Supplementary Materials

Test-retest reliability of CID

Twenty right eyes of 20 healthy subjects (10 men and 10 women) were analyzed in the crosssectional study. The mean age was 29.4 ± 2.6 (range: 20-56) years old. The inclusion and exclusion criteria were same as criteria in the manuscript method. To assess the intra-operator repeatability, the Corneal Indentation Device (CID) measurements were repeated two times by the observer. Paired *t*-test was used to compare the difference between two CID tests. Intraclass correlation (ICC) and Bland-Altman analysis were carried out to evaluate the test-retest reliability of CID measurement.

The comparison and reliability indices (ICC and Cronbach's α) of CID parameters are shown in Table S1. The paired *t*-test analysis revealed no significant intra-operator differences for both CID parameters (p > 0.05). The stiffness (ICC 0.812; Cronbach's α 0.892) and modulus (ICC 0.858; Cronbach's α 0.921) of two measurements showed excellent repeatability (ICC \geq 0.75; Cronbach's $\alpha > 0.7$). According to the Bland-Altman plot (Figure S1), the narrow limits of agreement (LoA) of stiffness (-0.005 to 0.003) and modulus (-0.038 to 0.026) were observed. It showed that 100% were included in 95% limits of agreement.

In conclusion, both the stiffness and modulus showed favorable measurement reliability in healthy subjects.

	Test 1	Test 2	Paired <i>t</i> -test	ICC	Cronbach's
			P value		α
Stiffness (N/mm)	0.079 ± 0.013	0.080 ± 0.013	0.710	0.812*	0.892
Modulus (MPa)	0.653±0.123	0.659 ± 0.129	0.705	0.858^*	0.921

Table S1. The comparison and reliability indices of CID parameters in two measurements

* Correlation is significant at the 0.05 level.