Appendix 1 Questionnaire items

No.	Items
	Respondents' characteristics
1	The hospital that you work for:
2	Your working department:
3	Sex: Dale Demale
4	Age: (years)
5	Educational level: PhD Master's degree College diploma Others
6	Type of employees: Physician Manager Others
7	Working years: □<5 □5- □10- □15- □20-
	Perceptions of AI-assisted CT diagnostic technology for classification of pulmonary nodules as benign or malignant
8	Do you know about AI-assisted CT diagnostic technology for pulmonary nodules?
	□No
	□Yes, but without practical experience
	□Yes, with experience in clinical research
	□Yes, with experience in clinical practice
9	What do you think the main benefits of Al-assisted CT diagnostic technology for pulmonary nodules (Check the top three)?
	□High diagnostic accuracy
	□Improved diagnostic efficiency
	□Reduced diagnostic expense
	□Improved patient satisfaction
	□Reduced workload of radiologists
	□Reduced number of radiologists
	□Others
10	What do you think the main risks of AI-assisted CT diagnostic technology for pulmonary nodules (Check the top three)?
	□Leakage of patient privacy
	□Increased risk of misdiagnosis
	□Increased risk of missed diagnosis
	□Increased diagnostic expense
	□Reduced diagnostic competence of radiologists
	□Lack of unified diagnostic standard
	□Increased workload of radiologists
	□Others
11	Do you support the clinical application of AI-assisted CT diagnostic technology for pulmonary nodules?
	□Strongly supported
	□Somewhat supported
	□Neutral
	□Somewhat unsupported
	□Strongly unsupported

Appendix 2 Study Characteristics

Characteristics	No.	Percent (%)	Characteristic	No.	Percent (%)
Year of publication			Data source		
2010	3	10.71	Hospital	9	32.14
2011	1	3.57	LIDC-IDRI dataset [†]	7	25.00
2012	4	14.29	Hospital and LIDC-IDRI	3	10.71
2013	3	10.71	Others	9	32.14
2014	2	7.14	Total	28	100.00
2015	2	7.14	Algorithms		
2016	2	7.14	Support vector machine	15	29.41
2017	3	10.71	Deep belief network	8	15.69
2018	7	25.00	Decision tree	7	13.73
2019	1	3.57	Convolutional neural network	5	9.80
Total	28	100.00	Artificial neural network	3	5.88
Countries where the first author was from			Bayesian network	2	3.92
China	20	71.43	Fuzzy C-means	2	3.92
USA	4	14.29	Others	9	17.65
Turkey	2	7.14	Total	51	100.00
Others	2	7.14			
Total	28	100.00			
Golden criterion					
Diagnosis according to the LIDC-IDRI dataset	7	25.00			
Pathologic diagnosis	6	21.43			
Pathologic diagnosis or follow-up	6	21.43			
Radiologist' diagnosis	6	21.43			
Others	3	10.71			
Total	28	100.00			

[†]LIDC-IDRI dataset: the dataset of the Lung Image Database Consortium (LIDC) of the Image Database Resource Initiative (IDRI).

Appendix 3 Basic information of the included studies

Study	Algorithms	Ν	TP	FP	FN	ΤN	Sensitivity (%)	Specificity (%)	Accuracy (%)
Di., 2010 (1)	a. BP neural network	193	121	32	23	17	a. 84.03	a. 34.69	a. 71.50
	b. Support vector machine	193	94	10	50	39	b. 65.28	b. 79.59	b. 68.91
El-Baz <i>et al.</i> , 2010 (2)	Bayes	55	24	0	2	29	92.31	100.00	96.36
Liu <i>et al.</i> , 2010 (3)	Not reported	48	23	3	1	21	95.83	87.50	91.67
El-Baz <i>et al.</i> , 2011 (4)	K-nearest	327	143	11	10	163	93.46	93.68	93.58
Chang., 2012 (5)	Support vector machine (testing dataset 1)	16	9	2	3	2	75.00	50.00	68.75
	Support vector machine (testing dataset 2)	15	10	1	1	3	90.91	75.00	86.67
	Support vector machine (testing dataset 3)	16	7	1	5	3	58.33	75.00	62.50
	Support vector machine (testing dataset 4)	15	8	2	3	2	72.73	50.00	66.67
	Support vector machine (testing dataset 5)	31	20	3	3	5	86.96	62.50	80.65
	Support vector machine (testing dataset 6)	31	19	3	4	5	82.61	62.50	77.42
He et al., 2012 (6)	Support vector machine	500	250	4	8	238	96.90	98.35	97.60
Liu., 2012 (7)	Fuzzy pattern recognition	10	5	1	1	3	83.33	75.00	80.00
Luo 2012 (8)	Least squares support vector machine	20	7	1	3	9	70.00	90.00	80.00
Dilger., 2013 (9)	Artificial neural network	27	10	2	0	15	100.00	88.24	92.59
Gu., 2013 (10)	Discrimination method of large log-likelihood	100	40	10	10	40	80.00	80.00	80.00
Zhang <i>et al</i> 2013 (11)	a Decision tree (C4 5)	40	15	5	6	14	a 71 43	a 73.68	a 72.50
	h Bavesian network	40	16	4	5	15	b 76 19	b 78.95	b 77.50
	c. Support vector machine	40	17	3	4	16	c 80 95	c 84 21	c 82.50
Dandil et al. 2014 (12)	Artificial neural network	64	24	4	2	34	92.31	89 47	90.63
Li 2014 (13)	a Fuzzy C-Means	132	60	21	12	30	a 83 33	a 65.00	a 75.00
LI., 2014 (10)	b. Automatically weighted fuzzy C mean	132	63	2 I Q	9	51	b 87 50	b 85.00	b 86 36
	clustering	102	00	0	0	01	5.07.00	5. 00.00	5. 00.00
Dilger., 2015 (14)	a. Artificial neural network	50	20	2	2	26	a.90.91	a. 92.86	a. 92.00
	b. Linear discriminant analysis	50	17	3	5	25	b.77.27	b. 89.29	b. 84.00
Zhang et al., 2015 (15)	Not reported	60	25	4	5	26	83.33	86.67	85.00
Manikandan <i>et al.</i> , 2016 (16)	Support vector machine	257	22	16	0	219	100.00	93.19	93.77
Wang et al., 2016 (17)	Support vector machine	193	91	15	31	56	74.59	78.87	76.17
da Silva <i>et al.</i> , 2017 (18)	Convolutional neural network	200	98	9	2	91	98.00	91.00	94.50
Wei., 2017 (19)	Deep belief network	210	85	8	5	112	94.44	93.33	93.81
Yang., 2017 (20)	Deep belief network (testing dataset 1)	200	98	2	3	97	97.03	97.98	97.50
	Deep belief network (testing dataset 2)	200	99	1	2	98	98.02	98.99	98.50
	Deep belief network (testing dataset 3)	200	96	4	4	96	96.00	96.00	96.00
	Deep belief network (testing dataset 4)	200	97	3	2	98	97.98	97.03	97.50
	Deep belief network (testing dataset 5)	200	98	2	3	97	97.03	97.98	97.50
	Deep belief network (testing dataset 6)	200	98	2	3	97	97.03	97.98	97.50
Dong., 2018 (21)	Support vector machine	1500	765	36	50	649	93.87	94.74	94.27
Dandıl <i>et al.</i> , 2018 (22)	Probabilistic neural network	220	113	6	3	98	97.41	94.23	95.91
Guan., 2018 (23)	Convolutional neural network	200	94	9	6	91	94.00	91.00	92.50
Li <i>et al.</i> , 2018 (24)	Random forest (testing dataset 1)	100	17	13	3	67	85.00	83.75	84.00
	Random forest (testing dataset 2)	200	62	22	8	108	88.57	83.08	85.00
	Random forest (testing dataset 3)	300	52	22	6	220	89.66	90.91	90.67
	Random forest (testing dataset 4)	400	120	16	16	248	88.24	93.94	92.00
	Random forest (testing dataset 5)	500	147	31	13	309	91.88	90.88	91.20
	Random forest (testing dataset 6)	600	184	40	16	360	92.00	90.00	90.67
Liu <i>et al.</i> , 2018 (25)	a. Support vector machine based on texture features	150	39	30	36	45	a. 52.00	a. 60.00	a. 56.00
	b. Support vector machine based on multi- resolution histogram features	150	69	21	6	54	b. 92.00	b. 72.00	b. 82.00
	c. Deep belief network	150	72	18	3	57	c. 96.00	c. 76.00	c. 86.00
Yang, K.Q., 2018 (26)	Convolutional neural network and residual neural network	220	130	24	10	56	92.86	70.00	84.55
Yang, F., 2018 (27)	Convolutional neural network	91	40	6	4	41	90.91	87.23	89.01
Ren <i>et al.</i> , 2019 (28)	a. Manifold regularized classification deep neural network	245	70	8	16	151	a. 81.40	a. 94.97	a. 90.20
	b. Classification deep neural network	245	54	10	32	149	b. 62.79	b. 93.71	b. 82.86
All		9646	4009	515	460	4662	89.71	90.05	89.89

TP: true positive; FP: false positive; FN: false negative; TN: true negative.

© Journal of Thoracic Disease. All rights reserved.

https://dx.doi.org/10.21037/jtd-21-810

References

- Di X. Research on Diagnosis Model of Solitary Pulmonary Nodules Based on CT Images. Thesis, Harbin University. 2010. Available online: https://kns.cnki.net/kcms/detail/ detail.aspx?dbcode=CMFD&dbname=CMFD2012&filena me=1011041689.nh&v=iNpYzu%25mmd2B6p5k1h%25m md2F1x%25mmd2Bl%25mmd2BnuRcJIVpBuOibmYidYe URjPCOCeHbYKxSZD7etIXHdaL7.
- El-Baz A. Gimel'farb G, Falk R, et al. Appearance analysis for diagnosing malignant lung nodules. In Proceedings of the 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Rotterdam, Netherlands, 2010; 193-6. doi: 10.1109/ISBI.2010.5490380.
- Liu Z. The diagnostic value of MSCT LungCARE software for solitary pulmonary nodules. Guizhou Medical Journal 2010;34:539-42.
- 4. El-Baz A, Nitzken M, Elnakib A, et al. 3D shape analysis for early diagnosis of malignant lung nodules. Med Image Comput Comput Assist Interv 2011;14:175-82.
- Chang S. Identification of benign and malignant pulmonary nodule based on 3D space. Thesis, Beijing Jiaotong University. 2012. Available online: http://cdmd. cnki.com.cn/Article/CDMD-10004-1012356698.htm.
- He J, Liang P, Y. Luo Y, et al. A diagnosis model design of SPN during MSCT scanning based on neural network. Clinical Medical Engineering 2012;19:497-9.
- Liu H. Analysis of X-ray Chest Radiographs Based on Fuzzy Theory. Thesis, Zhongbei University. 2012. Available online: https://d.wanfangdata.com.cn/thesis/ D316201.
- Luo K. Researched on the Feature Extraction and SVM Classifier in the CT Images. Thesis, Xihua University. 2012. Available online: https://d.wanfangdata.com.cn/ thesis/ChJUaGVzaXNOZXdTMjAyMTAzMDISCFkyM TEzMjE0Ggg4eGd5eG1qdQ%3D%3D.
- Dilger SKN. The use of surrounding lung parenchyma for the automated classification of pulmonary nodules. Thesis, University of Iowa. 2013. Available online: https://ir.uiowa. edu/cgi/viewcontent.cgi?article=4603&context=etd.
- Gu Y. Comparative study of routine morphology CT perfusion and computer aided diagnosis to solitary pulmonary nodule and mass. Thesis, Xuzhou Medical College. 2013. Available online: https://d.wanfangdata. com.cn/thesis/ChJUaGVzaXNOZXdTMjAyMTAzMDIS CFkyNDM1MzAwGghhemJ3emE2NQ%3D%3D.
- Zhang J, Xia X, Li P, et al. The diagnosis of solitary pulmonary nodule by computer-aided diagnosis in CT. Journal Med Imaging 2013;9:1386-90.

- Dandil E, Çakıroğlu M, Ekşi Z, et al. Artificial neural network-based classification system for lung nodules on computed tomography scans, International Conference of Soft Computing and Pattern Recognition 2014;382-6. doi: 10.1109/SOCPAR.2014.7008037.
- Li J. The discrimination system of solitary pulmonary nodules on CT images. Thesis, Hebei University. 2014. Available online: https://d.wanfangdata.com.cn/thesis/ChJ UaGVzaXNOZXdTMjAyMTAzMDISB0Q1MzAwMTca CGdsbGNsZHo0.
- Dilger SNK, Uthoff J, Judisch A, et al. Improved pulmonary nodule classification utilizing quantitative lung parenchyma features. J Med Imaging (Bellingham) 2015;2:041004.
- Zhang Z, Zhang C, Wang G, et al. The computered-aided diagnosis of solitary pulmonary nodule based on HDCT. J Med Imaging 2015;25:993-7.
- Manikandan T, Bharathi N. Lung cancer detection using fuzzy auto-seed cluster means morphological segmentation and SVM classifier. J Med Syst 2016;40:181.
- Wang J, Liu X, Dong D, et al. Prediction of malignant and benign of lung tumor using a quantitative radiomic method. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 2016; 1272–5. doi: 10.1109/EMBC.2016.7590938.
- da Silva GLF, da Silva NOP, Silva AC, et al. Lung nodules diagnosis based on evolutionary convolutional neural network. Multimed Tools Appl 2017;76:19039-55.
- Wei B. Lung ROI feature extraction and selection for classification of benign and malignant nodules based on radiomics. Thesis, Hebei University. 2017. Available online: https://d.wanfangdata.com.cn/thesis/ChJUaGVza XNOZXdTMjAyMTAzMDISCUQwMTI4NzI1NBoId2 02amlkZ3Y%3D.
- 20. Yang J. Research on classification of lung nodules based on deep belief network. Thesis, Taiyuan University. 2017. Available online: https://d.wanfangdata.com.cn/thesis/ChJ UaGVzaXNOZXdTMjAyMTAzMDISCUQwMTIyODY wMBoIazh2dHNlenE%3D.
- Dong L. Research of benign and malignant diagnosis methods for pulmonary nodules based on three dimensional space. Thesis, Tai-yuan University. 2018. Available online: https://d.wanfangdata.com.cn/thesis/ChJ UaGVzaXNOZXdTMjAyMTAzMDISCUQwMTQ0Nz Q3NxoIeG8xOWRtbG0%3D.
- 22. Dandil E. A computer-aided pipeline for automatic lung cancer classification on computed tomography scans. J Healthc Eng 2018;2018:1-12.

- Guan S. Research and application of end-to-end machine learning models in diagnosis of lung nodules. Thesis, Taiyuan University. 2018. Available online: https:// d.wanfangdata.com.cn/thesis/ChJUaGVzaXNOZXdTMj AyMTAzMDISCUQwMTQ0NzQ4MhoIdTJmNXhuZH A%3D.
- 24. Li X, Li B, Tian L, et al. Automatic benign and malignant classification of pulmonary nodules in thoracic computed tomography based on RF algorithm. Iet Image Processing 2018;12:1253-64.
- Liu L, Yang P, Sun W, et al. DBN classifier for classification of benign and malignant solitary pulmonary nodule. Journal of Harbin University of Science and Technology 2018;22:9-15.
- 26. Yang K. A study on differential diagnosis of benign and

malignant pulmonary nodules based on deep learning algorithm. Thesis, Zunyi Medical College. 2018. Available online: https://d.wanfangdata.com.cn/thesis/ ChJUaGVzaXNOZXdTMjAyMTAzMDISCUQwMTQ 4NzQ1NxoIZDVqM2hobWI%3D.

- 27. Yang F. Research on lung nodule classification algorithm based on convolutional neural network. Thesis, Taiyuan University. 2018. Available online: https://d.wanfangdata. com.cn/thesis/ChJUaGVzaXNOZXdTMjAyMTAzMDIS CUQwMTQ0NzQ4NxoIb2hpbjF4cHI%3D.
- Ren Y, Tsai MY, Chen L, et al. A manifold learning regularization approach to enhance 3D CT image-based lung nodule classification. Int J Comput Assist Radiol Surg 2019;15:287-95.

Figure S1 Adjusted pooled diagnostic odds ratio of AI-assisted CT diagnostic technology for pulmonary nodules[†]. [†]A multilevel linear regression model (method=REML, weight=1/variance of odds) was used to control for a study random effect and other fixed effects (number of nodules and algorithms or countries). "**" and "***" indicate that the adjusted pooled DOR for the group was significantly higher than 1, with P<0.01 and with P<0.001, respectively.

Characteristic	No.	Percent (%)	Characteristic	No.	Percent (%)
Region			Sex		
Shanghai	112	32.46	Male	170	49.28
Hubei province	134	38.84	Female	175	50.72
Gansu province	99	28.70	Total	345	100.00
Total	345	100.00	Educational level		
Hospital type			PhD	94	27.25
General hospitals	239	69.28	Master's degree	181	52.46
Specialty hospitals	106	30.72	Bachelor's degree or college diploma	70	20.29
Total	345	100.00	Total	345	100.00
Department			Type of employees		
Oncology department	174	50.43	Physicians	288	83.48
Imaging department	111	32.17	Managers	57	16.52
Others	60	17.39	Total	345	100.00
Total	345	100.00	Experiences with AI-assisted		
Age group (years)			CT diagnostic technology		
20-	72	20.87	for pulmonary nodules		
30-	162	46.96	Had experience	72	20.87
40-	67	19.42	Did not have experience	273	79.13
50-	44	12.75	Total	345	100.00
Total	345	100.00			

Appendix 4 Characteristics of the physicians who were surveyed