Supplementary information for

A versatile genetic engineering toolkit for *E. coli* based on CRISPRprime editing

Yaojun Tong^{1,2,*}, Tue S. Jørgensen¹, Christopher M. Whitford¹, Tilmann Weber^{1,*}, Sang Yup Lee^{1,3,*}

¹The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.

²State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China.

³Department of Chemical and Biomolecular Engineering, BioProcess Engineering Research Center, BioInformatics Research Center, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

*To whom correspondence should be addressed <u>yaojun.tong@sjtu.edu.cn</u> (Y.T.), <u>tiwe@biosustain.dtu.dk</u> (T.W.), or <u>leesy@kaist.ac.kr</u> (S.Y.L.).

This file contains:

Supplementary note 1

Supplementary Tables 1-7

Supplementary Figures 1-6

Supplementary note 1

A second nick does not increase the editing efficiency of CRISPR-Prime Editing system in *E. coli*

It has been reported that the editing efficiency of the reverse transcriptase-Cas9 H840A nickase (Cas9n)-mediated targeted prime editing in some mammalian cells¹ and plant cells² can be increased by introduction of a second nick to the complementary strand within around 100 bp from the site of the PEgRNA-induced nick. However, it also increases NHEJ-mediated indel formation because Cas9 nickase with paired sgRNAs within ~200 bp can introduce targeted DSBs^{3,4}. As most bacteria do not possess a complete NHEJ system⁵⁻⁷, it makes the DSB a lethal event if no homology-directed repair (HDR) template is provided. It was thus reasoned that it is impossible to apply the strategy of introducing a close nick in the complementary strand in the NHEJ-deficient bacteria, like E. coli. To evaluate our hypothesis, we introduced another plasmid to deliver the designed complementary strand nicking sgRNA (nsgRNA). Two approaches for the secondary nick introduction were tested: nicking the non-edited strand within ~200 bp from the first nick (CRISPR-PE3) and nicking the non-edited strand only after the first nicked strand (the complementary strand) has been edited (CRISPR-PE3b). We designed editing events accordingly both in the plasmid-based system and the chromosome. As expected, for all three designed chromosomal DNA engineering and one plasmid DNA deletion of CRISPR-Prime Editing, almost no visible colonies were observed after the second nick was introduced (Supplementary Fig. 4).

Supplementary Table 1. Plasmids and strains involved in this study

Plasmid	Background	Reference
pdCas9-bacteria	<i>E. coli</i> codon optimized dCas9 is under control by a tetracycline inducible promoter; CamR; p15A ori	Addgene #44249 ⁸
pgRNA-bacteria	sgRNA transcript carrying plasmid, under control by a constitutive promoter J23119; AmpR; ColE1 ori	Addgene #44251 ⁸
pCDF-b1	SmR; CloDF13 ori	Millipore, US
pCDF-GFPplus	A fast folding GFP variant GFP+ is cloned into pCDF-b1 under control by a constitutive promoter	This study
pCRISPR-PE- bacteria	pdCas9- bacteria is used as the backbone. An <i>E. coli</i> codon optimized fusion protein of Cas9n-linker-M-MLV2 is cloned into pdCas9- bacteria by replacing the dCas9. The fusion protein is under control by a tetracycline inducible promoter.	This study
pPEgRNA	The 20 bp spacer was removed from pgRNA-bacteria. Therefore, this plasmid carries only a sgRNA scaffold without a spacer.	This study
pVRb20_992	KanR; pSC101 ori; carrying a cassette of PEcf20_992- sfGFP	Addgene #49714 ⁹
pnsgRNA	An sgRNA transcript cassette from pgRNA-bacteria was inserted to replace the PEcf20_992-sfGFP cassette	This study
pVRb_PEgRNA_312 Gdel	pVRb_PEgRNA carries a 20 nt spacer targeting GFP coding gene, and a 3 prime extension for deleting the 312G, the length of both the reverse transcription template and the primer binding sequence is 13 bp	This study
pPEgRNA_GFP_TAA in	pPEgRNA carries a 20 nt spacer targeting GFP coding gene, and a 3 prime extension for inserting a stop codon TAA, the length of both the reverse transcription template and the primer binding sequence is 13 bp	This study
pPEgRNA_GFP_TAA in_T4	The same as pPEgRNA_GFP_TAAin, except that the length of the reverse transcription template is 4 bp	This study
pPEgRNA_GFP_TAA in_T5	The same as pPEgRNA_GFP_TAAin, except that the length of the reverse transcription template is 5 bp	This study

pPEgRNA_GFP_TAA in_T8	The same as pPEgRNA_GFP_TAAin, except that the length of the reverse transcription template is 8 bp	This study
pPEgRNA_GFP_TAA in_T20	The same as pPEgRNA_GFP_TAAin, except that the length of the reverse transcription template is 20 bp	This study
pPEgRNA_GFP_TAA in_PBS5	The same as pPEgRNA_GFP_TAAin, except that the length of the primer binding sequence is 5 bp	This study
pPEgRNA_GFP_TAA in_PBS8	The same as pPEgRNA_GFP_TAAin, except that the length of the primer binding sequence is 8 bp	This study
pPEgRNA_GFP_TAA in_PBS17	The same as pPEgRNA_GFP_TAAin, except that the length of the primer binding sequence is 17 bp	This study
pPEgRNA_GFP_T19 8A	pPEgRNA carries a 20 nt spacer targeting GFP coding gene, and a 3 prime extension for 198T to 198A substitution within the GFP coding gene, the length of both the reverse transcription template and the primer binding sequence is 13 bp	This study
pPEgRNA_GFP_T19 6C_T198C	pPEgRNA carries a 20 nt spacer targeting GFP coding gene, and a 3 prime extension for 196T, 198T to 196C, 198C substitutions within the GFP coding gene, the length of both the reverse transcription template and the primer binding sequence is 13 bp	This study
pPEgRNA_GFP_198 Tdel	pPEgRNA carries a 20 nt spacer targeting GFP coding gene, and a 3 prime extension for 198T deletion within the GFP coding gene, the length of both the reverse transcription template and the primer binding sequence is 13 bp	This study
pPEgRNA_GFP_com bo	pPEgRNA carries a 20 nt spacer targeting GFP coding gene, and a 3 prime extension for 198T to 198A substitution, TAA insertion, and 199G deletion within the GFP coding gene, the length of both the reverse transcription template and the primer binding sequence is 13 bp	This study
pPEgRNA_GFP_12in	pPEgRNA carries a 20 nt spacer targeting GFP coding gene, and a 3 prime extension for insertion of a 12 bp fragment within the GFP coding gene, the length of both the reverse transcription template and the primer binding sequence is 13 bp	This study
pPEgRNA_GFP_18in	pPEgRNA carries a 20 nt spacer targeting GFP coding gene, and a 3 prime extension for insertion of a 18 bp fragment within the GFP coding gene, the length of both the reverse transcription template and the primer binding sequence is 13 bp	This study

pPEgRNA_GFP_33in	pPEgRNA carries a 20 nt spacer targeting GFP coding gene, and a 3 prime extension for insertion of a 33 bp fragment within the GFP coding gene, the length of both the reverse transcription template and the primer binding sequence is 13 bp	This study
pPEgRNA_GFP_10d el	pPEgRNA carries a 20 nt spacer targeting GFP coding gene, and a 3 prime extension for deletion of a 10 bp fragment within the GFP coding gene, the length of both the reverse transcription template and the primer binding sequence is 13 bp	This study
pPEgRNA_GFP_23d el	pPEgRNA carries a 20 nt spacer targeting GFP coding gene, and a 3 prime extension for deletion of a 23 bp fragment within the GFP coding gene, the length of both the reverse transcription template and the primer binding sequence is 13 bp	This study
pPEgRNA_GFP_36d el	pPEgRNA carries a 20 nt spacer targeting GFP coding gene, and a 3 prime extension for deletion of a 36 bp fragment within the GFP coding gene, the length of both the reverse transcription template and the primer binding sequence is 13 bp	This study
pPEgRNA_GFP_49d el	pPEgRNA carries a 20 nt spacer targeting GFP coding gene, and a 3 prime extension for deletion of a 49 bp fragment within the GFP coding gene, the length of both the reverse transcription template and the primer binding sequence is 13 bp	This study
pPEgRNA_GFP_97d el	pPEgRNA carries a 20 nt spacer targeting GFP coding gene, and a 3 prime extension for deletion of a 97 bp fragment within the GFP coding gene, the length of both the reverse transcription template and the primer binding sequence is 13 bp	This study
pPEgRNA_lacZ_TAG in	pPEgRNA carries a 20 nt spacer targeting <i>lacZ</i> gene, and a 3 prime extension for TAG insertion into the <i>lacZ</i> gene for a stop codon introduction, the length for the reverse transcription template and the primer binding sequence is 16 bp and 13 bp, respectively	This study
pPEgRNA_lacZ_CGd el	pPEgRNA carries a 20 nt spacer targeting <i>lacZ</i> gene, and a 3 prime extension for CG deletion in the <i>lacZ</i> gene for a stop codon introduction, the length for the reverse transcription template and the primer binding sequence is 18 bp and 14 bp, respectively	This study
pPEgRNA_lacZ_GTt oTAsub	pPEgRNA carries a 20 nt spacer targeting <i>lacZ</i> gene, and a 3 prime extension for GT to TA substitution in the <i>lacZ</i> gene for a stop codon introduction, the length of both the reverse transcription template and the primer binding sequence is 14 bp	This study
pPEgRNA_galK_TAA in	pPEgRNA carries a 20 nt spacer targeting <i>galK</i> gene, and a 3 prime extension for TAG insertion into the <i>galK</i> gene for a stop codon introduction, the length for the reverse transcription template and the primer binding sequence is 16 bp and 13 bp, respectively	This study

pnsgRNA_GFP_TAAi n	pnsgRNA carries a 20 nt spacer that pairs with pPEgRNA_GFP_TAAin to introduce the second nick	This study
pnsgRNA_lacZ_TAGi n	pnsgRNA carries a 20 nt spacer that pairs with pPEgRNA_lacZ_TAGin to introduce the second nick	This study
pnsgRNA_lacZ_CGd el	pnsgRNA carries a 20 nt spacer that pairs with pPEgRNA_lacZ_CGdel to introduce the second nick	This study
pnsgRNA_lacZ_GTto TAsub	pnsgRNA carries a 20 nt spacer that pairs with pPEgRNA_lacZ_GTtoTAsub to introduce the second nick	This study
Strain	Background	Reference
<i>Escherichia coli</i> DH10β (DH10B)	str. K F- mcrA Δ (mrr-hsdRMS-mcrBC) φ 80lacZ Δ M15 Δ lacX74 recA1 endA1 araD139 Δ (ara, leu)7697 galU galK λ - rpsL nupG /pMON14272 / pMON7124. Whole- genome sequenced for parental strain characterization. The sequencing data can be found under SRA Accession: SRR15371477	Thermo Fisher Scientific, US
Escherichia coli MG1655	Str. K F-, lambda-, rph-1. Whole-genome sequenced for parental strain characterization. The sequencing data can be found under SRA Accession: SRR15371770	Maintained ir Iab
PE0001	<i>E. coli</i> DH10β carries pCDF-GFPplus	This study
PE0002	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria	This study
PE0003	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria and pCDF- GFPplus	This study
PE0004	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA	This study
PE0005	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_TAAin. Whole-genome sequenced for mutation analysis. The sequencing data can be found under SRA Accession: SRR15371494	This study

PE0007	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_TAAin_T5	This study
PE0008	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_TAAin_T8	This study
PE0009	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_TAAin_T20	This study
PE0010	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_TAAin_PBS5	This study
PE0011	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_TAAin_PBS8	This study
PE0012	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_TAAin_PBS17	This study
PE0013	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_T198A. Clone #1. Whole- genome sequenced for mutation analysis. The sequencing data can be found under SRA Accession: SRR15371482	This study
PE0014	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_T198A. Clone #2. Whole- genome sequenced for mutation analysis. The sequencing data can be found under SRA Accession: SRR15371480	This study
PE0015	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_T196C_T198C. Whole- genome sequenced for mutation analysis. The sequencing data can be found under SRA Accession: SRR15371479	This study
PE0016	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_198Tdel. Whole-genome sequenced for mutation analysis. The sequencing data can be found under SRA Accession: SRR15371493	This study
PE0017	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_combo. Whole-genome sequenced for mutation analysis. The sequencing data can be found under SRA Accession: SRR15371478	This study
PE0018	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_12in	This study
		L

PE0019	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_18in	This study
PE0020	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_33in	This study
PE0021	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_10del	This study
PE0022	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_23del	This study
PE0023	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_36del	This study
PE0024	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_49del	This study
PE0025	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_97del	This study
PE0026	<i>E. coli</i> MG1655 carries pCRISPR-PE-bacteria and pPEgRNA_lacZ_TAGin. Whole-genome sequenced for mutation analysis. The sequencing data can be found under SRA Accession: SRR15371774	This study
PE0027	<i>E. coli</i> MG1655 carries pCRISPR-PE-bacteria and pPEgRNA_lacZ_CGdel. Whole-genome sequenced for mutation analysis. The sequencing data can be found under SRA Accession: SRR15371773	This study
PE0028	<i>E. coli</i> MG1655 carries pCRISPR-PE-bacteria and pPEgRNA_lacZ_GTtoTAsub. Whole-genome sequenced for mutation analysis. The sequencing data can be found under SRA Accession: SRR15371772	This study
PE0029	<i>E. coli</i> MG1655 carries pCRISPR-PE-bacteria, pPEgRNA_galK_TAAin. Whole-genome sequenced for mutation analysis. The sequencing data can be found under SRA Accession: SRR15371771	This study
PE0030	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, pPEgRNA_GFP_TAAin, and pVRb_PEgRNA_312Gdel	This study
PE0031	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, pPEgRNA_GFP_198Tdel, and pVRb_PEgRNA_312Gdel	This study

PE0032	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, pPEgRNA_GFP_T198A, and pVRb_PEgRNA_312Gdel	This study
PE0033	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, pPEgRNA_GFP_combo, and pVRb_PEgRNA_312Gdel	This study
PE0034	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, pPEgRNA_GFP_T196C_T198C, and pVRb_PEgRNA_312Gdel	This study
PE0035	<i>E. coli</i> DH10 β carries pCRISPR-PE-bacteria, pCDF-GFPplus, and pPEgRNA_GFP_198Tdel. Under induction, it is green (GFP expressed). Whole-genome sequenced for mutation analysis to find clues of editing escaping. Escaper #1. The sequencing data can be found under SRA Accession: SRR15371476	This study
PE0036	<i>E. coli</i> DH10 β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_198Tdel. Under induction, it is green (GFP expressed). Whole-genome sequenced for mutation analysis to find clues of editing escaping. Escaper #2. The sequencing data can be found under SRA Accession: SRR15371475	This study
PE0037	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_198Tdel. Under induction, it is green (GFP expressed). Whole-genome sequenced for mutation analysis to find clues of editing escaping. Escaper #3. The sequencing data can be found under SRA Accession: SRR15371474	This study
PE0038	<i>E. coli</i> DH10 β carries pCRISPR-PE-bacteria, pCDF-GFPplus, and pPEgRNA_GFP_198Tdel. Under induction, it is green (GFP expressed). Whole-genome sequenced for mutation analysis to find clues of editing escaping. Escaper #4. The sequencing data can be found under SRA Accession: SRR15371492	This study
PE0039	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_198Tdel. Under induction, it is green (GFP expressed). Whole-genome sequenced for mutation analysis to find clues of editing escaping. Escaper #5. The sequencing data can be found under SRA Accession: SRR15371491	This study
PE0040	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_198Tdel. Under induction, it is green (GFP expressed). Whole-genome sequenced for mutation analysis to find clues of editing escaping. Escaper #6. The sequencing data can be found under SRA Accession: SRR15371490	This study
PE0041	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_198Tdel. Under induction, it is green (GFP expressed). Whole-genome sequenced for mutation analysis to find clues of editing escaping.	This study

	Escaper #7. The sequencing data can be found under SRA Accession: SRR15371489	
PE0042	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_198Tdel. Under induction, it is green (GFP expressed). Whole-genome sequenced for mutation analysis to find clues of editing escaping. Escaper #8. The sequencing data can be found under SRA Accession: SRR15371488	This study
PE0043	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_198Tdel. Under induction, it is green (GFP expressed). Whole-genome sequenced for mutation analysis to find clues of editing escaping. Escaper #9. The sequencing data can be found under SRA Accession: SRR15371487	This study
PE0044	<i>E. coli</i> DH10 β carries pCRISPR-PE-bacteria, pCDF- GFPplus, and pPEgRNA_GFP_198Tdel. Under induction, it is green (GFP expressed). Whole-genome sequenced for mutation analysis to find clues of editing escaping. Escaper #10. The sequencing data can be found under SRA Accession: SRR15371486	This study
PE0045	<i>E. coli</i> DH10 β carries pCDF-GFPplus. Induced. Whole- genome sequenced as a control. The sequencing data can be found under SRA Accession: SRR15371485	This study
PE0046	<i>E. coli</i> DH10β carries pCRISPR-PE-bacteria. Induced. Whole-genome sequenced as a control. The sequencing data can be found under SRA Accession: SRR15371484	This study
PE0047	<i>E. coli</i> DH10β carries pCDF-GFPplus and pCRISPR-PE- bacteria. Induced. Whole-genome sequenced as a control. The sequencing data can be found under SRA Accession: SRR15371483	This study
PE0048	<i>E. coli</i> DH10β carries pCDF-GFPplus, pCRISPR-PE- bacteria, and a pPEgRNA without the 26-bp 3 prime extension. Induced, the clone is green. Whole-genome sequenced as a control. The sequencing data can be found under SRA Accession: SRR15371481	This study

Supplementary Table 2. Primers used in this study

Names	Sequence (5' to 3')	Purpose
PEgRNA_GFP_F	gtcctaggtataatactagtCTTGTCACTACTCTGACCTAgttttaga gctagaaatagc	For PCR amplification of desired PEgRNA functional
PEgRNA_GFP_TA Ain_R	gggcccaagcttcaaaaaaaTCACTACTCTGACCTATTAAGGT GTTCAAgcaccgactcggtgccactt	cassettes. Sequences in lower case are overhangs for Gibson
PEgRNA_GFP_TA Ain_T4_R	gggcccaagcttcaaaaaaaTCACTACTCTGACCTATTAAgcac cgactcggtgccactt	assembly.
PEgRNA_GFP_TA Ain_T5_R	gggcccaagcttcaaaaaaaTCACTACTCTGACCTATTAAGgc accgactcggtgccactt	
PEgRNA_GFP_TA Ain_T8_R	gggcccaagcttcaaaaaaaTCACTACTCTGACCTATTAAGGT Ggcaccgactcggtgccactt	
PEgRNA_GFP_TA Ain_T20_R	gggcccaagcttcaaaaaaaTCACTACTCTGACCTATTAAGGT GTTCAATGCTTTTgcaccgactcggtgccactt	
PEgRNA_GFP_TA Ain_PBS5_R	gggcccaagcttcaaaaaaCTGACCTATTAAGGTGTTCAAgca ccgactcggtgccactt	
PEgRNA_GFP_TA Ain_PBS8_R	gggcccaagcttcaaaaaaaACTCTGACCTATTAAGGTGTTCA Agcaccgactcggtgccactt	
PEgRNA_GFP_TA Ain_PBS17_R	gggcccaagcttcaaaaaaaACTCTGACCTATTAAGGTGTTCA Agcaccgactcggtgccactt	
PEgRNA_GFP_T1 98A_R	gggcccaagcttcaaaaaaaTCACTACTCTGACCTAAGGTGTT CAAgcaccgactcggtgccactt	
PEgRNA_GFP_T1 96C_T198C_R	gggcccaagcttcaaaaaaaTCACTACTCTGACCCACGGTGT TCAAgcaccgactcggtgccactt	

PEgRNA_GFP_19 8Tdel_R	gggcccaagcttcaaaaaaaTCACTACTCTGACCTAGGTGTT CAATgcaccgactcggtgccactt	
PEgRNA_GFP_co mbo_R	gggcccaagcttcaaaaaaaTCACTACTCTGACCTAATAAGTG TTCAAgcaccgactcggtgccactt	
PEgRNA_GFP_12i n_R	gggcccaagcttcaaaaaaaTCACTACTCTGACCTATGTAATC TGTACAGGTGTTCAAgcaccgactcggtgccactt	
PEgRNA_GFP_18i n_R	gggcccaagcttcaaaaaaaTCACTACTCTGACCTATTAATAC GACTCACTATAGGGTGTTCAAgcaccgactcggtgccactt	
PEgRNA_GFP_33i n_R	gggcccaagcttcaaaaaaaTCACTACTCTGACCTATTGTAGA ATCAGCCCACGAAACCGAGCGGGCGAGGGTGTTCAA gcaccgactcggtgccactt	
PEgRNA_GFP_10 del_R	gggcccaagcttcaaaaaaaTCACTACTCTGACATATCTTTCA AAGgcaccgactcggtgccactt	
PEgRNA_GFP_23 del_R	gggcccaagcttcaaaaaaaTCACTACTCTGACATATCTTTCA AAGgcaccgactcggtgccactt	
PEgRNA_GFP_36 del_R	gggcccaagcttcaaaaaaaTCACTACTCTGACATATCTTTCA AAGgcaccgactcggtgccactt	
PEgRNA_GFP_49 del_R	gggcccaagcttcaaaaaaaTCACTACTCTGACATATCTTTCA AAGgcaccgactcggtgccactt	
PEgRNA_GFP_97 del_R	gggcccaagcttcaaaaaaaTCACTACTCTGACATATCTTTCA AAGgcaccgactcggtgccactt	
PEgRNA_GFP_31 2Gdel_F	gtcctaggtataatactagtCTATATCTTTCAAAGATGACgttttaga gctagaaatagc	For PCR amplification of GFP 312G deletion
PEgRNA_GFP_31 2Gdel_R	gggcccaagcttcaaaaaaaATCTTTCAAAGATGACGGAACTA CAAGCACCGACTCGGTGCCACTT	PEgRNA for Gibson assembly.
pVRb_PEgRNA_ba ckbone_F	TTTTTTGAAGCTTGGGCCC	For PCR amplification of plasmid

pVRb_PEgRNA_ba ckbone_R	ACTAGTATTATACCTAGGACTGAGC	backbone for Gibson assembly of PEgRNA.
pPEgRNA_lacZ_T AGin_F	gtcctaggtataatactagtAATCCCGAATCTCTATCGTGgttttag agctagaaatagc	For PCR amplification of desired functional PEgRNA_lacZ_T AGincassettes. Sequences in lower case are overhangs for Gibson assembly.
pPEgRNA_lacZ_T AGin_R	gggcccaagcttcaaaaaaaCCGAATCTCTATCGTGCGTAGG TGGTTGA gcaccgactcggtgccactt	
pPEgRNA_lacZ_C Gdel_F	gtcctaggtataatactagtTATGCAGCAACGAGACGTCAgttttag agctagaaatagc	For PCR amplification of desired functional
pPEgRNA_lacZ_C Gdel_R	gggcccaagcttcaaaaaaaGCAGCAACGAGACGTCAGAAAA TGCCGCTCATgcaccgactcggtgccactt	PEgRNA_lacZ_ CGde cassettes. Sequences in lower case are overhangs for Gibson assembly.
pPEgRNA_lacZ_G TtoTAsub_F	gtcctaggtataatactagtGCGAGTTGCGTGACTACCTAgttttag agctagaaatagc	For PCR amplification of desired functional PEgRNA_lacZ_ GTtoTAsub cassettes. Sequences in lower case are overhangs for Gibson assembly.
pPEgRNA_lacZ_G TtoTAsub_R	gggcccaagcttcaaaaaaaAGTTGCGTGACTACTAACGGGT AACAGTgcaccgactcggtgccactt	
pPEgRNA_galK_T AAin_F	gtcctaggtataatactagtGACAGCCACACCTTTGGGCAgttttag agctagaaatagc	For PCR amplification of desired functional
pPEgRNA_galK_T AAin_R	gggcccaagcttcaaaaaaaGCCACACCTTTGGGCATTTAGG AAACTGCgcaccgactcggtgccactt	TAAin cassettes. Sequences in lower case are overhangs for Gibson assembly.
lacZ_check_F	gatgaaagctggctacagga	For PCR amplification of the targeted

lacZ_check_F	tgacggttaacgcctcgaat	region in <i>lacZ</i> gene. The forward primer is also used for Sanger sequencing.
galK_check_F	caatgggctaactacgttcg	For PCR amplification of the targeted region in <i>galK</i>
galK_check_F	gtcgccaatcacagctttga	forward primer is also used for Sanger sequencing.
pnsgRNA_GFP_TA Ain_F	AAAGCATTGAACACCttaATGTTTTAGAGCTAGAAATAG C	For PCR amplification of the nsgRNA_GFP_T
pnsgRNA_GFP_TA Ain_R	ATtaaGGTGTTCAATGCTTTactagtattatacctaggac	AAIn casselle.
pnsgRNA_lacZ_TA Gin_F	CctaCGCACGATAGAGATTCGTTTTAGAGCTAGAAATA GC	For PCR amplification of the nsgRNA_lacZ_T
pnsgRNA_lacZ_TA Gin_R	GAATCTCTATCGTGCGtagGactagtattatacctaggac	AGin cassette.
pnsgRNA_lacZ_CG del_F	CTGGAGTGACGGCAGTTATCGTTTTAGAGCTAGAAAT AGC	For PCR amplification of the nsgRNA_lacZ_C
pnsgRNA_lacZ_CG del_R	GATAACTGCCGTCACTCCAGactagtattatacctaggac	Gdel cassette.
pnsgRNA_lacZ_GT toTAsub_F	CATTAAAGCGAGTGGCAACAGTTTTAGAGCTAGAAAT AGC	For PCR amplification of the nsgRNA_lacZ_G
pnsgRNA_lacZ_GT toTAsub_R	TGTTGCCACTCGCTTTAATGactagtattatacctaggac	TtoTAsub cassette.

pVRb_backbone_F	CTGTTGTTTGTCGGTGAACG	For PCR amplification of the pVRb backbone from	
pVRb_backbone_R	AAGGGCCTCGTGATACGCCT	pvrtb_20_002.	
sgRNA_cassette_F	AGGCGTATCACGAGGCCCTTgaattctaaagatctttgac	For PCR amplification of the sgRNA cassette from	
sgRNA_cassette_R	CGTTCACCGACAAACAACAGataaaacgaaaggcccagtc	pregrina.	
nsgRNA_seq	GCAATTCCGACGTCTAAG	For validation of the Gibson assembly of pnsgRNA. Also for validation of PEgRNA cloning of pVRb_PEgRNA.	
PEgRNA_backbon e_F	TTTTTTGAAGCTTGGGCCC	For PCR amplification of the pPEgRNA backbone	
PEgRNA_backbon e_R	ACTAGTATTATACCTAGGAC		
PEgRNA_F	GTCCTAGGTATAATACTAGTGTTTTAGAGCTAGAAATA GCA	For removal of the 20 bp spacer from the plasmid pgRNA-bacteria.	
PEgRNA_R	ACTAGTATTATACCTAGGACTGAGCTAGCT		
PEgRNA_Seq	AATAGGCGTATCACGAGGCA	For Sanger sequencing of correctly assembled PEgRNA plasmids.	
pCDF-GFP_Seq	GAAATACTAGATGAGCAAAGGAGAAG	For screening of edited events using Sanger sequencing.	

pCDF-1b_F	GTATATCTCCTTATTAAAGT	For PCR amplification of the pCDF-1b backbone.	
pCDF-1b_R	ATTAACCTAGGCTGCTGCCA		
GFPplus_F	ACTTTAATAAGGAGATATACTTTACGGCTAGCTCAGTC CT	For PCR amplification of the J23106- GFPplus-T0	
GFPplus_R	TGGCAGCAGCCTAGGTTAATCGAACCGAACAGGCTTA TGT	cassette.	
GFPplus_check_F	ATGCGACTCCTGCATTAGGA	For screening of correctly assembled pCDF-GFPplus using PCR. The GFPplus_check_ F is also used for Sanger sequencing validation.	
GFPplus_check_R	ACTAGTCGCCAGGGTTTTCC		
A10D_F	TAGGCTTAGATATCGGCACAAA	For site-directed mutating of 10A to 10D with the dCas9 in the	
A10D_R	TTGAGTATTTCTTATCCATATG	pdCas9-bacteria.	
D10_Seq	GCGAGTTTACGGGTTGTTA	For screening of correct mutations of 10A to 10D using Sanger sequencing.	
pCas9n_F	TAACTCGAGTAAGGATCTCC	For PCR amplification of the pCas9n(H840A)	
pCas9n_R	GTCACCTCCTAGCTGACTCA	backbone, the stop codon of Cas9n is removed.	

EcMMLV2_F	TGAGTCAGCTAGGAGGTGAC	For PCR amplification of the <i>E. coli</i> codon optimized linker- M-MLV2 fragment.	
EcMMLV2_R	GGAGATCCTTACTCGAGTTA		
EcMMLV2_check_ R	AACAAACAGCTCGAACGGCT	Together with EcMMLV2_F, this primer set is used for PCR screening of <i>E.</i> <i>coli</i> codon optimized linker- M-MLV2 fragment insertion.	
EcMMLV2_seq	AACTGGATTGCCAACAGGGT	Together with EcMMLV2_F, these three primers are used	
dblTerm_R_seq	GAAGGTGAGCCAGTGTGACT	to confirm the insertion of <i>E.</i> <i>coli</i> codon optimized linker- M-MLV2 fragment by Sanger sequencing.	

Name	Sequence	Description
Name J23106-GFPplus-T0 cassette	Sequence TTTACGGCTAGCTCAGTCCT AGGTATAGTGCTAGCTACTA GAGAAAGAGGGAGAAAATACTA GATGAGCAAAGGAGAGAAGAA CTTTTCACTGGAGTTGTCCC AATTCTTGTTGAATTAGATG GTGATGTTAATGGGCACAAA TTTTCTGTCAGTGGAGAGGG TGAAGGTGATGCTACATACG GAAAACTCACCCTTAAATTT ATTTGCACTACTGGAAAACT ACCTGTTCCATGGCCAACAC TTGTCACTACTCGACCTAT GGTGTTCAATGCTTTTCCCG TTATCCGGATCACATGAAAC GGCATGACCGAAGGTTATGT ACAGGAACGCACTATATCTT TCAAAGATGACGGGAACTAC AAGACGCGTGCTGAAGTCA AGTTTGAAGGTGATACCTT GTTAATCGTATCGAGTTAAA GGGTATTGATTTTAAAGAAG ATGGAAACATTCTCGGACAC AAGTAGAGTACAACTATAA CTCACACAATGTATACATCA CGGCAGACAACAACAAAAGAAT GGAATCAAAGCTAACTTCAA AATTCGCCACAACATTGAAG	Description A fast folding GFP variant GFP+ encoding gene (in blue), controlled by a constitutive promoter J23106 (in green) and ended with a T0 terminator (in orange).
	ATGGTTCCGTTCAACTAGCA GACCATTATCAACAACTAGCA TCCAATTGGCGATGGCCCT GTCCTTTTACCAGACAACCA TTACCTGTCGACACAACCA TTACCTGTCGACACACAATCTG CCCTTTCGAAAGATCCCAAC GAAAAGCGTGACCACATGG TCCTTCTTGAGTTTGTAACT GCTGCTGGGATGAGCTCTACAAA TGAAGCGCATACCTGCAGG CATGCAAGCTTGCGGCCGC GTCGTGACTGGGAAAACCC TGGCGACTAGTCTTGGACTC CTGTTGATAGATCCAGTAAT GACCTCAGAACTCCATCTGG ATTTGTTCAGAACGCTCGGT TGCCGCCGGGCGTTTTTAT TGGTGAGAATCCAGGGGTC	

Supplementary Table 3. Important sequences involved in this study

	CCCAATAATTACGATTTAAAT TTGACATAAGCCTGTTCGGT TCG	
E. coli codon optimized linker- M-MLV2 fragment	TCGTGAGTCAGCTAGGAGGTGACAGCGGCGCGCAGCAGCGGCGGCAGCAGCGGCAGCAGCGAAACCCCCGGGCACCAGCGGCAGCGCGCGACCCCGGAAAGCAGCGGCGGCAGCAGCAGCGGCGGTAGCAGCACCCTGAACATCGAGGACCAGCAGCAGCGGCGGAGGACCAGCAGCAGCAGCAGCGGCTGAGCGACCTGCCGCAGGCTGGGCGGAAACCGGCGCCAGGCGCGCGCAAACCGGCGCCAGGCGCCGCTGATCATTCCGCTGAAGGCGACCAGCACCCCGGTTAGCATCAAGCAGTATCCGATGAGCCAGGAAGCGCGTCTGGGTATTAAGCCGCACATTCAACGTCTGCTGGACCAGGGTATTCTGGTGCCGTGCCAGAGCCCGTGGAATACCCCGCTGCTGCCGGTGAAGAAACCGGGTACCAATGATTACCGTCCGGTGCAAGACCTGCGTGAGGTTAACAAGCGCGTTGAAGATATTCATCCGACCGTTCCGAACCCGTACAACCTGCTGGAGCGTCTGCCGCCGAGCCACCAGTGGTAAACCTGCTGAGCGTTCGCCGCCGAGCCACCAGTGGTAAACCTGCTGAGCGTCTGCCGCGTGACCCGAACCAGTGGTAAACCTGCTGCGATCTGAAGGACCGTTTTCGCGTTGAAGGACCGTTTCGCGCAACAGCCAACCGCGAGCCAACCAGCCAACCGCGACCCGGCCAACTGACCTGACCCGTCTGCCGCAAGGGCTTTAAAAACAGCCCGACCCTGTCAACAGGCCCAACCGGACTTCCGTATCCAACACCCGGACTCTGACCAGCGATCTGCCGCGGCGACCAGCGAACTGGATCTGACCAGCGACCGGCCGCGCCGACCAGCGAACTGGATCTGACCAGCGACCGGCCGGCCGACCAGCGAACTGGATCTGACCAGCGAACTGGATCTGACCAGCGAACTGGCGGCCGGCCGACCAGCGAACTGGATCGCGACCAGCGAACTGGATCGCAACAGGGTACCCGTGCGCAACAGGGTACCCGTGCG	A 33-amino acid linker (in red) fused with the M-MLV2 encoding sequence (in black). 20 bp overhangs for Gibson assembly into pCas9n(H840A) is shown in gray italic.
	ACCTGGGTTACCGTGCGAG CGCGAAAAAGGCGCAAATTT GCCAGAAGCAAGTGAAGTAT	

CTGGGCTACCTGCTGAAGG	
AAGGTCAACGCTGGCTGAC	
GTTATGGGTCAGCCGACCC	
CGAAGACCCCGCGCCAACT	
GCGIGAGIICCIGGGIAAA	
GCGGGTTTTTGCCGTCTGTT	
TATCCCGGGTTTCGCGGAAA	
TGGCGGCGCCGCTGTACCC	
GCTGACCAAACCGGGTACC	
CTGTTTAACTGGGGTCCGGA	
CCAGCAGAAAGCGTACCAA	
GAGATCAAACAGGCGCTGC	
TGACCGCGCCGGCGCTGGG	
TCTGCCGGACCTGACCAAG	
CCGTTCGAGCTGTTTGTTGA	
TGAAAAGCAGGGTTATCCCA	
AAGGCGTTCTGACCCACAAA	
CGGTTGCGTACCTGAGCAA	
GAAACIGGAICCGGIIGCG	
GCGGGCTGGCCGCCGTGCC	
TGCGTATGGTTGCGGCGAT	
CGCGGTTCTGACCAAAGAC	
GCGGGCAAGCTGACCATGG	
GTCAACCGCTGGTGATTCTG	
GCGCCGCATGCGGTTGAAG	
CGCTGGTTAAGCAGCCGCC	
GGACCGTTGGCTGAGCAAC	
GCGCGTATGACCCACTATCA	
AGCGCTGCTGCTGGATACC	
GACCGTGTTCAGTTCGGTCC	
GGTGGTTGCGCTGAACCCG	
GCGACCCTGCTGCCGCTGC	
TAACTGCCTCGACATTCTCC	
ACACCIGGIAIACCGACGG	
CAGCAGCCTGCTGCAAGAA	
GGCCAGCGTAAGGCGGGTG	
CGGCGGTTACCACCGAGAC	
CGAAGTTATCTGGGCGAAA	
GCGCTGCCGGCGGGTACCA	
GCGCGCAGCGTGCGGAGCT	
GATTGCGCTGACCCAAGCG	
CTGAAAATGGCGGAGGGCA	
AAAAGCTGAATGTTTATACC	
GATAGCCGTTACGCGTTTGC	
GACCGCGCACATCCATGGT	
2, 200000, 0, 100, 100, 100	

	GAAATCTACCGTCGTCGTGG TTGGCTGACCAGCGAAGGC AAAGAAATCAAAAATAAGGA CGAGATTCTGGCGCTGCTG AAAGCGCTGTTCCTGCCGAA ACGTCTGAGCATCATTCACT GCCCGGGTCACCAGAAAGG TCACAGCGCGGGAGGCGCGT GGTAATCGCATGGCGGATC AAGCGGCGCGTAAAGCGGC GATTACCGAAACCCCGGATA CCAGCACCCTGCTGATTGAA AATAGCAGCCCGTAA <i>TAACT</i> <i>CGAGTAAGGATCTCC</i>	
An example (TAAin) of functional PEgRNA cassette	ttgacagctagctcagtcctaggtataata ctagtCTTGTCACTACTCTGAC CTAGTTTTAGAGCTAGAAAT AGCAAGTTAAAATAAGGCTA GTCCGTTATCAACTTGAAAA AGTGGCACCGAGTCGGTGC TTGAACACCTTAATAGGTCA GAGTAGTGAtttttt	Green: J23119 promoter Red: 20-nt spacer targeting GFPplus coding sequence Black: 76-nt gRNA scaffold Blue: RTT of the 3 prime extension, the target TAA is shown in bold, italic Orange: PBS of the 3 prime extension

Supplementary Table 4. Spacers and 3 prime extensions used in this study

PEgRNA	Space (5'-3')	3 prime extension (5'-3')	RTT length (nt)	PBS length (nt)
PEgRNA_GFP_ TAAin_T4	CTTGTCAC TACTCTGA CCTA	TTAATAGGTCAGAGTAGTGA	7	13
PEgRNA_GFP_ TAAin_T5	CTTGTCAC TACTCTGA CCTA	CTTAATAGGTCAGAGTAGTGA	8	13
PEgRNA_GFP_ TAAin_T8	CTTGTCAC TACTCTGA CCTA	CACCTTAATAGGTCAGAGTAGTGA 1		13
PEgRNA_GFP_ TAAin	CTTGTCAC TACTCTGA CCTA	TTGAACACCTTAATAGGTCAGAGTAGTGA	16	13
PEgRNA_GFP_ TAAin_T20	CTTGTCAC TACTCTGA CCTA	C AAAAGCATTGAACACCTTAATAGGTCAGAGTAGTG 2 A		13
PEgRNA_GFP_ TAAin_PBS5	CTTGTCAC TACTCTGA CCTA	TTGAACACCTTAATAGGTCAG		5
PEgRNA_GFP_ TAAin_PBS8 CTTGTCAC CCTA TTGAACACCTT		TTGAACACCTTAATAGGTCAGAGT	16	8
PEgRNA_GFP_ TAAin_PBS17	PEgRNA_GFP_ CTTGTCAC TACTCTGA CCTA TTGAACACCTTAATAGGTCAGAGTAGTGACAAG		16	17
PEgRNA_GFP_ T198A	NA_GFP_ CTTGTCAC TACTCTGA CCTTAGGTCAGAGTAGTGA		13	13
PEgRNA_GFP_ T196C_T198C	CTTGTCAC TACTCTGA CCTA	TTGAACACCGTGGGTCAGAGTAGTGA		13
PEgRNA_GFP_ 198Tdel	CTTGTCAC TACTCTGA CCTA	ATTGAACACCTAGGTCAGAGTAGTGA	13	13
PEgRNA_GFP_c ombo	CTTGTCAC TACTCTGA CCTA	TTGAACACTTATTAGGTCAGAGTAGTGA	15	13

PEgRNA_GFP_ 12in	CTTGTCAC TACTCTGA CCTA	TTGAACACCTGTACAGATTACATAGGTCAGAGTAG TGA	25	13
PEgRNA_GFP_ 18in	CTTGTCAC TACTCTGA CCTA	TTGAACACCCTATAGTGAGTCGTATTAATAGGTCA GAGTAGTGA	31	13
PEgRNA_GFP_ 33in	CTTGTCAC TACTCTGA CCTA	TTGAACACCCTCGCCCGCTCGGTTTCGTGGGCTG ATTCTACAATAGGTCAGAGTAGTGA	46	13
PEgRNA_GFP_ 10del	CTTGTCAC TACTCTGA CCTA	GGGAAAAGCATTGGTCAGAGTAGTGA	13	13
PEgRNA_GFP_ 23del	PEgRNA_GFP_ CTTGTCAC 23del CCTA TGATCCGGATAACGTCAGAGTAGTGA		13	13
PEgRNA_GFP_ CTTGTCAC TACTCTGA CCTA		13	13	
PEgRNA_GFP_ 49del	PEgRNA_GFP_ CTTGTCAC TACTCTGA 19del CCTA CCTA		13	13
PEgRNA_GFP_ 97del	PEgRNA_GFP_ CTTGTCAC 97del CCTA CTTTGAAAGATATGTCAGAGTAGTGA		13	13
PEgRNA_lacZ_T AATCCCGA AGin GTG TCAACCACCTACGCAC		TCAACCACCTACGCACGATAGAGATTCGG	16	13
PEgRNA_lacZ_ TATGCAGC AACGAGAC GTCA ATGAGCGGCATTTTCTGACGTCTCGTTGCTG		ATGAGCGGCATTTTCTGACGTCTCGTTGCTGC	18	14
PEgRNA_lacZ_ GTtoTAsub	GCGAGTTG CGTGACTA CCTA	ACTGTTACCCGTTAGTAGTCACGCAACT		14
PEgRNA_galK_ TAAin	GACAGCCA CACCTTTG GGCA	GCAGTTTCCTAAATGCCCAAAGGTGTGGC		13
PEgRNA_GFP_ 312Gdel	CTATATCTT TCAAAGAT GAC	TTGTAGTTCCGTCATCTTTGAAAGAT	13	13

nsgRNA	PE3 or PE3b ^{1,10}	Space (5'-3')	
nsgRNA_GFP_T AAin	PE3b	AAAGCATTGAACACCttaAT	
nsgRNA_lacZ_T AGin	PE3b	CctaCGCACGATAGAGATTC	
nsgRNA_lacZ_C Gdel	PE3	CTGGAGTGACGGCAGTTATC	
nsgRNA_lacZ_G TtoTAsub	PE3	CATTAAAGCGAGTGGCAACA	

Supplementary Table 5. A CFU assay of *E. coli* strains transformed with different plasmids

Plasmid	LB Plate (200 ng/ml of ATc, 100 ug/ml of Spec and Amp, and 25 ug/ml of Chl were used)	CFU (Mean ± SD) n=3	Induction/non- induction
pCDF-GFP	Spec	12800000 ± 1552417.47	
pCDF-GFP Spec + ATc 10		10333333.3 ± 960902.35	(82.1 ± 17.3)%
pCDF-GFP + pCRISPR-PE	Spec + Chl	21810 ± 1174.61	
pCDF-GFP + pCRISPR-PE	CDF-GFP +Spec + Chl + ATc1CRISPR-PE2		(80.8 ± 13.4)%
pCDF-CDF + pCRISPR-PE + pPEgRNA-GFP-del	Spec + Chl + Amp	1830 ± 542.49	
pCDF-GFP + pCRISPR-PE + pPEgRNA-GFP-del	Spec + Chl + Amp + ATc	1110 ± 274.95	(67.9 ± 36.6)%
pCDF-GFP + pCRISPR-PE + pPEgRNA	Spec + Chl + Amp	6510 ± 1188.32	
pCDF-GFP + pCRISPR-PE + pPEgRNA	Spec + Chl + Amp + ATc	1470 ± 274.95	(23.4 ± 7.1)%

White background: not induced; grey background: induced with ATc.

Supplementary Table 6. The max. doubling time of strains with and without inducer, data are mean of the 12 repeats of each sample

	Induced Unine			Uninduced		
			pCDF-			pCDF-
		pCDF-	GFP+		pCDF-	GFP+
		GFP+	pCRISPR-		GFP+	pCRISPR-
		pCRISPR-	PE+		pCRISPR-	PE+
	pCDF-	PE+	pPEgRNA-	pCDF-	PE+	pPEgRNA-
	GFP	pPEgRNA	GFPdel	GFP	pPEgRNA	GFPdel
Slope [h^-	0 6948	0 5285	0 5288	0.6712	0.6139	0 5867
1]	0.00+0	0.0200	0.0200	0.0712	0.0100	0.0007
R squared	0.9801	0.9816	0.9836	0.9792	0.9813	0.9875
max.						
doubling	0.9976	1.3115	1.3108	1.0327	1.1291	1.1814
time [h]						

Supplementary Table 7. Whole-genome sequencing-based analysis of

Strain		On-plasmids			
	pCDF- GFPplus	pPEgRNA_GFP_19 8Tdel	pCRISPR- PE-bacteria	On-chromosome	SRA Accession
PE0035	0	0	0	0	SRR15371476
PE0036	0	2 (Pos. 12626 bp, the 3 prime extension was missing)	0	0	SRR15371475
PE0037	0	2 (Pos. 12626 bp, the 3 prime extension was missing)	0	0	SRR15371474
PE0038	0	0	0	0	SRR15371492
PE0039	0	0	0	0	SRR15371491
PE0040	0	0	0	0	SRR15371490
PE0041	0	0	0	0	SRR15371489
PE0042	0	0	0	0	SRR15371488
PE0043	0	1 (Pos. 12626 bp, the 3 prime extension was missing)	0	0	SRR15371487
PE0044	0	0	0	0	SRR15371486
PE0045	0	-	-	0	SRR15371485
PE0046	-	-	0	0	SRR15371484
PE0047	0	-	0	0	SRR15371483
PE0048	0	1 (Pos. 12626 bp, no 3 prime extension was cloned)	0	0	SRR15371481

^a: the shared mutations were listed here.

One shared mutation in pCRISPR-PE-bacteria is Pos. 8,584. A43A (GCC \rightarrow GCA);

One shared mutation in pPEgRNA_GFP_198Tdel is Pos. 1,146. $G \rightarrow A$, intergenic, 6XHis;

One shared mutation in the chromosome is Pos. 4,272,972. +T, intergenic.

Supplementary Table 8. Overview of generated illumina datasets

Parental strain	NCBI	SRA	Names in Table S7 and S1
	name	Accession	
K-12 substr. DH10B	YT_gp1	SRR15371494	PE0005
K-12 substr. DH10B	YT_gp2	SRR15371493	PE0016
K-12 substr. DH10B	YT_gp3	SRR15371482	PE0013
K-12 substr. DH10B	YT_gp4	SRR15371480	PE0014
K-12 substr. DH10B	YT_gp5	SRR15371479	PE0015
K-12 substr. DH10B	YT_gp6	SRR15371478	PE0017
K12 substr. MG1655	YT_g7	SRR15371774	PE0026
K12 substr. MG1655	YT_g8	SRR15371773	PE0027
K12 substr. MG1655	YT_g9	SRR15371772	PE0028
K12 substr. MG1655	YT_g10	SRR15371771	PE0029
K-12 substr. DH10B	YT_g11	SRR15371477	Escherichia coli DH10β (DH10B)
K12 substr. MG1655	YT_g12	SRR15371770	Escherichia coli MG1655
K-12 substr. DH10B	cwi15	SRR15371476	PE0035
K-12 substr. DH10B	cwi16	SRR15371475	PE0036
K-12 substr. DH10B	cwi17	SRR15371474	PE0037
K-12 substr. DH10B	cwi18	SRR15371492	PE0038
K-12 substr. DH10B	cwi19	SRR15371491	PE0039
K-12 substr. DH10B	cwi20	SRR15371490	PE0040
K-12 substr. DH10B	cwi21	SRR15371489	PE0041
K-12 substr. DH10B	cwi22	SRR15371488	PE0042
K-12 substr. DH10B	cwi23	SRR15371487	PE0043
K-12 substr. DH10B	cwi24	SRR15371486	PE0044
K-12 substr. DH10B	cwi25	SRR15371485	PE0045
K-12 substr. DH10B	cwi26	SRR15371484	PE0046
K-12 substr. DH10B	cwi27	SRR15371483	PE0047
K-12 substr. DH10B	cwi28	SRR15371481	PE0048

Supplementary Figure 1. Editing accumulates over time of using CRISPR-

Prime Editing system in *E. coli*.

- **a.** A five-day old induction (200 ng/mL ATc) plate of GFP 1-bp deletion under a Blue-Light Transilluminator (Safe Imager 2.0, Thermo Fisher Scientific, US).
- b. A five-day old induction (200 ng/mL ATc) plate of GFP 3-bp insertion under a Blue-Light Transilluminator (Safe Imager 2.0, Thermo Fisher Scientific, US).

- c. The 40x optical view of a single colony from b. under a Leica DM4000 B
 Fluorescence Microscope (Leica Microsystems, Germany)
- d. The 40x GFP fluorescent view of the same colony as c. using the same microscope.
- e. Two of each outgrown colony from a. and b. were Sanger-sequenced. The infigure legend is the same as Fig. 2a.

Supplementary Figure 2. A DNA editing of double substitutions by CRISPR-Prime Editing.

Eight randomly picked colonies of each designed DNA engineering were Sanger sequenced and traces were aligned to the targeted locus of GFP coding sequence. The correctly edited colony numbers and the total sequenced numbers were shown in red. The in-figure legend is the same as Fig. 2a.

H840A Cas9 PAM	
GGTTGTGAACAGTGATGAGACTGGATACCACAAAGTTACGAAAAAGGGCAATAGGC GFP reference sequence	
Pro Thr Leu Val Thr Thr Leu Thr Tvr Giv Val Gin Cvs Phe Ser Arg Tvr Pro	
CCAACACTTGTCACTACTCTGACGCCATGGCTGTTCGAATGCTTTTCCCGGGTCACGGACACACGGCCATGAACGGGCCATGAACGGGCCATGAACGGGCCATGAACGGGCATGAACGGGCATGAACGGGCATGAACGGGCATGAACGGGCATGAACGGGCATGAACGGGCATGAACGGGCATGAACGGGCAAGGGCAAGGGCAAGGGCAAGGGCAAGGGCAAGGGGCAAGGGCAAGGGCAAGGGGCAAGGGGCAAGGGCAAGGGGCAAGGGGCAAGGGCAAGGGGCAAGGGGGAGGGAAGGGGGAGGGAGGGAAGGGGCAAGGGGGCAAGGGGGAGGGAGGGAAGGGGGAGGGAGGGGAGGGAGGGG	23 bp deletion
ссалсасттотся стастсто бас стато о то то солто с с о ттате с о о ал са са то ала с о о са то астт тт т сал о ссал са с т о т са с т а с т с т о а с мала с т о т са с т а с т с т о а с мала с т т о т са с т а с т с т о а с мала с т о т са с т а с т с т о а с мала с т т о т са с т а с т с т о а с мала с т т о т са с т а с т с т о а с мала с т т о т са с т а с т с т о а с мала с т т о т са с т а с т с т о а с мала с т т о т са с т а с т с т о а с мала с т т о т са с т а с т с т о а с мала с т о т с а с т т с т о а с мала с т о т с т с т о а с мала с т о т с т с т о а с мала с т о т с т с т о а с т т т т с с а с мала с т о т с т с т с т о а с мала с т т о т с а с т т о т с т о т с мала с т о т с т с т с т с т о т с мала с т т о т с а с т т о т с т о т с мала с т т о т с а с т т о т с т о т с мала с т т о т с а с т т т с с а с т мала с т о т с т с т о т с т о т с мала с т с т с т с т о т с мала с т с т с т с т о т с мала с т с т с т с т о т с т с т о т с мала с т с т с т с т о т с т с т с т с т с т	49 bp deletion
ССАЛСЛОГТОТСЛОГТАЛСТАТ ССАЛСЛОГТОТСЛОГТАЛСТСТВЛОСТТАТ МАЛТАССАЛСТАТОТСЛОГТАЛСТСТВЛОСТТАТ 18 bp,	the T7p insertion

Supplementary Figure 3. Long DNA fragments deletion and insertions using CRISPR-Prime Editing in *E. coli*.

As examples, Sanger sequencing traces of a 23-bp deletion, a 49-bp deletion, and a 18-bp (mini-T7 promoter) insertion traces were aligned to the targeted locus of GFP coding sequence. The in-figure legend is the same as Fig. 2a.

Supplementary Figure 4. A second nick compromises the application of CRISPR-Prime Editing in *E. coli.*

Plates showed the colony formation of transformants. For the one nick panel, 50 μ l of transformation culture was plated onto appropriate antibiotics supplemented LB plates, while for the two nicks panel, 400 μ l of transformation culture was plated. Photos were taken by a Doc-It imaging station after 24h incubation at 37 °C.

Supplementary Figure 5. The plasmid map of pVRb_PEgRNA.

- a. The plasmid map of the pVRb_PEgRNA plasmid, which is pSC101 ori, kanamycin resistant, and with a J23119 driven sgRNA scaffold.
- b. The DNA sequence of the J23119-sgRNA scaffold is displayed. The J23119 promoter sequence is in green, and the sgRNA scaffold is in blue.

Supplementary Figure 6. Growth profiles of E. coli strains transformed with different plasmids under induced and uninduced conditions.

Growth profiling was performed in a ELx808 plate reader (Buch & Holm A/S). The 96well microtiter plate with F-bottoms and a lid was incubated in the plate reader at 37 °C with constant shaking, and the OD630 was measured every 20 minutes for 24 hours. 200 μ l of microtiter cultures with a starting OD630 of 0.05 was used. The concentration of inducer ATc is 200 ng/ml. All measurements were normalized based on the media blanks, and the mean and standard deviation of all 12 biological replicates were calculated.

Supplementary reference:

- 1 Anzalone, A. V. *et al.* Search-and-replace genome editing without double-strand breaks or donor DNA. *Nature* **576**, 149-157, doi:10.1038/s41586-019-1711-4 (2019).
- 2 Lin, Q. *et al.* Prime genome editing in rice and wheat. *Nat. Biotechnol.* **38**, 582-585, doi:10.1038/s41587-020-0455-x (2020).
- 3 Mali, P. *et al.* CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. *Nat. Biotechnol.* **31**, 833-838, doi:10.1038/nbt.2675 (2013).
- 4 Ran, F. A. *et al.* Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. *Cell* **154**, 1380-1389, doi:10.1016/j.cell.2013.08.021 (2013).
- 5 Bowater, R. & Doherty, A. J. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. *PLoS Genet.* **2**, e8, doi:10.1371/journal.pgen.0020008 (2006).
- 6 Shuman, S. & Glickman, M. S. Bacterial DNA repair by non-homologous end joining. *Nat. Rev. Microbiol.* **5**, 852-861, doi:10.1038/nrmicro1768 (2007).
- 7 Tong, Y., Charusanti, P., Zhang, L., Weber, T. & Lee, S. Y. CRISPR-Cas9 Based Engineering of Actinomycetal Genomes. *ACS Synth. Biol.* **4**, 1020-1029, doi:10.1021/acssynbio.5b00038 (2015).
- 8 Qi, L. S. *et al.* Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. *Cell* **152**, 1173-1183, doi:10.1016/j.cell.2013.02.022 (2013).
- 9 Rhodius, V. A. *et al.* Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters. *Mol. Syst. Biol.* **9**, 702, doi:10.1038/msb.2013.58 (2013).
- 10 Hsu, J. Y. *et al.* PrimeDesign software for rapid and simplified design of prime editing guide RNAs. doi:10.1101/2020.05.04.077750.