a silica gel column (1.5×15 cm, EtOAc:hexanes = 35:65).

Chiral chromatography

Purified triketide lactones were dissolved in 5% acetonitrile and injected onto an Agilent 6230 TOF LC/MS connected to a Chiralcel OD-RH column (2.1 x 150 mm) equilibrated with 5% acetonitrile and 0.5% formic acid. Elution was performed through isochratic flow with the same solvent system. Triketide lactones were observed at 247 nm and by ion count.

Crystallization

Purified triketide lactones were dissolved in EtOAc:hexanes = 5:95 at 40 °C and evaporated at room temperature over 3 h.

Reagents and equipment

KAPA HiFi DNA polymerase was from KAPA Biosystems. Restriction enzymes and the NEBuilder HiFi DNA Assembly Cloning Kit used for Gibson assembly reactions were from New England Biolabs. SLiCE extract was obtained from *E. coli* DH5α cells. Oligonucleotides were from Sigma-Aldrich. Luria-Bertani (LB) Miller Broth, potassium phosphate, sodium chloride, and HEPES were from Fisher Scientific. Kanamycin sulfate was from VWR. Isopropyl-β-D-thiogalactopyranoside (IPTG) was from Carbosynth. Ni-NTA affinity resin and tris(2-carboxyethyl)phosphine hydrochloride (TCEP-HCl) were from Thermo Fisher Scientific. Magnesium chloride was from MACRON. Magnesium sulfate, succinic acid, adenosine triphosphate (ATP), and glycine were from Sigma-Aldrich. Coenzyme A (CoA) was from Oriental Yeast Co., Ltd. Sodium malonate was from VWR. Amicon Ultra-4 centrifugal filters for protein concentration were from Millipore. Ethyl acetate (EtOAc), acetonitrile, methanol, chloroform, and hexane were from Fisher Scientific. CDCl₃ was from Cambridge Isotope Laboratories. SiliaFlash F60 was from SiliCycle. High-resolution mass spectral (HRMS) analyses were performed on a 6230 TOF LC /MS (Agilent Technologies). ¹H and ¹³C NMR spectra were collected on an Agilent 400-MR.

Bacterial strains

E. coli DH5 α and BL21 Star (DE3)pLysS were used for plasmid construction and protein expression (MatB and GDH), respectively. *E.coli* K207-3 was used for the expression of synthase polypeptides as well as the *in vivo* production of polyketides.⁵

Table S1. Expression plasmid construction. Primers, templates, and cloning methods used to obtain fragments and assemble expression plasmids. The underlined sequence indicates homology sequences. The construction of pET28-His₁₀ has been described².

Plasmid	Method	Piece	Template	Primers
pTM1 (pET28b- His ₁₀	3-piece Gibson	half of pET28b+ KS ^Q 1+AT1+ACP1	pET28b-His ₁₀ - PikAI/VemG (ref. 2)	TAAAGCTCATCAG <u>CGTGGTCGTGAAGCGATTCA</u> <u>CGGCCTCACACGCCCGAGCA</u> AGCTCTTCGATCTGTA
vector) For updated 1-poly- peptide Pik127		KS1+AT2+KR2+ ACP2+KS2	S. venezuelae ATCC 15439 genomic DNA	<u>CCCGTACAGATCGAAGAGCT</u> TGCTCGGGCGTGTG <u>GGCGGCTCGACGGCAGGGG</u> AAGCAGCATCCGGCGCCT GCTCCA
		AT7+ACP7+TE7 + half of pET28b	рТМ5	AGCAGGCGCCGGATGCTGCT GCC CAGGCAGACATCTGTGAATCGCTTCACGACCACG

pTM2	2-piece	KS1+AT2+KR2+	pTM1	CCCG <u>TACAGATCGAAGAGCTTGCTCGGGCGTGTG</u>
(pCDF-1b vector)	9103011	ACIZ		TCCCAGTCCGTCGGGGCCGG ACTCGCTGCGGA
For 1 st				
peptide of updated		pCDF-1b+ KS ^Q 1+AT1+ACP1 +CDD6	pTM4	AGTTCCTCGGTGACGAGGAGCCGGCCCCGACGGACTG GGAGGGGC
2-poly- peptide Pik127				cggcct <u>cacacgcccgagcaagctcttcgatctgta</u>
For 1 st poly- peptide of traditional 2-poly-				
peptide Pik127				

pTM3 (pET28b- His ₁₀ vector)	2-piece Gibson	KS2+AT7+ACP7 +TE7	рТМ1	GCCGGGCCGACCGTCGGCAG GCCGATGAGCT TGGTGGTGGTGGTGCTCGAG TGCCCTCGAT
For 2 nd poly- peptide of updated 2-poly- peptide Pik127		pET28b-His ₁₀ + NDD6	рТМ5	GCATCGAGGGGGGGGGGGGAAGCTCGAGCACCACCACCA CCACCAC GCGACGATCGCGATCGGATCCTGCCGACGGTCGGCCC GGCGA

Plasmid Method Piece Template Primers

pTM4	4-piece	KS ^Q 1+AT1+ACP1	S. venezuelae	ACCACCATCACGTGGGTACCTCTTCAGCCGGAATTACC
l	Gibson		ATCC 15439	AGGACCGGT
(pCDF-1b			gonomia DNA	
(pcbr-ib			genomic DNA	
vector)				<u>CGCCCGAGCAAGCTCTTCGA</u> TCTGTA
1				
For 1 st		KS1	S. venezuelae	TCGAAGAGCTTGCTCGGGCGTGTG
polv-			ATCC 15439	
nentide of			genomic DNA	CCCCCCACACAACCACCCCCCCCCTCTTCCA
updated			genomic DNA	
		AT6+KR6+ACP6	S. venezuelae	GGTGGTTGTCGACTCCCCGGCCGTCGAGCCG
PIKI0/		+CDD6	ATCC 15439	
			gonomia DNA	Стательно солодование в селодование с сососос
			genomic DNA	GITICITIACCAGACICGAGICAGGIGITACGGGGGGCC
				GAGAGCCAT
		KpnI/XhoI-	pCDF-1b	
		pCDF-1b		

pTM5	2-piece	NDD6+KS6+AT7	S. venezuelae	CTTTAAGAAGGAGATATACCATGACGAGTTCCAACGAA
	SLiCE	+ACP7+TE7	ATCC 15439	CAGTTGGTGGAC
(pET28b-			genomic DNA	
His ₁₀				TGGTGGTGGTGGTGCTCGAGCTTGCCCGCCCCCCGAT
vector)				GCCCTCGAT
		NcoI/XhoI-	pET28b-His ₁₀	
For 2 nd		digested		
poly-		pET28b-His ₁₀		
peptide of				
updated				
Pik167				
For 2 nd				
poly-				
peptide of				
traditional				
2-poly-				
peptide				
Pik127				
For 2 nd				
poly-				
peptide of				
traditional				
Pik167				

Plasmid Method Piece Template Primers

pTM6 (pET28b- His ₁₀ vector)	3-piece Gibson	KS ^Q 1+AT1+ACP1 +KS1+AT2+KR2 +ACP2	S. venezuelae ATCC 15439 genomic DNA	TGGTGCCGCGCGGCAGCCATATGTCTTCAGCCGGAATT ACCAGGACCGGT CCGACGATCGCCATGGGCTCGTCGTCGGCATCGGTGCC GGCGC
For traditional 1-poly- peptide Pik127		KS6+AT7+ACP7 +TE7	S. venezuelae ATCC 15439 genomic DNA	CCGGCACCGATGCCGACGACGAGCCCATGGCGATCGTC GGCATGAGCT <u>TGGTGGTGGTGGTGGTGCTCGAG</u> CTTGCCCGCCCCCCGAT GCCCT
		pET28b-His ₁₀	pET28b-His ₁₀	<u>GCATCGAGGGGGGGGGGGGAAG</u> CTCGAGCACCACCAC CACCACCATCAC <u>CTGGTAATTCCGGCTGAAGAC</u> ATATGGCTGCCGCGCGG CACCAGG

pTM7 (pCDF-1b vector)	3-piece Gibson	KS ⁰ 1+AT1+ACP1	S. venezuelae ATCC 15439 genomic DNA	ACCACCATCACGTGGGTACCTCTTCAGCCGGAATTACC AGGACCGGT <u>CCCACGATCGCCACCGGCTC</u> GTCGACGGCACCGGCCGC
For 1 st poly- peptide of traditional Pik167		KS5+AT6+KR6+ ACP6+CDD6	S. venezuelae ATCC 15439 genomic DNA	CGGCGGCCGGTGCCGTCGAC GGCATG GTTTCTTTACCAGACTCGAG TCAGGTGTTACGGGGGCC GAGAGCCAT
		pCDF-1b	pCDF-1b	TCGAGGGGGGGGGGGGAAGTGACCTAGGCTGCTGCCACCG CTGAG CTGGTAATTCCGGCTGAAGAGGGTACCCACGTGATGGTG GTGGTGA

Table S2. Sequences of engineered PKSs. Red, orange, blue, purple, and gray letters indicate modules 1, 2, 5, 6, and 7 of the pikromycin PKS, respectively (colored as in Figure 1). Black letters indicate residues encoded by the vectors. Bold green indicates deviations from the published sequence.

Updated 1-polypeptide Pik127, on pTM1 MGSSHHHHHHHHHSSGLVPRGSHMSSAGITRTGARTPVTGRGAAAWDTGEVRVRRGLPPAGPDHAEHSFSRAPTG DVRAELIRGEMSTVSKSESEEFVSVSNDAGSAHGTAEPVAVVGISCRVPGARDPREFWELLAAGGQAVTDVPADRW NAGDFYDPDRSAPGRSNSRWGGFIEDVDRFDAAFFGISPREAAEMDPQQRLALELGWEALERAGIDPSSLTGTRTG VFAGAIWDDYATLKHRQGGAAITPHTVTGLHRGIIANRLSYTLGLRGPSMVVDSGQSSSLVAVHLACESLRRGESE LALAGGVSLNLVPDSIIGASKFGGLSPDGRAYTFDARANGYVRGEGGGFVVLKRLSRAVADGDPVLAVIRGSAVNN GGAAQGMTTPDAQAQEAVLREAHERAGTAPADVRYVELHGTGTPVGDPIEAAALGAALGTGRPAGQPLLVGSVKTN IGHLEGAAGIAGLIKAVLAVRGRALPASLNYETPNPAIPFEELNLRVNTEYLPWEPEHDGQRMVVGVSSFGMGGTN AHVVLEEAPGVVEGASVVESTVGGSAVGGGVVPWVVSAKSAAALDAQIERLAAFASRDRTDGVDAGAVDAGAVDAG AVARVLAGGRAQFEHRAVVVGSGPDDLAAALAAPEGLVRGVASGVGRVAFVFPGQGTQWAGMGAELLDSSAVFAAA MAECEAALSPYVDWSLEAVVRQAPGAPTLERVDVVQPVTFAVMVSLARVWQHHGVTPQAVVGHSQGEIAAAYVAGA LSLDDAARVVTLRSKSIAAHLAGKGGMLSLALSEDAVLERLAGFDGLSVAAVNGPTATVVSGDPVQIEELARACEA DGVRARVIPVDYASHSRQVEIIESELAEVLAGLSPQAPRVPFFSTLEGAWITEPVLDGGYWYRNLRHRVGFAPAVE ${\tt TLATDEGFTHFVEVSAHPVLTMALPGTVTGLATLRRDNGGQDRLVASLAEAWANGLAVDWSPLLPSATGHHSDLPT$ YAFQTERHWLGEIEALAPAGEPAVQPAVLRTEAAEPAELDRDEQLRVILDKVRAQTAQVLGYATGGQIEVDRTFRE AGCTSLTGVDLRNRINAAFGVRMAPSMIFDFPTPEALAEOLLLVVHGEAAANPAGAEPAPVAAAGAVDEPVAIVGM ACRLPGGVASPEDLWRLVAGGGDAISEFPQDRGWDVEGLYHPDPEHPGTSYVRQGGFIENVAGFDAAFFGISPREA LAMDPQQRLLLETSWEAVEDAGIDPTSLRGRQVGVFTGAMTHEYGPSLRDGGEGLDGYLLTGNTASVMSGRVSYTL GLEGPALTVDTACSSSLVALHLAVQALRKGEVDMALAGGVAVMPTPGMFVEFSRQRGLAGDGRSKAFAASADGTSW SEGVGVLLVERLSDARRNGHQVLAVVRGSA**V**NQDGASNGLTAPNGPSQQRVIRRALADARLTTSDVDVVEAHGTGT RLGDPIEAQALIATYGQGRDDEQPLRLGSLKSNIGHTQAAAGVSGVIKMVQAMRHGLLPKTLHVDEPSDQIDWSAG **AVELLTEAVDWPEKQDGGLRRAAVSSFGISGTNAHVVLEEAPVVV**EGASVVEPSVGGSAVGGGVTPWVVSAKSAAA LDAQIERLAAFASRDRTDDADAGAVDAGAVAHVLADGRAQFEHRAVALGAGADDLVQALADPDGLIRGTASGVGRV AFVFPGQGTQWAGMGAELLDSSAVFAAAMAECEAALSPYVDWSLEAVVRQAPGAPTLERVDVVQPVTFAVMVSLAR VWQHHGVTPQAVVGHSQGEIAAAYVAGALPLDDAARVVTLRSKSIAAHLAGKGGMLSLALNEDAVLERLSDFDGLS VAAVNGPTATVVSGDPVQIEELAQACKADGFRARIIPVDYASHSRQVEIIESELAQVLAGLSPQAPRVPFFSTLEG TWITEPVLDGTYWYRNLRHRVGFAPAIETLAVDEGFTHFVEVSAHPVLTMTLPETVTGLGTLRREQGGQERLVTSL AEAWVNGLPVAWTSLLPATASRPGLPTYAFQAERYWLENTPAALATGDDWRYRIDWKRLPAAEGSERTGLSGRWLA VTPEDHSAQAAAVLTALVDAGAKVEVLTAGADDDREALAARLTALTTGDGFTGVVSLLDGLVPQVAWVQALGDAGI KAPLWSVTQGAVSVGRLDTPADPDRAMLWGLGRVVALEHPERWAGLVDLPAQPDAAALAHLVTALSGATGEDQIAI RTTGLHARRLARAPLHGRRPTRDWQPHGTVLITGGTGALGSHAARWMAHHGAEHLLLVSRSGEQAPGATQLTAELT ASGARVTIAACDVADPHAMRTLLDAIPAETPLTAVVHTAGALDDGIVDTLTAEQVRRAHRAKAVGASVLDELTRDL DLDAFVLFSSVSSTLGIPGOGNYAPHNAYLDALAARRRATGRSAVSVAWGPWDGGGMAAGDGVAERLRNHGVPGMD PELALAALESALGRDETAITVADIDWDRFYLAYSSGRPQPLVEELPEVRRIIDARDSATSGQGGSSAQGANPLAER LAAAAPGERTEILLGLVRAQAAAVLRMRSPEDVAADRAFKDIGFDSLAGVELRNRLTRATGLQLPATLVFDHPTPL ALVSLLRSEFLGDEETADARRSAALPATVGAGAGAGAGTDADDDPIAIVAMSCRYPGDIRSPEDLWRMLSEGGEGI TPFPTDRGWDLDGLYDADPDALGRAYVREGGFLHDAAEFDAEFFGVSPREALAMDPQQRMLLTTSWEAFERAGIEP ASLRGSSTGVFIGLSYQDYAARVPNAPRGVEGYLLTGSTPSVASGRIAYTFGLEGPATTVDTACSSSLTALHLAVR ALRSGECTMALAGGVAMMATPHMFVEFSRORALAPDGRSKAFSADADGFGAAEGVGLLLVERLSDARRNGHPVLAV VRGTAVNODGASNGLTAPNGPSOORVIROALADARLAPGDIDAVETHGTGTSLGDPIEAOGLOATYGKERPAERPL AIGSVKSNIGHTQAAAGAAGIIKMVLAMRHGTLPKTLHADEPSPHVDWANSGLALVTEPIDWPAGTGPRRAAVSSF GISGTNAHVVLEQAPDAASPAVEPPAGGGVVPWPVSAKTSAALDAQIGQLAAYAEDRTDVDPAVAARALVDSRTAM EHRAVAVGDSREALRDALRMPEGLVRGTVTDPGRVAFVFPGQGTQWAGMGAELLDSSPEFAAAMAECETALSPYVD WSLEAVVRQAPSAPTLDRVDVVQPVTFAVMVSLAKVWQHHGITPEAVIGHSQGEIAAAYVAGALTLDDAARVVTLR SKSIAAHLAGKGGMISLALSEEATRQRIENLHGLSIAAVNGPTATVVSGDPTQIQELAQACEADGIRARIIPVDYA SHSAHVETIENELADVLAGLSPQTPQVPFFSTLEGTWITEPALDGGYWYRNLRHRVGFAPAVETLATDEGFTHFIE VSAHPVLTMTLPDKVTGLATLRREDGGQHRLTTSLAEAWANGLALDWASLLPATGALSPAVPDLPTYAFQHRSYWI SPAGPGEAPAHTASGREAVAETGLAWGPGAEDLDEEGRRSAVLAMVMRQAASVLRCDSPEEVPVDRPLREIGFDSL TAVDFRNRVNRLTGLQLPPTVVFEHPTPVALAERISDELAERNWAVAEPSDHEQAEEEKAAAPAGARSGADTGAGA GMFRALFROAVEDDRYGEFLDVLAEASAFRPOFASPEACSERLDPVLLAGGPTDRAEGRAVLVGCTGTAANGGPHE FLRLSTSFQEERDFLAVPLPGYGTGTGTGTGTGTLLPADLDTALDAQARAILRAAGDAPVVLLGHSGGALLAHELAFRL ERAHGAPPAGIVLVDPYPPGHQEPIEVWSRQLGEGLFAGELEPMSDARLLAMGRYARFLAGPRPGRSSAPVLLVRA SEPLGDWOEERGDWRAHWDLPHTVADVPGDHFTMMRDHAPAVAEAVLSWLDAIEGIEGAGKLEHHHHHHHHHH

1st polypeptide of updated 2-polypeptide Pik127 and 1st polypeptide of traditional 2-polypeptide Pik127, on pTM2

MGSSHHHHHHHHHSSGLVPRGSHMSSAGITRTGARTPVTGRGAAAWDTGEVRVRRGLPPAGPDHAEHSFSRAPTG DVRAELIRGEMSTVSKSESEEFVSVSNDAGSAHGTAEPVAVVGISCRVPGARDPREFWELLAAGGQAVTDVPADRW NAGDFYDPDRSAPGRSNSRWGGFIEDVDRFDAAFFGISPREAAEMDPQQRLALELGWEALERAGIDPSSLTGTRTG VFAGAIWDDYATLKHRQGGAAITPHTVTGLHRGIIANRLSYTLGLRGPSMVVDSGQSSSLVAVHLACESLRRGESE LALAGGVSLNLVPDSIIGASKFGGLSPDGRAYTFDARANGYVRGEGGGFVVLKRLSRAVADGDPVLAVIRGSAVNN ${\tt GGAAQGMTTPDAQAQEAVLREAHERAGTAPADVRYVELHGTGTPVGDPIEAAALGAALGTGRPAGQPLLVGSVKTN}$ IGHLEGAAGIAGLIKAVLAVRGRALPASLNYETPNPAIPFEELNLRVNTEYLPWEPEHDGORMVVGVSSFGMGGTN AHVVLEEAPG**VVE**GASVVESTVGGSAVGGGVVPWVVSAKSAAALDAQIERLAAFASRDRTDGVDAGAVDAG AVARVLAGGRAQFEHRAVVVGSGPDDLAAALAAPEGLVRGVASGVGRVAFVFPGQGTQWAGMGAELLDSSAVFAAA MAECEAALSPYVDWSLEAVVRQAPGAPTLERVDVVQPVTFAVMVSLARVWQHHGVTPQAVVGHSQGEIAAAYVAGA LSLDDAARVVTLRSKSIAAHLAGKGGMLSLALSEDAVLERLAGFDGLSVAAVNGPTATVVSGDPVQIEELARACEA DGVRARVIPVDYASHSRQVEIIESELAEVLAGLSPQAPRVPFFSTLEGAWITEPVLDGGYWYRNLRHRVGFAPAVE ${\tt TLATDEGFTHFVEVSAHPVLTMALPGTVTGLATLRRDNGGQDRLVASLAEAWANGLAVDWSPLLPSATGHHSDLPT$ YAFOTERHWLGEIEALAPAGEPAVOPAVLRTEAAEPAELDRDEOLRVILDKVRAOTAOVLGYATGGOIEVDRTFRE AGCTSLTGVDLRNRINAAFGVRMAPSMIFDFPTPEALAEQLLLVVHGEAAANPAGAEPAPVAAAGAVDEPVAIVGM ACRLPGGVASPEDLWRLVAGGGDAISEFPQDRGWDVEGLYHPDPEHPGTSYVRQGGFIENVAGFDAAFFGISPREA LAMDPOORLLLETSWEAVEDAGIDPTSLRGROVGVFTGAMTHEYGPSLRDGGEGLDGYLLTGNTASVMSGRVSYTL GLEGPALTVDTACSSSLVALHLAVQALRKGEVDMALAGGVAVMPTPGMFVEFSRQRGLAGDGRSKAFAASADGTSW SEGVGVLLVERLSDARRNGHQVLAVVRGSA**V**NQDGASNGLTAPNGPSQQRVIRRALADARLTTSDVDVVEAHGTGT RLGDPIEAQALIATYGQGRDDEQPLRLGSLKSNIGHTQAAAGVSGVIKMVQAMRHGLLPKTLHVDEPSDQIDWSAG **AVELLTEAVDWPEKQDGGLRRAAVSSFGISGTNAHVVLEEAPVVV**EGASVVEPSVGGSAVGGGVTPWVVSAKSAAA LDAQIERLAAFASRDRTDDADAGAVDAGAVAHVLADGRAQFEHRAVALGAGADDLVQALADPDGLIRGTASGVGRVAFVFPGQGTQWAGMGAELLDSSAVFAAAMAECEAALSPYVDWSLEAVVRQAPGAPTLERVDVVQPVTFAVMVSLAR VWQHHGVTPQAVVGHSQGEIAAAYVAGALPLDDAARVVTLRSKSIAAHLAGKGGMLSLALNEDAVLERLSDFDGLS VAAVNGPTATVVSGDPVQIEELAQACKADGFRARIIPVDYASHSRQVEIIESELAQVLAGLSPQAPRVPFFSTLEG TWITEPVLDGTYWYRNLRHRVGFAPAIETLAVDEGFTHFVEVSAHPVLTMTLPETVTGLGTLRREQGGQERLVTSL AEAWVNGLPVAWTSLLPATASRPGLPTYAFQAERYWLENTPAALATGDDWRYRIDWKRLPAAEGSERTGLSGRWLA VTPEDHSAQAAAVLTALVDAGAKVEVLTAGADDDREALAARLTALTTGDGFTGVVSLLDGLVPQVAWVQALGDAGI KAPLWSVTQGAVSVGRLDTPADPDRAMLWGLGRVVALEHPERWAGLVDLPAQPDAAALAHLVTALSGATGEDQIAI RTTGLHARRLARAPLHGRRPTRDWQPHGTVLITGGTGALGSHAARWMAHHGAEHLLLVSRSGEQAPGATQLTAELT ASGARVTIAACDVADPHAMRTLLDAIPAETPLTAVVHTAGALDDGIVDTLTAEOVRRAHRAKAVGASVLDELTRDL DLDAFVLFSSVSSTLGIPGQGNYAPHNAYLDALAARRRATGRSAVSVAWGPWDGGGMAAGDGVAERLRNHGVPGMD PELALAALESALGRDETAITVADIDWDRFYLAYSSGRPQPLVEELPEVRRIIDARDSATSGQGGSSAQGANPLAER LAAAAPGERTEILLGLVRAQAAAVLRMRSPEDVAADRAFKDIGFDSLAGVELRNRLTRATGLQLPATLVFDHPTPL ALVSLLRSEFLGDEEPAPTDWEGRVRRALAELPLDRLRDAGVLDTVLRLTGIEPEPGSGGSDGGAADPGAEPEASI DDLDAEALIRMALGPRNT

2nd polypeptide of updated 2-polypeptide Pik127, on pTM3

MTSSNEOLVDALRASLKENEELRKESRRRADRRODPIAIVAMSCRYPGDIRSPEDLWRMLSEGGEGITPFPTDRGW DLDGLYDADPDALGRAYVREGGFLHDAAEFDAEFFGVSPREALAMDPOORMLLTTSWEAFERAGIEPASLRGSSTG VFIGLSYQDYAARVPNAPRGVEGYLLTGSTPSVASGRIAYTFGLEGPATTVDTACSSSLTALHLAVRALRSGECTM ALAGGVAMMATPHMFVEFSRQRALAPDGRSKAFSADADGFGAAEGVGLLLVERLSDARRNGHPVLAVVRGTAVNQD GASNGLTAPNGPSOORVIROALADARLAPGDIDAVETHGTGTSLGDPIEAOGLOATYGKERPAERPLAIGSVKSNI GHTQAAAGAAGIIKMVLAMRHGTLPKTLHADEPSPHVDWANSGLALVTEPIDWPAGTGPRRAAVSSFGISGTNAHV VLEQAPDAASPAVEPPAGGGVVPWPVSAKTSAALDAQIGQLAAYAEDRTDVDPAVAARALVDSRTAMEHRAVAVGD SREALRDALRMPEGLVRGTVTDPGRVAFVFPGQGTQWAGMGAELLDSSPEFAAAMAECETALSPYVDWSLEAVVRQ APSAPTLDRVDVVQPVTFAVMVSLAKVWQHHGITPEAVIGHSQGEIAAAYVAGALTLDDAARVVTLRSKSIAAHLA GKGGMISLALSEEATRQRIENLHGLSIAAVNGPTATVVSGDPTQIQELAQACEADGIRARIIPVDYASHSAHVETI ENELADVLAGLSPQTPQVPFFSTLEGTWITEPALDGGYWYRNLRHRVGFAPAVETLATDEGFTHFIEVSAHPVLTM TLPDKVTGLATLRREDGGQHRLTTSLAEAWANGLALDWASLLPATGALSPAVPDLPTYAFQHRSYWISPAGPGEAP AHTASGREAVAETGLAWGPGAEDLDEEGRRSAVLAMVMRQAASVLRCDSPEEVPVDRPLREIGFDSLTAVDFRNRV NRLTGLQLPPTVVFEHPTPVALAERISDELAERNWAVAEPSDHEQAEEEKAAAPAGARSGADTGAGAGMFRALFRQ AVEDDRYGEFLDVLAEASAFRPQFASPEACSERLDPVLLAGGPTDRAEGRAVLVGCTGTAANGGPHEFLRLSTSFQ EERDFLAVPLPGYGTGTGTGTGTALLPADLDTALDAOARAILRAAGDAPVVLLGHSGGALLAHELAFRLERAHGAPPA

GIVLVDPYPPGHQEPIEVWSRQLGEGLFAGELEPMSDARLLAMGRYARFLAGPRPGRSSAPVLLVRASEPLGDWQE ERGDWRAHWDLPHTVADVPGDHFTMMRDHAPAVAEAVLSWLDAIEGIEGAGK**LEHHHHHHHHH**

1st polypeptide of updated 2-polypeptide Pik167, on pTM4

MAHHHHHHVGTSSAGITRTGARTPVTGRGAAAWDTGEVRVRRGLPPAGPDHAEHSFSRAPTGDVRAELIRGEMSTV SKSESEEFVSVSNDAGSAHGTAEPVAVVGISCRVPGARDPREFWELLAAGGQAVTDVPADRWNAGDFYDPDRSAPG RSNSRWGGFIEDVDRFDAAFFGISPREAAEMDPQQRLALELGWEALERAGIDPSSLTGTRTGVFAGAIWDDYATLK HRQGGAAITPHTVTGLHRGIIANRLSYTLGLRGPSMVVDSGQSSSLVAVHLACESLRRGESELALAGGVSLNLVPD SIIGASKFGGLSPDGRAYTFDARANGYVRGEGGGFVVLKRLSRAVADGDPVLAVIRGSAVNNGGAAQGMTTPDAQA QEAVLREAHERAGTAPADVRYVELHGTGTPVGDPIEAAALGAALGTGRPAGQPLLVGSVKTNIGHLEGAAGIAGLI KAVLAVRGRALPASLNYETPNPAIPFEELNLRVNTEYLPWEPEHDGQRMVVGVSSFGMGGTNAHVVLEEAPG**VVE**G ${\tt ASVVESTVGGSAVGGGVVPWVVSAKSAALDAQIERLAAFASRDRTDGVDAGAVDAGAVDAGAVARVLAGGRAQFE}$ HRAVVVGSGPDDLAAALAAPEGLVRGVASGVGRVAFVFPGOGTOWAGMGAELLDSSAVFAAAMAECEAALSPYVDW SLEAVVROAPGAPTLERVDVVOPVTFAVMVSLARVWOHHGVTPOAVVGHSOGEIAAAYVAGALSLDDAARVVTLRS KSIAAHLAGKGGMLSLALSEDAVLERLAGFDGLSVAAVNGPTATVVSGDPVOIEELARACEADGVRARVIPVDYAS HSRQVEIIESELAEVLAGLSPQAPRVPFFSTLEGAWITEPVLDGGYWYRNLRHRVGFAPAVETLATDEGFTHFVEV SAHPVLTMALPGTVTGLATLRRDNGGODRLVASLAEAWANGLAVDWSPLLPSATGHHSDLPTYAFOTERHWLGEIE ALAPAGEPAVOPAVLRTEAAEPAELDRDEOLRVILDKVRAOTAOVLGYATGGOIEVDRTFREAGCTSLTGVDLRNR INAAFGVRMAPSMIFDFPTPEALAEQLLLVVHGEAAANPAGAEPAPVAAAGAVDEPVAIVGMACRLPGGVASPEDL WRLVAGGGDAISEFPODRGWDVEGLYHPDPEHPGTSYVROGGFIENVAGFDAAFFGISPREALAMDPOORLLLETS WEAVEDAGIDPTSLRGRQVGVFTGAMTHEYGPSLRDGGEGLDGYLLTGNTASVMSGRVSYTLGLEGPALTVDTACS SSLVALHLAVOALRKGEVDMALAGGVAVMPTPGMFVEFSRORGLAGDGRSKAFAASADGTSWSEGVGVLLVERLSD ARRNGHQVLAVVRGSA**V**NQDGASNGLTAPNGPSQQRVIRRALADARLTTSDVDVVEAHGTGTRLGDPIEAQALIAT YGQGRDDEQPLRLGSLKSNIGHTQAAAGVSGVIKMVQAMRHGLLPKTLHVDEPSDQIDWSAGAVELLTEAVDWPEK **QDGGLRRAAVSSFGISGTNAHVVLEEAPVVV**DSPAVEPPAGGGVVPWPVSAKTPAALDAQIGQLAAYADGRTDVDP ${\tt AVAARALVDSRTAMEHRAVAVGDSREALRDALRMPEGLVRGTSSDVGRVAFVFPGQGTQWAGMGAELLDSSPEFAA}$ SMAECETALSRYVDWSLEAVVRQEPGAPTLDRVDVVQPVTFAVMVSLAKVWQHHGITPQAVVGHSQGEIAAAYVAG ALTLDDAARVVTLRSKSIAAHLAGKGGMISLALDEAAVLKRLSDFDGLSVAAVNGPTATVVSGDPTQIEELARTCE ADGVRARIIPVDYASHSRQVEIIEKELAEVLAGLAPQAPHVPFFSTLEGTWITEPVLDGTYWYRNLRHRVGFAPAV ETLAVDGFTHFIEVSAHPVLTMTLPETVTGLGTLRREQGGQERLVTSLAEAWANGLTIDWAPILPTATGHHPELPT YAFQTERFWLQSSAPTSAADDWRYRVEWKPLTASGQADLSGRWIVAVGSEPEAELLGALKAAGAEVDVLEAGADDD REALAARLTALTTGDGFTGVVSLLDDLVPOVAWVOALGDAGIKAPLWSVTOGAVSVGRLDTPADPDRAMLWGLGRV VALEHPERWAGLVDLPAQPDAAALAHLVTALSGATGEDQIAIRTTGLHARRLARAPLHGRRPTRDWQPHGTVLITG GTGALGSHAARWMAHHGAEHLLLVSRSGEQAPGATQLTAELTASGARVTIAACDVADPHAMRTLLDAIPAETPLTA VVHTAGAPGGDPLDVTGPEDIARILGAKTSGAEVLDDLLRGTPLDAFVLYSSNAGVWGSGSOGVYAAANAHLDALA ARRRARGETATSVAWGLWAGDGMGRGADDAYWQRRGIRPMSPDRALDELAKALSHDETFVAVADVDWERFAPAFTV SRPSLLLDGVPEARQALAAPVGAPAPGDAAVAPTGQSSALAAITALPEPERRPALLTLVRTHAAAVLGHSSPDRVA PGRAFTELGFDSLTAVQLRNQLSTVVGNRLPATTVFDHPTPAALAAHLHEAYLAPAEPAPTDWEGRVRRALAELPL DRLRDAGVLDTVLRLTGIEPEPGSGGSDGGAADPGAEPEASIDDLDAEALIRMALGPRNT 2nd polypeptide of updated Pik167, 2nd polypeptide of updated 2-polypeptide Pik127, and 2nd

2nd polypeptide of updated Pik167, 2nd polypeptide of updated 2-polypeptide Pik127, a polypeptide of traditional 2-polypeptide Pik127, on pTM5

MTSSNEOLVDALRASLKENEELRKESRRRADRROEPMAIVGMSCRFAGGIRSPEDLWDAVAAGKDLVSEVPEERGW DIDSLYDPVPGRKGTTYVRNAAFLDDAAGFDAAFFGISPREALAMDPQQRQLLEASWEVFERAGIDPASVRGTDVG VYVGCGYQDYAPDIRVAPEGTGGYVVTGNSSAVASGRIAYSLGLEGPAVTVDTACSSSLVALHLALKGLRNGDCST ALVGGVAVLATPGAFIEFSSQQAMAADGRTKGFASAADGLAWGEGVAVLLLERLSDARRKGHRVLAVVRGSAINQD GASNGLTAPHGPSQQHLIRQALADARLTSSDVDVVEGHGTGTRLGDPIEAQALLATYGQGRAPGQPLRLGTLKSNI GHTQAASGVAGVIKMVQALRHGVLPKTLHVDEPTDQVDWSAGSVELLTEAVDWPERPGRLRRAGVSAFGVGGTNAH VVLEEAPAVEESPAVEPPAGGGVVPWPVSAKTSAALDAQIGQLAAYAEDRTDVDPAVAARALVDSRTAMEHRAVAV GDSREALRDALRMPEGLVRGTVTDPGRVAFVFPGQGTQWAGMGAELLDSSPEFAAAMAECETALSPYVDWSLEAVV RQAPSAPTLDRVDVVQPVTFAVMVSLAKVWQHHGITPEAVIGHSQGEIAAAYVAGALTLDDAARVVTLRSKSIAAH LAGKGGMISLALSEEATRQRIENLHGLSIAAVNGPTATVVSGDPTQIQELAQACEADGIRARIIPVDYASHSAHVE TIENELADVLAGLSPQTPQVPFFSTLEGTWITEPALDGGYWYRNLRHRVGFAPAVETLATDEGFTHFIEVSAHPVL TMTLPDKVTGLATLRREDGGQHRLTTSLAEAWANGLALDWASLLPATGALSPAVPDLPTYAFQHRSYWISPAGPGE APAHTASGREAVAETGLAWGPGAEDLDEEGRRSAVLAMVMRQAASVLRCDSPEEVPVDRPLREIGFDSLTAVDFRN RVNRLTGLOLPPTVVFEHPTPVALAERISDELAERNWAVAEPSDHEOAEEEKAAAPAGARSGADTGAGAGMFRALF ROAVEDDRYGEFLDVLAEASAFRPOFASPEACSERLDPVLLAGGPTDRAEGRAVLVGCTGTAANGGPHEFLRLSTS FQEERDFLAVPLPGYGTGTGTGTGTLLPADLDTALDAQARAILRAAGDAPVVLLGHSGGALLAHELAFRLERAHGAP

PAGIVLVDPYPPGHQEPIEVWSRQLGEGLFAGELEPMSDARLLAMGRYARFLAGPRPGRSSAPVLLVRASEPLGDW QEERGDWRAHWDLPHTVADVPGDHFTMMRDHAPAVAEAVLSWLDAIEGIEGAGK**LEHHHHHHHHH**

Traditional 1-polypeptide Pik127, on pTM6

MGSSHHHHHHHHHHSSGLVPRGSHMSSAGITRTGARTPVTGRGAAAWDTGEVRVRRGLPPAGPDHAEHSFSRAPTG DVRAELIRGEMSTVSKSESEEFVSVSNDAGSAHGTAEPVAVVGISCRVPGARDPREFWELLAAGGQAVTDVPADRW NAGDFYDPDRSAPGRSNSRWGGFIEDVDRFDAAFFGISPREAAEMDPQQRLALELGWEALERAGIDPSSLTGTRTG VFAGAIWDDYATLKHRQGGAAITPHTVTGLHRGIIANRLSYTLGLRGPSMVVDSGQSSSLVAVHLACESLRRGESE LALAGGVSLNLVPDSIIGASKFGGLSPDGRAYTFDARANGYVRGEGGGFVVLKRLSRAVADGDPVLAVIRGSAVNN GGAAQGMTTPDAQAQEAVLREAHERAGTAPADVRYVELHGTGTPVGDPIEAAALGAALGTGRPAGQPLLVGSVKTN IGHLEGAAGIAGLIKAVLAVRGRALPASLNYETPNPAIPFEELNLRVNTEYLPWEPEHDGORMVVGVSSFGMGGTN AHVVLEEAPG**VVE**GASVVESTVGGSAVGGGVVPWVVSAKSAAALDAQIERLAAFASRDRTDGVDAGAVDAG AVARVLAGGRAOFEHRAVVVGSGPDDLAAALAAPEGLVRGVASGVGRVAFVFPGOGTOWAGMGAELLDSSAVFAAA MAECEAALSPYVDWSLEAVVROAPGAPTLERVDVVOPVTFAVMVSLARVWOHHGVTPOAVVGHSOGEIAAAYVAGA LSLDDAARVVTLRSKSIAAHLAGKGGMLSLALSEDAVLERLAGFDGLSVAAVNGPTATVVSGDPVOIEELARACEA DGVRARVIPVDYASHSRQVEIIESELAEVLAGLSPQAPRVPFFSTLEGAWITEPVLDGGYWYRNLRHRVGFAPAVE ${\tt TLATDEGFTHFVEVSAHPVLTMALPGTVTGLATLRRDNGGQDRLVASLAEAWANGLAVDWSPLLPSATGHHSDLPT$ YAFOTERHWLGEIEALAPAGEPAVOPAVLRTEAAEPAELDRDEOLRVILDKVRAOTAOVLGYATGGOIEVDRTFRE AGCTSLTGVDLRNRINAAFGVRMAPSMIFDFPTPEALAEQLLLVVHGEAAANPAGAEPAPVAAAGAVDEPVAIVGM ACRLPGGVASPEDLWRLVAGGGDAISEFPODRGWDVEGLYHPDPEHPGTSYVROGGFIENVAGFDAAFFGISPREA LAMDPOORLLLETSWEAVEDAGIDPTSLRGROVGVFTGAMTHEYGPSLRDGGEGLDGYLLTGNTASVMSGRVSYTL GLEGPALTVDTACSSSLVALHLAVQALRKGEVDMALAGGVAVMPTPGMFVEFSRQRGLAGDGRSKAFAASADGTSW SEGVGVLLVERLSDARRNGHQVLAVVRGSA**V**NQDGASNGLTAPNGPSQQRVIRRALADARLTTSDVDVVEAHGTGT RLGDPIEAQALIATYGQGRDDEQPLRLGSLKSNIGHTQAAAGVSGVIKMVQAMRHGLLPKTLHVDEPSDQIDWSAG **AVELLTEAVDWPEKQDGGLRRAAVSSFGISGTNAHVVLEEAPVVV**EGASVVEPSVGGSAVGGGVTPWVVSAKSAAA LDAQIERLAAFASRDRTDDADAGAVDAGAVAHVLADGRAQFEHRAVALGAGADDLVQALADPDGLIRGTASGVGRVAFVFPGQGTQWAGMGAELLDSSAVFAAAMAECEAALSPYVDWSLEAVVRQAPGAPTLERVDVVQPVTFAVMVSLAR VWOHHGVTPQAVVGHSQGEIAAAYVAGALPLDDAARVVTLRSKSIAAHLAGKGGMLSLALNEDAVLERLSDFDGLS VAAVNGPTATVVSGDPVQIEELAQACKADGFRARIIPVDYASHSRQVEIIESELAQVLAGLSPQAPRVPFFSTLEG TWITEPVLDGTYWYRNLRHRVGFAPAIETLAVDEGFTHFVEVSAHPVLTMTLPETVTGLGTLRREQGGQERLVTSL AEAWVNGLPVAWTSLLPATASRPGLPTYAFQAERYWLENTPAALATGDDWRYRIDWKRLPAAEGSERTGLSGRWLA VTPEDHSAOAAAVLTALVDAGAKVEVLTAGADDDREALAARLTALTTGDGFTGVVSLLDGLVPOVAWVOALGDAGI KAPLWSVTQGAVSVGRLDTPADPDRAMLWGLGRVVALEHPERWAGLVDLPAQPDAAALAHLVTALSGATGEDQIAI RTTGLHARRLARAPLHGRRPTRDWQPHGTVLITGGTGALGSHAARWMAHHGAEHLLLVSRSGEQAPGATQLTAELT ASGARVTIAACDVADPHAMRTLLDAIPAETPLTAVVHTAGALDDGIVDTLTAEOVRRAHRAKAVGASVLDELTRDL DLDAFVLFSSVSSTLGIPGQGNYAPHNAYLDALAARRRATGRSAVSVAWGPWDGGGMAAGDGVAERLRNHGVPGMD PELALAALESALGRDETAITVADIDWDRFYLAYSSGRPOPLVEELPEVRRIIDARDSATSGOGGSSAQGANPLAER LAAAAPGERTEILLGLVRAQAAAVLRMRSPEDVAADRAFKDIGFDSLAGVELRNRLTRATGLQLPATLVFDHPTPL ALVSLLRSEFLGDEETADARRSAALPATVGAGAGAGAGAGTDADDEPMAIVGMSCRFAGGIRSPEDLWDAVAAGKDLV SEVPEERGWDIDSLYDPVPGRKGTTYVRNAAFLDDAAGFDAAFFGISPREALAMDPQQRQLLEASWEVFERAGIDP ${\tt ASVRGTDVGVYVGCGYQDYAPDIRVAPEGTGGYVVTGNSSAVASGRIAYSLGLEGPAVTVDTACSSSLVALHLALK}$ GLRNGDCSTALVGGVAVLATPGAFIEFSSQQAMAADGRTKGFASAADGLAWGEGVAVLLLERLSDARRKGHRVLAV VRGSAINQDGASNGLTAPHGPSQQHLIRQALADARLTSSDVDVVEGHGTGTRLGDPIEAQALLATYGQGRAPGQPL RLGTLKSNIGHTQAASGVAGVIKMVQALRHGVLPKTLHVDEPTDQVDWSAGSVELLTEAVDWPERPGRLRRAGVSA FGVGGTNAHVVLEEAPAVEESPAVEPPAGGGVVPWPVSAKTSAALDAQIGQLAAYAEDRTDVDPAVAARALVDSRT AMEHRAVAVGDSREALRDALRMPEGLVRGTVTDPGRVAFVFPGQGTQWAGMGAELLDSSPEFAAAMAECETALSPY VDWSLEAVVRQAPSAPTLDRVDVVQPVTFAVMVSLAKVWQHHGITPEAVIGHSQGEIAAAYVAGALTLDDAARVVT LRSKSIAAHLAGKGGMISLALSEEATRORIENLHGLSIAAVNGPTATVVSGDPTQIQELAQACEADGIRARIIPVD YASHSAHVETIENELADVLAGLSPOTPOVPFFSTLEGTWITEPALDGGYWYRNLRHRVGFAPAVETLATDEGFTHF IEVSAHPVLTMTLPDKVTGLATLRREDGGOHRLTTSLAEAWANGLALDWASLLPATGALSPAVPDLPTYAFOHRSY WISPAGPGEAPAHTASGREAVAETGLAWGPGAEDLDEEGRRSAVLAMVMRQAASVLRCDSPEEVPVDRPLREIGFD SLTAVDFRNRVNRLTGLOLPPTVVFEHPTPVALAERISDELAERNWAVAEPSDHEOAEEEKAAAPAGARSGADTGA GAGMFRALFRQAVEDDRYGEFLDVLAEASAFRPQFASPEACSERLDPVLLAGGPTDRAEGRAVLVGCTGTAANGGP HEFLRLSTSFQEERDFLAVPLPGYGTGTGTGTGTALLPADLDTALDAQARAILRAAGDAPVVLLGHSGGALLAHELAF RLERAHGAPPAGIVLVDPYPPGHQEPIEVWSRQLGEGLFAGELEPMSDARLLAMGRYARFLAGPRPGRSSAPVLLV RASEPLGDWOEERGDWRAHWDLPHTVADVPGDHFTMMRDHAPAVAEAVLSWLDAIEGIEGAGKLEHHHHHHHHHH

1 st polypeptide of traditional 2-polypeptide Pik167, on pTM7
MAHHHHHHVGTSSAGITRTGARTPVTGRGAAAWDTGEVRVRRGLPPAGPDHAEHSFSRAPTGDVRAELIRGEMSTV
SKSESEEFVSVSNDAGSAHGTAEPVAVVGISCRVPGARDPREFWELLAAGGQAVTDVPADRWNAGDFYDPDRSAPG
RSNSRWGGFIEDVDRFDAAFFGISPREAAEMDPQQRLALELGWEALERAGIDPSSLTGTRTGVFAGAIWDDYATLK
HRQGGAAITPHTVTGLHRGIIANRLSYTLGLRGPSMVVDSGQSSSLVAVHLACESLRRGESELALAGGVSLNLVPD
$\verb SIIGASKFGGLSPDGRAYTFDARANGYVRGEGGGFVVLKRLSRAVADGDPVLAVIRGSAVNNGGAAQGMTTPDAQA $
QEAVLREAHERAGTAPADVRYVELHGTGTPVGDPIEAAALGAALGTGRPAGQPLLVGSVKTNIGHLEGAAGIAGLI
KAVLAVRGRALPASLNYETPNPAIPFEELNLRVNTEYLPWEPEHDGQRMVVGVSSFGMGGTNAHVVLEEAPG VVE G
$\verb ASVVESTVGGSAVGGGVVPWVVSAKSAAALDAQIERLAAFASRDRTDGVDAGAVDAGAVDAGAVARVLAGGRAQFE $
${\tt HRAVVVGSGPDDLAAALAAPEGLVRGVASGVGRVAFVFPGQGTQWAGMGAELLDSSAVFAAAMAECEAALSPYVDW}$
SLEAVVRQAPGAPTLERVDVVQPVTFAVMVSLARVWQHHGVTPQAVVGHSQGEIAAAYVAGALSLDDAARVVTLRS
$\tt KSIAAHLAGKGGMLSLALSEDAVLERLAGFDGLSVAAVNGPTATVVSGDPVQIEELARACEADGVRARVIPVDYAS$
${\tt HSRQVEIIESELAEVLAGLSPQAPRVPFFSTLEGAWITEPVLDGGYWYRNLRHRVGFAPAVETLATDEGFTHFVEV}$
SAHPVLTMALPGTVTGLATLRRDNGGQDRLVASLAEAWANGLAVDWSPLLPSATGHHSDLPTYAFQTERHWLGEIE
ALAPAGEPAVQPAVLRTEAAEPAELDRDEQLRVILDKVRAQTAQVLGYATGGQIEVDRTFREAGCTSLTGVDLRNR
INAAFGVRMAPSMIFDFPTPEALAEQLLLVVHGEAAANPAGAEPAPVAAAGAVDEPVAIVGMACRLPGGVASPEDL
$\verb"WQLVAGDGDAISEFPQDRGWDVEGLYDPDPDASGRTYCRSGGFLHDAGEFDADFFGISPREALAMDPQQRLSLTTA"$
WEAIESAGIDPTALKGSGLGVFVGGWHTGYTSGQTTAVQSPELEGHLVSGAALGFLSGRIAYVLGTDGPALTVDTA
$\tt CSSSLVALHLAVQALRKGECDMALAGGVTVMPNADLFVQFSRQRGLAADGRSKAFATSADGFGPAEGAGVLLVERL$
${\tt SDARRNGHRIL} AVVRGSAVNQDGASNGLTAPHGPSQQRVIRRALADARLAPGDVDVVEAHGTGTRLGDPIEAQALI}$
${\tt ATYGQEKSSEQPLRLGALKSNIGHTQAAAGVAGVIKMVQAMRHGLLPKTLHVDEPSDQIDWSAGTVELLTEAVDWP}$
EKQDGGLRRAAVSSFGISGTNAHVVLEEAPAVEDSPAVEPPAGGGVVPWPVSAKTPAALDAQIGQLAAYADGRTDV
${\tt DPAVAARALVDSRTAMEHRAVAVGDSREALRDALRMPEGLVRGTSSDVGRVAFVFPGQGTQWAGMGAELLDSSPEF}$
AASMAECETALSRYVDWSLEAVVRQEPGAPTLDRVDVVQPVTFAVMVSLAKVWQHHGITPQAVVGHSQGEIAAAYV
${\tt A}{\tt G}{\tt A}{\tt L}{\tt D}{\tt D}{\tt A}{\tt R}{\tt V}{\tt V}{\tt T}{\tt L}{\tt R}{\tt K}{\tt S}{\tt I}{\tt A}{\tt H}{\tt L}{\tt A}{\tt G}{\tt K}{\tt G}{\tt M}{\tt I}{\tt S}{\tt L}{\tt A}{\tt L}{\tt D}{\tt E}{\tt A}{\tt R}{\tt L}{\tt A}{\tt R}{\tt R}{\tt A}{\tt R}{\tt R}{\tt R}{\tt R}{\tt R}{\tt R}{\tt R}{\tt R$
CEADGVRARIIPVDYASHSRQVEIIEKELAEVLAGLAPQAPHVPFFSTLEGTWITEPVLDGTYWYRNLRHRVGFAP
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
${\tt PTYAFQTERFWLQSSAPTSAADDWRYRVEWKPLTASGQADLSGRWIVAVGSEPEAELLGALKAAGAEVDVLEAGAD}$
${\tt DDREALAARLTALTTGDGFTGVVSLLDDLVPQVAWVQALGDAGIKAPLWSVTQGAVSVGRLDTPADPDRAMLWGLG}$
${\tt RVVALEHPERWAGLVDLPAQPDAAALAHLVTALSGATGEDQIAIRTTGLHARRLARAPLHGRRPTRDWQPHGTVLI}$
${\tt TGGTGALGSHAARWMAHHGAEHLLLVSRSGEQAPGATQLTAELTASGARVTIAACDVADPHAMRTLLDAIPAETPL}$
${\tt TAVVHTAGAPGGDPLDVTGPEDIARILGAKTSGAEVLDDLLRGTPLDAFVLYSSNAGVWGSGSQGVYAAANAHLDA}$
${\tt LAARRRARGETATSVAWGLWAGDGMGRGADDAYWQRRGIRPMSPDRALDELAKALSHDETFVAVADVDWERFAPAF}$
${\tt TVSRPSLLLDGVPEARQALAAPVGAPAPGDAAVAPTGQSSALAAITALPEPERRPALLTLVRTHAAAVLGHSSPDR}$
$\verbVAPGRAFTELGFDSLTAVQLRNQLSTVVGNRLPATTVFDHPTPAALAAHLHEAYLAPAEPAPTDWEGRVRRALAEL$
PLDRLRDAGVLDTVLRLTGIEPEPGSGGSDGGAADPGAEPEASIDDLDAEALIRMALGPRNT

Lane 1: updated 1-polypeptide Pik127, 412 kDa Lane 2: 1st polypeptide of updated Pik167, 275 kDa Lane 3: 2nd polypeptide of updated Pik167, 143 kDa Lane 4 - MatB, 53 kDa Lane 5 - GDH, 30 kDa. First and last lanes: PageRuler Plus Prestained Protein Ladder

Figure S2. Optimization of *in vivo* triketide production. The optimization was performed by monitoring triketide production of **2** by Pik167 using peak areas from HPLC chromatograms (λ =247 nm). a) Time course of polyketide production, b) Comparison of HEPES and potassium phosphate buffers, c) Comparison of milk filter disk (Ken AG) and aluminum foil used to cover culture flasks, d) Comparison of culture volumes in a 2.8-L, non-baffled Fernbach flask, e) Comparison of growth temperatures after IPTG induction.

Figure S3. Triketide lactone calibration curve. Several concentrations of 1 dissolved in water (10 μ L) were analyzed by HPLC (conditions in Methods section).

¹H NMR (400 MHz, CDCl₃) δ = 4.65 (m, 1H), 3.61 (q, J=7 Hz, 1H), 2.62 (dq, J=7 Hz, J=3.2 Hz, 1H), 1.85 (m, 1H), 1.65 (m, 1H), 1.36 (d, J=7 Hz, 3H), 1.12 (d, J=7 Hz, 3H), 1.07 (t, J=7 Hz, 3H) (only signals from keto form reported, although signals from enol form are present). HRMS: calcd. for C₉H₁₄O₃ [M+Na]⁺, *m/z* 193.0835; found, *m/z* 193.0842. $\lambda_{max} = 247.4$ nm. All characterization matched that from 1 in a previous study.⁶

Figure S5. ¹H-¹³C-HSQC of 1 in CDCl₃.

Figure S6. ¹H NMR of 2 in CDCl₃.

¹H NMR (400 MHz, CDCl₃) δ = 4.67 (m, 1H), 3.61 (q, J=7 Hz, 1H), 2.62 (dq, J=7 Hz, J=3.2 Hz, 1H), 1.85 (m, 1H), 1.65 (m, 1H), 1.36 (d, J=7 Hz, 3H), 1.12 (d, J=7 Hz, 3H), 1.07 (t, J=7 Hz, 3H) (only signals from keto form reported, although signals from enol form are present). HRMS: calcd. for C₉H₁₄O₃ [M+Na]⁺, *m/z* 193.0835; found, *m/z* 193.0840. $\lambda_{max} = 247.4$ nm. All characterization (except for chiral chromatography and crystallography) matched that of 1 from a previous study.⁶

Figure S7. ¹H-¹³C-HSQC of 2 in CDCl₃.

Figure S8. Analysis of shunt products. Ethyl acetate extracts from culture broths were analyzed by LC/MS. [Agilent 6120 system equipped with a ZORBAX Eclipse Plus C₁₈ ($2.1 \times 50 \text{ mm}$) with a flow rate of 0.8 mL min⁻¹ (solvent A, water with 0.1% formic acid; solvent B, acetonitrile with 0.1% formic acid. 5-100% B for 12 min)]. The pyrone standard is from an *in vitro* reaction of updated Pik167 without the NADPH regeneration system. The diketide standard, β -D-hydroxy- α -L-methylpentanoic acid, came from a previous study⁴. a) No pyrone was detected from any synthase (left). Diketide products [likely β -D-hydroxy- α -L-methylpentanoic acid for Pik127 synthases and β -L-hydroxy- α -D-methylpentanoic acid for Pik167 synthase)] were observed from each synthase (mass spectra of the 1.3 min peak shown for each synthase). b) A comparison of the peak areas from the EIC of the diketide shunt product and the EIC of the triketide product shows that synthases designed with the updated module boundary form a smaller proportion of diketide shunt products.

Figure S9. Triketide lactone crystals. After silica gel chromagraphy, a fraction containing **1** was crystallized in a glass vial.

REFERENCES

- 1. K. Motohashi, *Methods Mol Biol*, 2017, **1498**, 349-357.
- 2. T. Miyazawa, M. Hirsch, Z. Zhang and A. T. Keatinge-Clay, *Nat Commun*, 2020, **11**, 80.
- 3. A. J. Hughes and A. Keatinge-Clay, *Chem Biol*, 2011, **18**, 165-176.
- 4. S. K. Piasecki, C. A. Taylor, J. F. Detelich, J. N. Liu, J. T. Zheng, A. Komsoukaniants, D. R. Siegel and A. T. Keatinge-Clay, *Chemistry & Biology*, 2011, **18**, 1331-1340.
- 5. S. Murli, J. Kennedy, L. C. Dayem, J. R. Carney and J. T. Kealey, *J Ind Microbiol Biotechnol*, 2003, **30**, 500-509.
- 6. A. D. Harper, C. B. Bailey, A. D. Edwards, J. F. Detelich and A. T. Keatinge-Clay, *Chembiochem*, 2012, **13**, 2200-2203.