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Supplementary figure S1. Fractional inhibitory coefficient (FIC) analysis of 20 random simulations 

of an experiment combining two compounds with differing Hill slopes (1 and 4). Plot 1 is 

presented in Figure 1C. 



 
Supplementary figure S2. Fractional inhibitory coefficient (FIC) analysis of 20 random simulations 

of an experiment combining two compounds with different maximum efficacies (ymax) but the 

same Hill slopes. Every plot shows strong synergy (FIC < 0.5). Because the maximum efficacy of 

Drug B is 0.6, the FIC is undefined for the 90% and 99% levels.  

 

  



 
Supplementary figure S3. (a) A drug combination in which Drug A is the same as Drug B (left) 

produces different predictions under Loewe additivity and Bliss independence (center). This 

results in a false landscape of Bliss synergy and antagonism (right). (b) Similar to (A) but using a 

combination of fully efficacious drugs (maximum effect = 1.0) with differing Hill slopes.  



Supplementary table S1. Name, abbreviation, target, mechanistic class, and inclusion status of 

the 38 compounds in the Merck OncoPolyPharmacology Screen (OPPS). 

Drug Abbreviation Target Mechanistic class Status 

5-FU 5FU Thymidylate synthase Anti-folate Included 

Methotrexate MTX Dihydrofolate reductase Anti-folate Included 

Cyclophosphamide CYC DNA damage DNA Damage Excluded 

Mitomycine MIT DNA damage DNA Damage Included 

Temozolomide TMZ DNA alkylator DNA damage Excluded 

AZD1775 

(Adavosertib) ADA Wee1 

Cell cycle 

checkpoint Included 

MK-8776 CHK1 CHEK1 

Cell cycle 

checkpoint Included 

Erlotinib ERL 

Epidermal growth factor 

receptor (EGFR) EGFR Included 

Lapatinib LAP EGFR/ERBB2 EGFR Included 

Zolinza 

(Vorinostat) VOR pan-HDAC Singleton Included 

Paclitaxel PAC Microtubule Microtubule Included 

Vinblastine VNB Microtubule Microtubule Included 

Vinorelbine VNR Microtubule Microtubule Included 

Dasatinib DAS BCR/Abl Other kinase Included 

Dinaciclib DIN Cyclin-dependent kinases Other kinase Included 

MK-5108 AKA AURKA Other kinase Included 

PD325901 MEK MEK Other kinase Included 

Sorafenib SOR Multiple kinase targets Other kinase Included 

Sunitinib SUN Multiple kinase targets Other kinase Included 

ABT-888 (Veliparib) VEL PARP PARP Excluded 

MK-4827 

(Niraparib) NIR PARP PARP Included 

BEZ-235 

(Dactolisib) DAC PI3K/mTOR PI3K/AKT/mTOR Included 

MK-2206 AKT AKT PI3K/AKT/mTOR Included 

MK-8669 

(Ridaforolimus) RID mTor PI3K/AKT/mTOR Included 

Carboplatin CAR DNA damage Platinum Included 

Oxaliplatin OXA DNA damage Platinum Included 

Bortezomib BOR Proteosome Singleton Included 



Dexamethasone DEX Glucocorticoid receptor Singleton Excluded 

Geldanamycin GEL HSP90 Singleton Included 

Gemcitabine GEM Ribonucleotide reductase Singleton Included 

L778123 FTI 

Farnesyltransferase/ 

geranylgeranyltransferase Singleton Included 

Metformin MET Energy homeostasis Singleton Excluded 

MK-4541 ARM 

Selective androgen 

receptor modulator Singleton Excluded 

MRK-003 GSI Gamma-secretase Singleton Included 

Doxorubicin DOX Topoisomerase II Topoisomerase Included 

Etoposide ETO Topoisomerase II Topoisomerase Included 

SN-38 SN38 Topoisomerase I Topoisomerase Included 

Topotecan TOP Topoisomerase I Topoisomerase Included 

HDAC, histone deacetylase; HSP90, Heat shock protein 90; mTOR, mammalian target of 

rapamycin; PARP, poly ADP ribose polymerase; PI3K, phosphatidylinositol 3-kinase.  

   

https://en.wikipedia.org/wiki/Poly_ADP_ribose_polymerase


 

Simulation of biased FIC experiments 

The FIC experiments were simulated using much the same methods as those used to simulate 

combination index experiments in our previous paper [11]. For each simulated experiment, each 

drug was tested in dose–response at 15 concentrations in a two-fold dilution centered on 1 μM; 

the two drugs were then tested in combination in a checkerboard of dose pairs, with 10 different 

combinations of both drugs, also in a two-fold dilution with a maximum of 32 μM. Within a 

simulated experiment, all measurements were simulated in triplicate. All experiments were 

simulated with Gaussian noise with a standard deviation of 7.5%. In addition, all concentrations 

were simulated as varying around the intended target concentration in a log normal distribution, 

such that the standard deviation of the natural logarithm of the simulated concentration was 

0.953 (the natural logarithm of 1.1). All compounds had doses of median effect equal to 1 μM, 

initial effects of 0%, and maximal effects of 100%, unless otherwise indicated. 

Additive surfaces were calculated using the iterative implicit method described by Greco et 

al. [36]. Briefly for each dose pair, the effect level was initially set at 50%; the right hand side of 

the equation for Loewe additivity was then calculated, and the effect level was increased or 

decreased depending on whether the expression evaluated to less than or greater than 1. By 

exponentially decreasing the size of the step, the effect could be numerically estimated with 

arbitrary precision. 

 

Estimation of additive and Bliss independent surfaces 

Loewe additive and Bliss surfaces were calculated directly from the dose response behaviors of 

the individual drugs. Bliss independent surfaces are particularly straightforward to calculate, as 

they are defined by the equation: 

𝑓𝑎 = 𝑓𝑎,𝐴 + 𝑓𝑎,𝐵 − 𝑓𝑎,𝐴𝑓𝑎,𝐵 

where fa is the fraction affected by the combination, fa,A is the fraction affected by the dose of A 

alone, and fa,B is the fraction affected by the dose of B alone. For example, in Figure 1D, when 

both concentrations are high, the one drug reaches an effect of 70% and the other reaches 35%, 

so the fractions affected by the two drugs are 0.7 and 0.35. The fraction affected by the 

combination (according to Bliss independence) is therefore 

0.7 + 0.35 − 0.7 ∗ 0.35 = 1.05 − 0.245 = 0.815 

So, Bliss expects the combination to produce 81.5% effect. 

Estimating additivity is less straightforward, but still entirely manageable. Loewe additive 

surfaces can be calculated as described in the previous section. When the maximal effect of one 

drug is smaller than that of the other, we use an extension of Loewe additivity called asymptotic 

additivity, defined in Twarog et al. [11]. Asymptotic additivity mirrors Loewe additivity at smaller 

doses of the partially active drug, but asymptotically approaches a partial effect at high doses, 



behaving as though the dose of the fully active drug is being added to a partial dose (that which 

would produce the maximal effect of the partially active drug). 

 

Estimation of extended interaction metrics 

In our previous paper, three interaction metrics were fit or estimated for all combinations in the 

Merck Oncopolypharmacology screen: the BRAID interaction parameter kappa, the combination 

index, and a simple form of Bliss volume (not included in this analysis, as the updated version of 

Bliss volume is more robust and more informative). In addition, similarities were calculated using 

variation in potency (using the dose–response behavior of the analyzed compounds) and the 

BRAID therapeutic window measure, the index of achievable efficacy (IAE). For details of these 

fits, see Twarog et al. [11]. For the analysis in this paper, eleven additional interaction metrics 

were fit or estimated from the Merck dataset. To begin, we estimated two versions each of 

volumetric deviations from the highest-single-agent (HSA), Bliss independent, Loewe additive, 

and ZIP surfaces. The volumetric deviation calculations were based on the work of Vlot et al. [18], 

with adjustments to allow for more robust estimation across the full dataset, and to examine the 

impact of the volumetric weighting scheme adopted by the authors. In addition, all combinations 

were fit using the universal response surface approach (URSA) model of Greco et al. [36] with 

one interaction parameter (alpha), and with the MuSyC of Meyer et al. [38] with three interaction 

parameters (alpha1, alpha2, and beta). 

For the eight volumetric deviations, the difference between the measured surface and the 

non-interacting surface was estimated for all 16 non-zero dose pairs tested. In the unweighted 

case, the average of these 16 differences was taken as the overall deviation from non-interaction; 

in the weighted case, dose pairs with the highest or lowest concentrations of one drug were given 

70% weight, and those with the highest or lowest concentrations of both drugs were given 49% 

weight, and the weighted average of the differences was taken as the measured deviation from 

non-interaction. In the following sections we describe how each of the four difference surfaces 

was estimated. 

Note: unless otherwise specified, equations were fit to data using the R non-linear 

optimization function ‘optim’. 

 

HSA and Bliss volumes 

HSA and Bliss are two of the simplest metrics, which probably explains their continued popularity. 

For the OPPS, for each drug pair and cell line, the individual dose response measurements were 

fit to a Hill model (the four parameter log-logistic equation). These dose response fits were used 

to estimate the effect of each drug alone at the four concentrations tested in combination (which 

were not reliably the same as those tested in dose response). The HSA response model predicts 

that the combined effect is the larger of the two effects; and because the measurements in the 

dataset were viabilities, this meant that the HSA prediction was simply the minimum of the two 



individual predicted effects. Bliss independence, on the other hand, predicts that cells surviving 

the combination are a probabilistic conjunction of surviving each individual dose, so the Bliss 

independent prediction for a given dose pair was a product of the two individual predicted 

effects. Differences for each dose pair were calculated by subtracting the HSA or Bliss prediction 

from the average measured viability for that pair. 

 

Loewe additive volumes 

Estimation of a Loewe additive surface is a non-trivial problem, as Loewe additivity does not 

stipulate a closed-form equation for the resulting non-interacting surface. Instead, the Loewe 

additive surface is defined by the implicit equation 

𝐷𝐴

𝐼𝐷𝑋,𝐴
+

𝐷𝐵

𝐼𝐷𝑋,𝐵
= 1 

where IDX,A is the dose of drug A alone which produces the combined effect of dose DA of drug A 

and dose DB of drug B, and ID X,B is the corresponding dose for drug B. 

When both individual drugs are assumed to follow a Hill (log-logistic) model, this expands to: 
𝐷𝐴

𝐼𝐷𝑀,𝐴 (
𝐸 − 𝐸0

𝐸𝑓 − 𝐸)

1
𝑛𝑎

+
𝐷𝐵

𝐼𝐷𝑀,𝐵 (
𝐸 − 𝐸0

𝐸𝑓 − 𝐸)

1
𝑛𝑏

= 1 

where IDM,A and na are the dose of median effect (often called the EC50) and the Hill slope, 

respectively, of drug A, IDM,B and nb are the corresponding parameters for drug B, E0 and Ef are 

the minimal and maximal effects produced by the drugs, and E is the combined effect of the two 

doses in question. Evaluating a Loewe additive surface therefore reduces to solving this equation 

for E, given any dose pair DA and DB. Fortunately, by subtracting 1 from each side, solving the 

equation is converted to a problem of finding the root of the expression on the right (minus 1). 

This can be done quite efficiently in R using the ‘uniroot’ function. 

However, one additional wrinkle remains. The Loewe additive surface is only well defined if 

the minimal and maximal effects of both individual dose–response curves are the same. When 

both Hill models are fit independently, there is no guarantee that this is the case; indeed, the 

parameters often differ greatly. To address this, for a given drug pair in a particular cell lines, we 

fit both dose–response behaviors with a single six-parameter model, with two parameters for 

the potency and Hill slope of drug A, two parameters for the potency and Hill slope of drug B, 

and a shared minimal and maximal effect. Once this fit was performed, the parameters were 

added to the equation above, and for each dose pair, the equation was solved for E to estimate 

the Loewe additive prediction. The deviation for each dose pair was then estimated by 

subtracting the Loewe additive prediction from the average viability for that dose pair. 

 

ZIP volumes 



The ZIP method does not in fact posit a new reference surface: the ZIP reference surface is simply 

a Bliss independent surface with two dose–response behaviors determined by a Hill (log-logistic) 

model. The difference between ZIP and the traditional Bliss volume method is in what ZIP 

compares to the reference surface: rather than calculating the difference between the raw 

measurements and the reference surface, ZIP first performs a particular ‘smoothing’ approach, 

and then compares the smoothed measurement to the reference surface.  

The constraints determined by the ZIP method are difficult to determine; the original 

definition assumed that both dose–response curves share a common minimal and maximal 

effect, but the description of the method explicitly cited the need for a shared maximal effect as 

a limitation of Loewe additivity, so the authors probably intended the ZIP method to be used with 

differing maximal effects. However, the smoothing approach yields discontinuous results if the 

minimal effects of the two dose–response curves differ. Fitting dose–response curves with a 

shared minimal effect but diverging maximal effects was slightly beyond the scope of this 

analysis, so we instead constrained the minimal effects of both individual response curves to be 

1, and fit the remaining three parameters of a four-parameter Hill model for both drugs. Then, 

for each combined level of drug A, we fit the dose–response behavior of drug B (combined with 

that level of drug A) to a four-parameter Hill model with the minimal effect fixed at the predicted 

viability with that level of drug A alone. Correspondingly, for each level of drug B, the dose 

response behavior of drug A (combined with that level of drug B) was fit, similarly constrained. 

The average of these two grids of partial dose–response curves constituted the smoothed surface 

of the ZIP method. The ZIP deviation for each dose pair was then calculated by subtracting the 

Bliss independent prediction at that dose pair (using the constrained Hill models fit above) from 

the ZIP-smoothed surface at that dose pair. 

 

Estimation of URSA alpha 

The URSA model is based directly on the definition of Loewe additivity. Like the Loewe additive 

surface, it is defined by an implicit equation, with an additional interaction term: 
𝐷𝐴
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When alpha is greater than zero, the potency of combined doses is increased, and the 

combination exhibits synergy; when alpha is less than zero, the combination exhibits antagonism. 

In their paper, Greco et al. [36] describe pseudo-code for evaluating an URSA surface with a given 

set of parameters; our implementation of the URSA model was based directly on this code. The 

resulting model function was used to fit the response surface parameters to each drug pair and 

cell line, using the R ‘optim’ nonlinear optimization function. 

 

Estimation of MuSyC interaction parameters 



The MuSyC model of combined actions is defined in terms of transitions between four 

compartments; the predicted effect is a weighted average of the effect levels observed in these 

four compartments, with the weights determined by the equilibrium occupancies of those 

compartments as determined by the transition rates between them. Those transition rates are 

governed by the doses of drugs and six (or eight) of the ten (or twelve) overall response surface 

parameters. (The full MuSyC model allows for two interaction parameters, gamma1 and 

gamma2, which affect the Hill slope of the individual drugs, but the effects are small, and they 

are hence generally assumed to be 1 in MuSyC analyses. We do the same here.) |The original 

paper defined the model only in differential equation terms, but it is in fact possible to solve the 

relevant system of equations for an explicit expression of the MuSyC response surface: 

𝐸 =
𝐸0𝑓0 + 𝐸1𝑓1 + 𝐸2𝑓2 + 𝐸3𝑓3

𝑓0 + 𝑓1 + 𝑓2 + 𝑓3
 

where the Ei are the observed effect levels of the four compartments, and the fi are expressions 

for the relative occupancy of the four compartments. They are defined as: 

𝑓0 = 2 + (
𝛼2𝐷𝐴

𝐼𝐷𝑀,𝐴
)

𝑛𝑎
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As a note of interest, when the interaction parameters are set to 1, this expression simplifies 

considerably to: 

𝐸 =
𝐸0 + 𝐸1 (
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and when the Ei are correctly chosen, this expression is equivalent to the Bliss independent 

combination of Hill model dose–response curves, so MuSyC is indeed an extension of Bliss 

independence. 

Armed with these expressions, fitting MuSyC was simply a matter of fitting the (10-

parameter) model to a given set of combined action data. This was done using the R function 

‘optim’. 

 

Clustering analysis of interaction metrics 



To evaluate the informativeness of the estimated metrics, we chose to compare the organization 

of the tested compounds according to each metric (represented by a hierarchical clustering) with 

a known classification of that compound’s mechanism of action. To achieve these clusterings, we 

first needed to determine the similarity between two compounds according to a given metric. 

The most sensible approach to this seemed to be to take that metric (e.g. URSA alpha), estimate 

it for a given compound in all available contexts (i.e. partner drugs and cell lines), and then do 

the same for a second compound. The similarity between those two compounds is then the 

similarity between the values of the interaction metrics across all contexts in which both 

compounds were evaluated. 

Because the interaction metrics in question measure deviations in either direction from non-

interaction, we chose to evaluate the similarity between two ‘interaction profiles’ using the 

cosine similarity metric, which captures the degree to which the signs and magnitudes of two 

vectors elements vary in the same way. However, in order to apply the cosine similarity, the 

metrics needed to be mapped into a space in which deviations lie in an approximately symmetric 

fashion on either side of 0. For the volumetric deviations and the MuSyC parameter beta, no 

transformation was necessary; however, for the combination index and the response surface 

parameters, transformations were needed to coerce values into the correct space. The six 

metrics were transformed as follows: 

𝜆𝐶𝐼 = ln 𝐶𝐼 

𝜆𝑈𝐴 = ln
√𝛼𝑈𝑅𝑆𝐴 + 1 + 1

2
 

𝜆𝐵𝐾 = ln
𝜅 + 2

2
 

𝜆𝑀𝐴1 = ln 𝛼1 

𝜆𝑀𝐴2 = ln 𝛼2 

These transformations might appear rather arbitrary, but they all occupy a roughly equivalent 

space: 

 λCI is the natural logarithm of the ratio between the EC50 of an equal ratio combination of 

two compounds with identical dose–response parameters and a given CI value and the 

expected EC50 of an additive combination of the same compounds. 

 λUA is the natural logarithm of the ratio between the expected EC50 of an equal ratio 

combination of an additive combination of two compounds with identical dose–response 

parameters and the EC50 of the same combination with the URSA interaction parameter 

αURSA. 

 λBK is the natural logarithm of the ratio between the expected EC50 of an equal ratio 

combination of an additive combination of two compounds with identical dose–response 

parameters and the EC50 of the same combination with the BRAID interaction parameter 

kappa. 



 λMA1 is the natural logarithm of the ratio between the EC50 of drug B alone and the EC50 of 

drug B in the presence of high levels of drug A in a MuSyC combination with parameter 

α1.  

 λMA2 is the natural logarithm of the ratio between the EC50 of drug A alone and the EC50 

of drug A in the presence of high levels of drug B in a MuSyC combination with parameter 

α2. 

In these transformed spaces, values are roughly symmetrically distributed around 0, and positive 

and negative deviations of equal magnitude have similar (if opposing) effects on the given 

models. 

Two additional values were evaluated using clustering: potency (the ratio of the highest 

concentration tested for a given compound and the EC50 of that compound in each cell-line) and 

the BRAID IAE (a measure of combined potency). As neither of these metrics represent a 

deviation from a given reference model, similarity between sets of potencies or sets of IAEs was 

measured using simple correlation. 

For the estimation of similarity and clustering, six of the 38 compounds tested in the OPPS 

were excluded: veliparib (ABT-888), cyclophosphamide, dexamethasone, metformin, MK-4541, 

and temozolomide. These compounds showed broadly low efficacy across the dataset, and 

because interaction values are highly unstable when one or more of the compounds exhibit little 

to no activity, including these six compounds significantly degraded the informativeness of the 

interaction metrics. 

With a suitably transformed value in hand for each of the 13 interaction metrics and two 

potency metrics, the cosine similarity between each pair of compounds interaction profile was 

estimated for all compound pairs. The resulting similarity matrices were then used to construct 

a hierarchical clustering of all 32 compounds. This clustering was then compared at each level of 

granularity with the known partition of compounds into mechanistic classes using the adjusted 

Rand index (ARI) (a zero-centered measure of agreement between two partitions). The mean ARI 

across all granularities was used as the measure of clustering accuracy for all metrics. 

 

Extension of BRAID and URSA to three compounds 

Both BRAID and URSA can be described by similarly structured implicit equations. In the case of 

URSA, this implicit equation is the definition of the model, as it cannot be algebraically solved for 

a closed from expression of the predicted effect. This equation is: 

1 =
𝐷𝐴
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where DA and DB are the doses of drugs A and B, respectively, IDM,A and IDM,B are the doses of 

median effect (also known as the EC50), na and nb are the Hill slopes, E0 and Ef are the effects 

observed in the presence of no drug and maximal levels of drug, respectively, and E is the 



predicted effect of both doses together. Note that URSA does not allow for differing maximal 

effects. 

In addition, although it is not usually expressed in this way, the definition of the BRAID 

response surface model is equivalent to the following implicit equation: 
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where E0 is the effect when no drug is present, Ef is the larger of the two maximal effects, EA is 

the predicted effect of the dose of drug A alone, EB is the predicted effect of the dose of drug B 

alone, E is the combined effect of both drugs, and n is the geometric mean of the two hill slopes. 

Both of these models introduce interaction to an otherwise ‘additive’ surface through an 

interaction term that is a kind of product of the first two terms, with an interaction parameter as 

a coefficient. Viewed this way, it is easy to see how one might extend these models to a third 

drug. In the case of URSA, a natural extension would be: 

1 =
𝐷𝐴

𝐼𝐷𝑀,𝐴𝑅1/𝑛𝑎
+

𝐷𝐵

𝐼𝐷𝑀,𝐵𝑅1/𝑛𝑏
+

𝐷𝐶

𝐼𝐷𝑀,𝐴𝑅1/𝑛𝑐
+ 𝛼𝐴𝐵

𝐷𝐴

𝐼𝐷𝑀,𝐴𝑅1/2𝑛𝑎

𝐷𝐵

𝐼𝐷𝑀,𝐵𝑅1/2𝑛𝑏

+ 𝛼𝐴𝐶

𝐷𝐴

𝐼𝐷𝑀,𝐴𝑅1/2𝑛𝑎

𝐷𝐶

𝐼𝐷𝑀,𝐶𝑅1/2𝑛𝑐
+ 𝛼𝐵𝐶

𝐷𝐵

𝐼𝐷𝑀,𝐵𝑅1/2𝑛𝑏

𝐷𝐶

𝐼𝐷𝑀,𝐶𝑅1/2𝑛𝑐

+ 𝛼𝐴𝐵𝐶

𝐷𝐴

𝐼𝐷𝑀,𝐴𝑅1/3𝑛𝑎

𝐷𝐵

𝐼𝐷𝑀,𝐵𝑅1/3𝑛𝑏

𝐷𝐶

𝐼𝐷𝑀,𝐶𝑅1/3𝑛𝑐
 

where we have use R to represent the expression 
𝐸 − 𝐸0

𝐸𝐹 − 𝐸
 

to simplify the total equation.  

Similarly, the BRAID implicit equation can be extended thus: 

𝑅1/𝑛 = 𝑅𝐴
1/𝑛

+ 𝑅𝐵
1/𝑛

+ 𝑅𝐶
1/𝑛

+ 𝜅𝐴𝐵𝑅𝐴
1/2𝑛

𝑅𝐵
1/2𝑛

+ 𝜅𝐴𝐶𝑅𝐴
1/2𝑛

𝑅𝐶
1/2𝑛

+ 𝜅𝐵𝐶𝑅𝐵
1/2𝑛

𝑅𝐶
1/2𝑛

+ 𝜅𝐴𝐵𝐶𝑅𝐴
1/3𝑛

𝑅𝐵
1/3𝑛

𝑅𝐶
1/3𝑛

 

where we have defined RA, RB, and RC to represent the expressions: 
𝐸𝐴−𝐸0

𝐸𝑓−𝐸𝐴
,

𝐸𝐵−𝐸0

𝐸𝑓−𝐸𝐵
, and

𝐸𝐶−𝐸0

𝐸𝑓−𝐸𝐶
, respectively. 

It should be noted that in all of these cases, we are implicitly or explicitly solving for R (from 

which E, the predicted effect, can easily be calculated), so it is necessary to select our interaction 

parameter values such that R can be solved for all possible dose values. This is why, in the two-

drug BRAID model, kappa (κ) cannot go below –2, and why for any negative value of α, there are 

dose pairs for which the URSA surface is ill-defined. When extending to the four parameter three-

drug interaction, we have found it is best to constrain κ values to be greater than –1, as 

determining the precise combinations of κ values that are valid can be very difficult. 

 

Generating non-traditional BRAID surfaces 



The oppositional surface is generated by flipping the surface along the x-axis (in log-log space), 

which is achieved mathematically by taking the multiplicative inverse of the dose of drug B 

(relative to the dose of median effect). The dose of drug B always appears in the BRAID equation 

as a ratio of the dose of median effect raised to the power of the Hill slope, so this is equivalent 

to inverting the Hill slope wherever it appears. What was the maximal effect of drug B is now the 

effect when no drug is present; what was the effect when no drug is present is now the maximal 

effect of drug B. The role of the maximal effect of drug A (and maximal effect overall, as the 

creation of the oppositional surface assumes that it is drug B that produces a partial effect) is 

unchanged. The oppositional BRAID model can therefore be written: 

𝐸𝑂𝑝𝑝(𝐷𝐴, 𝐷𝐵) = 𝐸𝑓,𝐵 +
𝐸𝑓,𝐴 − 𝐸𝑓,𝐵

1 +  (�̃�𝐴

1/√𝑛𝑎𝑛𝑏 + �̃�𝐵

1/√𝑛𝑎𝑛𝑏 + 𝜅�̃�𝐴

1/2√𝑛𝑎𝑛𝑏�̃�𝐵

1/2√𝑛𝑎𝑛𝑏)
−√𝑛𝑎𝑛𝑏

 

 

�̃�𝐴 = (
𝐷𝐴

𝐼𝐷𝑀,𝐴
)

𝑛𝑎

 

�̃�𝐵 =

(
𝐸0 − 𝐸𝑓,𝐵

𝐸𝑓,𝐴 − 𝐸𝑓,𝐵
) (

𝐷𝐵

𝐼𝐷𝑀,𝐵
)

−𝑛𝑏

1 + (1 −
𝐸0 − 𝐸𝑓,𝐵

𝐸𝑓,𝐴 − 𝐸𝑓,𝐵
) (

𝐷𝐵

𝐼𝐷𝑀,𝐵
)

−𝑛𝑏
 

The protective BRAID surface involves very similar manipulations: inverting the Hill slope of 

drug A and rearranging the initial and maximal effects. This gives us:  

𝐸𝑃𝑟𝑜(𝐷𝐴, 𝐷𝐵) = 𝐸𝑓,𝐴 +
𝐸0 − 𝐸𝑓,𝐴

1 + (�̃�𝐴

1/√𝑛𝑎𝑛𝑏 + �̃�𝐵

1/√𝑛𝑎𝑛𝑏 + 𝜅�̃�𝐴

1/2√𝑛𝑎𝑛𝑏�̃�𝐵

1/2√𝑛𝑎𝑛𝑏)
−√𝑛𝑎𝑛𝑏

 

 

�̃�𝐴 = (
𝐷𝐴

𝐼𝐷𝑀,𝐴
)

−𝑛𝑎

 

�̃�𝐵 =

(
𝐸𝑓,𝐴𝐵 − 𝐸𝑓,𝐴

𝐸0 − 𝐸𝑓,𝐴
) (

𝐷𝐵

𝐼𝐷𝑀,𝐵
)

𝑛𝑏

1 + (1 −
𝐸𝑓,𝐴𝐵 − 𝐸𝑓,𝐴

𝐸0 − 𝐸𝑓,𝐴
) (

𝐷𝐵

𝐼𝐷𝑀,𝐵
)

𝑛𝑏
 

where Ef,AB is the attenuated maximal effect that high doses of drug B induce for high levels of 

drug A. 

Finally, inverting both Hill slopes and a third rearrangement of minimal and maximal effects 

produces the adjuvant BRAID surface:  

𝐸𝐴𝑑𝑗(𝐷𝐴, 𝐷𝐵) = 𝐸𝑓,𝐴𝐵 +
𝐸0 − 𝐸𝑓,𝐴𝐵

1 +  (�̃�𝐴

1/√𝑛𝑎𝑛𝑏 + �̃�𝐵

1/√𝑛𝑎𝑛𝑏 + 𝜅�̃�𝐴

1/2√𝑛𝑎𝑛𝑏�̃�𝐵

1/2√𝑛𝑎𝑛𝑏)
−√𝑛𝑎𝑛𝑏

 

 

�̃�𝐴 = (
𝐷𝐴

𝐼𝐷𝑀,𝐴
)

−𝑛𝑎

 



�̃�𝐵 =

(
𝐸𝑓,𝐴 − 𝐸𝑓,𝐴𝐵

𝐸0 − 𝐸𝑓,𝐴𝐵
) (

𝐷𝐵

𝐼𝐷𝑀,𝐵
)

−𝑛𝑏

1 + (1 −
𝐸𝑓,𝐴 − 𝐸𝑓,𝐴𝐵

𝐸0 − 𝐸𝑓,𝐴𝐵
) (

𝐷𝐵

𝐼𝐷𝑀,𝐵
)

−𝑛𝑏
 

where Ef,AB is the enhanced maximal effect produced by high doses of drug A combined with high 

doses of drug B. 

Each of these transformations can be fit quite easily using existing BRAID code in the 

‘braidrm’ package. For the oppositional surface, the concentrations of the second drug should be 

inverted (multiplicatively); for the protective surfaces, the concentrations of the first drug should 

be inverted; and for the adjuvant surface, both concentrations should be inverted. In addition, 

any defaults or constraints on the minimal and maximal effects must be appropriately rearranged 

to match the structure of the original BRAID equation. So, for the oppositional surface, the final 

four parameters will be ordered: 

(… , 𝐸𝑓,𝐵, 𝐸𝑓,𝐴𝐵, 𝐸0, 𝐸𝑓,𝐴) 

For the protective surface, they are ordered: 

(… , 𝐸𝑓,𝐴, 𝐸0, 𝐸𝑓,𝐴𝐵, 𝐸𝑓,𝐵) 

And for the adjuvant surface, they are ordered: 

(… , 𝐸𝑓,𝐴𝐵, 𝐸𝑓,𝐵, 𝐸𝑓,𝐴, 𝐸0). 




