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S1. Methods 
S1.1 Description of the GLOMAP global aerosol model 

The Global Model of Aerosol Processes (GLOMAP) (Spracklen et al., 2005; Mann et 
al., 2010) is an extension of the TOMCAT global 3-D offline chemical transport model 
(Chipperfield, 2006), resolving aerosol chemistry and microphysics. The GLOMAP 
aerosol model has a horizontal resolution of 2.8°×2.8° with 31 vertical model levels 
between the surface and 10 hPa. Large-scale atmospheric transport and meteorology in are 
specified from European Centre for Medium-Range Weather Forecasting (ECMWF) ERA-
Interim global reanalysis data (Dee et al., 2011), updated every six hours and linearly 
interpolated onto the model time step. The aerosol size distribution is represented by a two-
moment modal aerosol scheme (Mann et al., 2010). GLOMAP includes black carbon (BC), 
primary and secondary organic aerosol, sulfate (SO4), sea spray and mineral dust. 
Concentrations of oxidants are specified using monthly mean 3-D fields at 6-hourly 
intervals from a TOMCAT simulation with detailed tropospheric chemistry (Arnold et al., 
2005) linearly interpolated onto the model time step. 
Anthropogenic emissions of sulfur dioxide (SO2), BC and organic carbon (OC) were 
specified using annually varying MACCity emissions inventory for the years 2002-2010 
(Granier et al., 2011). For simulations in 2011 and beyond, we used MACCity 
anthropogenic emissions from 2010. Monthly mean emissions of biogenic monoterpenes 
are taken from the Global Emissions InitiAtive (GEIA) database (Guenther et al., 1995). 
Monoterpenes are oxidised to form a product that condenses irreversibly in the particle 
phase to form secondary organic aerosol (Scott et al., 2014). Size-resolved emissions of 
mineral dust are prescribed from daily varying emissions fluxes provided for AEROCOM 
(Dentener et al., 2006). 

S1.2 Description of the WRF-Chem regional model 
In the version of WRF-Chem used in this study, aerosol physics and chemistry are treated 
using the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC; Zaveri et 
al., 2008) scheme, using chemistry option 201, with an extended treatment of organic 
aerosol (Hodzic and Jimenez, 2011; Hodzic and Knote, 2014). The MOSAIC scheme treats 
major aerosol species including SO4, nitrate, chloride, ammonium, sodium, BC, primary 
and secondary organic aerosol (formed from biogenic, anthropogenic and biomass burning 
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precursors), and other inorganics (including crustal and dust particles and residual primary 
PM2.5). Four discrete size bins are used within MOSAIC to represent the aerosol size 
distribution (with the following dry particle diameter ranges: 0.039–0.156 μm, 0.156–0.625 
μm, 0.625–2.5 μm, and 2.5–10 μm). Gas-phase chemical reactions are calculated using the 
extended Model for Ozone and Related Chemical Tracers (MOZART) (Emmons et al., 
2010) chemical mechanism, with several updates to photochemistry of aromatics, biogenic 
hydrocarbons and other species relevant to regional air quality (Hodzic and Jimenez, 2011; 
Knote et al., 2014). 
Simulated mesoscale meteorology is kept in line with analysed meteorology through grid 
nudging to the National Centre for Environmental Prediction (NCEP) Global Forecast 
System (GFS) analyses to limit errors in mesoscale transport (NCEP, 2000; 2007). The 
model meteorology was reinitialised every month to avoid drifting of WRF-Chem and spun 
up for 12 hours, while chemistry and aerosol fields were retained to allow for pollution 
build-up and mesoscale pollutant transport phenomena to be captured. MOZART-
4/Goddard Earth Observing System Model version 5 (GEOS5) 6-hourly simulation data 
(NCAR, 2016) were used for chemical and aerosol boundary conditions.  
Anthropogenic emissions were taken from the Emission Database for Global Atmospheric 
Research with Task Force on Hemispheric Transport of Air Pollution (EDGAR-HTAP) 
version 2.2 at 0.1°×0.1° horizontal resolution (Janssens-Maenhout et al., 2015). Biogenic 
emissions were calculated online by the Model of Emissions of Gases and Aerosol from 
Nature (MEGAN; Guenther et al., 2006). Dust emissions were calculated online through 
the Georgia Institute of Technology-Goddard Global Ozone Chemistry Aerosol Radiation 
and Transport (GOCART) model with Air Force Weather Agency (AFWA) modifications 
(LeGrand et al., 2019). 

S1.3 Calculation of public health impacts 

The relative risk of disease at a specific ambient PM2.5 exposure was estimated through the 
Global Exposure Mortality Model (GEMM) (Burnett et al., 2018). The population 
attributable fraction (PAF) was estimated per grid cell as a function of population (P) and 
the relative risk (RR) of exposure following Equation 1. We used the GEMM for non–
accidental mortality (non–communicable disease, NCD, plus lower respiratory infections, 
LRI), using parameters including the China cohort (Yin et al., 2017), with age–specific 
modifiers for adults over 25 years of age in 5–year intervals. The GEMM functions have 
mean, lower, and upper uncertainty intervals. The minimum-risk exposure for the GEMM 
functions is 2.4 µg m–3. 

𝑃𝐴𝐹 = 𝑃 × (𝑅𝑅!"# − 1 𝑅𝑅!"#⁄ )                                             (1) 
For ambient ozone (O3) exposure, the PAF was estimated as a function of the summary 
hazard ratio (HR) for chronic obstructive pulmonary disease (COPD) only and the change 
in annual average, daily maximum, 8–hour, O3 concentrations (ADM8h) relative to the 
minimum–risk exposure (ΔX) as shown by Equation 2. The HR for COPD was 1.14 (95UI: 
1.08–1.21) (Turner et al., 2016). The minimum-risk exposure followed the minimum 
percentiles of 26.7 ppb. 

𝑃𝐴𝐹 = 𝑃 × ,1 − 𝑒$"×&'()*) ,-⁄ .                                             (2) 
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Premature mortality (MORT), years of life lost (YLL), and years lived with disability 
(YLD) per health outcome, age bracket, and grid cell were estimated as a function of the 
PAF and corresponding baseline mortality (I) following Equations 3, 4, and 5, respectively. 
Disability–adjusted life years (DALYs), i.e., the total loss of healthy life, were estimated 
as the total of YLL and YLD following Equation 6. Mean estimates were quantified in 
addition to upper and lower uncertainty intervals at the 95% confidence level. The rates of 
MORT, YLL, YLD, and DALYs were calculated per 100,000 population. 

𝑀𝑂𝑅𝑇 = 𝑃𝐴𝐹 × 𝐼/0*1                                                      (3) 

𝑌𝐿𝐿 = 𝑃𝐴𝐹 × 𝐼233                                                         (4) 

𝑌𝐿𝐷 = 𝑃𝐴𝐹 × 𝐼234                                                        (5) 

𝐷𝐴𝐿𝑌𝑠 = 𝑌𝐿𝐿 + 𝑌𝐿𝐷                                                      (6) 
The United Nations adjusted population count dataset for 2015 at 0.25° × 0.25° resolution 
was obtained from the Gridded Population of the World, Version 4 (GPWv4) (Center for 
International Earth Science Information Network (CIESIN), 2016a). Population age 
composition for 2015 for adults 25 to 80 years in 5–year intervals, and 80 years plus, was 
taken from the Global Burden of Disease (GBD) Study 2017 (GBD 2017 Risk Factors 
Collaborators, 2018). Cause–specific (NCD, LRI, and COPD) baseline mortality and 
morbidity rates for 2015 for MORT, YLL, and YLD for each age bracket were also taken 
from the GBD Study 2017 (Institute for Health Metrics and Evaluation, 2019). Shapefiles 
were used to aggregate results at the country and state level (Hijmans et al., 2016).  

S1.4 Measurements of particulate matter and ozone concentrations 
To evaluate model-simulated monthly mean surface PM10 concentrations (Sects. 3.2.1 and 
3.2.2), we used data from the Pollution Control Department (PCD) of the Thailand 
Government Ministry of Natural Resources and Environment 
(http://www.pcd.go.th/index.cfm). The PCD air quality database (available at: 
http://air4thai.pcd.go.th/webV2/history/) contains historical monthly mean PM10 
concentrations measured at ground-based air quality monitoring stations located across 
Thailand (see Fig. S1a). To evaluate the GLOMAP model we used measurements from 
stations with data available between January 2003 and December 2015 (inclusive). To 
evaluate the WRF-Chem model we used measurements from stations with data available 
between January 2014 and December 2014 (inclusive). 
To evaluate WRF-Chem-simulated surface ozone concentrations (Sect. 3.2.3), we used 
data from the Berkley Earth China Air Quality Data Set (available at: 
http://berkeleyearth.lbl.gov/manual/china_air_quality/) (Rohde and Muller, 2015). This 
dataset consists of hourly real-time ozone data recorded at surface air quality monitoring 
stations located in urban areas in China and surrounding countries (see Fig. S1b). The 
ozone data was downloaded by Rohde and Muller (2015) from https://aqicn.org/ between 
5th April and 18th July 2014. Some quality control and validation checks were applied to 
the raw data prior to incorporation into the Berkley Earth China Air Quality Data Set (see 
further details in Rohde and Muller (2015)).  We calculated daily mean values from the 
hourly data. 
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To evaluate WRF-Chem-simulated surface PM2.5 concentrations (Sect. S2.2), we used a 
subset of measured annual mean PM2.5 concentrations from the World Health Organization 
(WHO) Global Ambient Air Quality Database (WHO, 2018). The database consists of city-
average annual mean PM2.5 concentrations obtained from multiple ground station 
measurements across different years. To compare with the model concentrations, we 
selected measurement years to match or to be as close as possible to the simulation year of 
2014. For some locations, PM2.5 concentrations have been calculated by the WHO from 
the measured PM10 concentration using national conversion factors (PM2.5/PM10 ratio) 
either provided by the country or estimated as population‐weighted averages of urban‐
specific conversion factors (estimated as the mean PM2.5/PM10 ratio of stations for the same 
year) for the country (WHO, 2016; 2018). 
Prior to all model-measurement comparisons, simulated surface PM/ozone concentrations 
were linearly interpolated to the location (longitude and latitude) of the individual air 
quality monitoring stations; averaged over the corresponding time period (daily, monthly 
or annual); and simulated data corresponding to time periods of missing measurement data 
was removed. 

S1.5 Global Subnational Infant Mortality Rates 
We used the Global Subnational Infant Mortality Rates (IMR), Version 2, dataset from 
NASA Socioeconomic Data and Applications Center (SEDAC) (CIESIN, 2018a; Fig. S8), 
which is benchmarked to the year 2015. We selected the year 2015 (from two years 
available: 2000 and 2015) to be as close as possible to the WRF-Chem model simulation 
year (2014) and to be consistent with the 2015 population count dataset used to calculate 
public health impacts (Sect. S1.3). National median estimates of IMR show little change 
between 2014 and 2015 (ranging from a 1% change in Vietnam to an 8% change in China) 
(United Nations Inter-agency Group for Child Mortality Estimation, 2020). 
The dataset includes IMR data for the lowest administrative units available for each country 
as of June 2017 (CIESIN, 2018b) at a spatial resolution of 30 arc-seconds (~1 km). The 
data were drawn from national offices, Demographic and Health Surveys (DHS), Multiple 
Indicator Cluster Surveys (MICS), and other sources from 2006 to 2014 (CIESIN, 2018b), 
with boundary inputs from the GPWv4 (CIESIN, 2016a; CIESIN, 2016b). 

S2. Extended model evaluation 

S2.1 Extended evaluation of GLOMAP fire-derived PM10 
Figure S2 summarises the agreement between the average seasonal cycles in GLOMAP-
simulated and measured fire-derived PM10 concentrations at each of the 12 fire-influenced 
monitoring stations. The temporal correlation at each station is similar between the model 
simulations with fire (GFED: r=0.90-0.97; GFAS: r=0.80-0.93; FINN: r=0.80-0.99), but 
the observed magnitude and variability in monthly mean PM10 concentrations are captured 
best in the simulation with FINN emissions (GFED: normalised standard deviation 
(NSD)=0.25-0.37; GFAS: NSD=0.29-0.42; FINN: NSD=0.73-1.06). 
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S2.2 Evaluation of WRF-Chem PM2.5 

We evaluate annual mean PM2.5 concentrations simulated by WRF-Chem because the 
estimated public health impacts of fire-derived PM (Sect. 3.4) are calculated using this 
quantity. Figure S5 compares annual mean surface PM2.5 concentrations from the 
FINNx1.5 simulation against PM2.5 measurements from the WHO Global Air Quality 
Database. The model captures the spatial distribution of measured annual mean PM2.5 
concentrations reasonably well across the region, with greatest concentrations in southern 
China and north-eastern India and comparatively lower concentrations over Mainland 
Southeast Asia (Fig. S5a). We find that the spatial agreement between the model and 
measurements (Fig 5b; r=0.47) is improved with 2014-only measurements (r=0.85) or only 
using direct measurements of PM2.5, removing those converted from PM10 (r=0.86). 
Simulated annual mean PM2.5 concentrations are unbiased when compared against all the 
WHO measurements available within the model domain (Fig. S5b; NMBF=0.05). Table 
S1 summarises the agreement between model and measurements by country. The model 
captures the magnitude concentrations within a factor 1.5 in Vietnam, north-east India, 
southern China and Thailand. The model underestimates measured annual mean PM2.5 
concentrations in Myanmar by a factor 2 (NMBF=-1.01), likely due to a combination of 
underestimating anthropogenic and fire emissions, underestimating or missing outflow of 
PM from India, and mismatching measurement and simulation years. We also note that the 
WHO PM2.5 concentrations reported for Myanmar are converted from PM10, which can be 
associated with large uncertainties. 
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Supporting Tables 

 

Country No. of 
stations 

Year(s) of 
measurements 

Measured/ 
converted 
PM2.5 

Model 
(FINN) 
NMBF; r 

Model 
(FINNx1.5) 
NMBF; r 

South-eastern 
China 

58 2014 Measured +0.19;  0.86 +0.20;  0.86 

North-eastern 
India 

17 2012, 2014, 
2015 

Measured: 3 
Converted: 14 

+0.03;  0.26 +0.07;  0.28 

Myanmar 16 2009, 2012, 
2013, 2015 

Converted -1.23;  0.35 -1.01;  0.36 

Thailand 22 2014 Converted +0.09;  0.41 +0.16;  0.40 

Vietnam 2 2016 Measured  +0.47;  - +0.50;  - 

Table S1. Summary of annual mean PM2.5 measurements from the World Health Organization 
(WHO) Ambient Air Quality Database (WHO, 2018). The table shows the number of stations with 
available data, the year(s) the measurements were conducted and the number of reported PM2.5 
concentrations that were converted from PM10 measurements. The WRF-Chem normalised mean 
bias factor (NMBF; Yu et al., 2006) and Pearson’s correlation coefficient (r) against observations 
are given for each country with available WHO measurements. 
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Country/ 
region 

Reduction in 
PM2.5 MORT 

PM2.5 MORT 
(yr-1) 

PM2.5 

DALYs (yr-1) 
Reduction in 
O3 MORT 

O3 MORT 
(yr-1) 

Cambodia 10% 
1,100 (1,000-

1,300) 

44,500 
(36,700-
53,600) 15% 

150 (130-
160) 

Laos 22% 
1,200 (1,000-

1,400) 

47,600 
(37,000-
57,900) 17% 80 (70-90) 

Myanmar 17% 
8,000 (7,100-

9,000) 

293,800 
(243,800-
349,200) 21% 

1,090 (960-
1,210) 

Thailand 12% 
6,500 (6,000-

7,000) 

264,200 
(221,300-
311,100) 8% 

620 (570-
670) 

Vietnam 3% 
3,600 (3,300-

4,100) 

131,900 
(108,800-
159,100) 5% 

410 (360-
450) 

Total 
Mainland 
SE Asia 9% 

20,500 
(18,400-
22,700) 

782,000 
(647,700- 
931,000 ) 10% 

 

2,350 
(2,090-
2,570) 

SE China 3% 

24,000 
(23,400-
24,800) 

798,100 
(703,500-
906,800)  2% 

2,170 
(1,950-
2,350) 

Table S2. Averted public health effects due to changes in long-term exposure to ambient PM2.5 and 
ozone (O3) from eliminating fire emissions. Shown are the percentage reductions in annual disease 
burden, and the numbers of averted annual premature mortalities (MORT) and disability-adjusted 
life years (DALYs) per country for the lower fire emissions scenario (FINN). Values in parentheses 
represent the 95% uncertainty intervals (95UI). PM2.5 mortality values are rounded to the nearest 
100 and O3 mortality values are rounded to the nearest 10. “SE China” is defined as south of 30°N 
and east of 98°W, and includes Hong Kong SAR, Macau SAR and Taiwan. “Mainland SE Asia” 
includes Cambodia, Laos, Myanmar, Thailand, and Vietnam. 
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Supporting Figures 

 

 

Figure S1. Locations of the air quality monitoring stations used to evaluate the models (Sects. 3.2 
and 3.3). (a) Thailand PCD PM10 monitoring stations. Stations defined as influenced by fire 
emissions (where FINN fire-derived PM10 contribute ≥ 20% to the annual mean PM10) by both 
the GLOMAP and WRF-Chem models are coloured orange; Stations defined as fire-influenced by 
the WRF-Chem model only are coloured red; stations defined as fire-influenced by the GLOMAP 
model only are coloured light blue; the remaining stations are coloured dark blue. (b) Ozone 
monitoring stations from Rohde and Muller (2015) coloured by region: Thailand (dark blue); 
Mainland China (red); Hong Kong (orange); and Taiwan (light blue). 
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Figure S2. Taylor diagram comparing GLOMAP-simulated and measured multi-annual average 
seasonal cycles of fire-derived PM10 concentrations at 12 air quality monitoring stations in northern 
Thailand (Fig. S1). The measurements are represented by a point on the x-axis at unit distance from 
the y-axis. Results are shown for three model simulations: without fire emissions 
(GLOMAP_nofire); with GFED4 emissions (GLOMAP_GFED); with GFASv1.2 emissions 
(GLOMAP_GFAS); and with FINNv1.5 emissions (GLOMAP_FINN). The model standard 
deviation and centred root mean square error (RMSE) are normalised by dividing by the 
corresponding measured standard deviation. The normalised standard deviation and RMSE values 
are marked by the solid and dashed lines, respectively. 

 

 

 

 

Figure S3. WRF-Chem-simulated and measured monthly mean total PM10 concentrations during 
2014 averaged over 12 air quality monitoring stations in fire-influenced regions of Thailand (Fig. 
S1). Simulated concentrations are shown for the model without fire emissions (WRFChem_nofire), 
and for the model with FINN fire emissions (WRFChem_FINN) and with FINN emissions scaled 
upwards by a factor 1.5 (WRFChem_FINNx1.5).        
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Figure S4. Taylor diagram comparing WRF-Chem-simulated and measured monthly mean fire-
derived PM10 concentrations during 2014 at 12 air quality monitoring stations in fire-influenced 
regions of Thailand (Fig. S1). The measurements are represented by a point on the x-axis at unit 
distance from the y-axis. Results are shown for three model simulations: without fire emissions 
(WRFChem_nofire); with FINN fire emissions (WRFChem_FINN); and with FINN emissions 
scaled upwards by a factor 1.5 (WRFChem_FINNx1.5). The model standard deviation and centred 
root mean square error (RMSE) are normalised by dividing by the corresponding measured 
standard deviation. The normalised standard deviation and RMSE values are marked by the solid 
and dashed lines, respectively. 
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Figure S5. WRF-Chem-simulated and measured annual mean surface PM2.5 concentrations across 
Southeast Asia. (a) Map of the simulated surface distribution of annual mean PM2.5 for 2014 
(underlying colours); overlying circles show measured annual mean PM2.5 concentrations for 
available years (2009-2016). Regions in grey are outside the model domain. (b) Simulated versus 
measured annual mean PM2.5 concentrations. Circles show measured annual mean PM2.5 
concentrations for the year 2014; diamonds show measured concentrations for years other than 
2014. All simulated annual mean PM2.5 concentrations are for the year 2014. The normalised mean 
bias factor (NMBF) and Pearson’s correlation coefficient (r) between simulated and measured 
values are displayed in the top left corner. 

(a) (b) 
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Figure S6. Evaluation of WRF-Chem-simulated ozone (O3) over Thailand and South-eastern (SE) 
China. Left: Time-series of simulated and measured daily mean surface O3 mixing ratios during 
2014; Right: simulated versus measured daily mean O3. Regional/province averages are shown for: 
(a) Tibet (7 air quality monitoring stations); (b) Yunnan (15 stations); (c) Guangxi (24 stations); 
(d) Hainan (20 stations); (e) Guangdong (113 stations); (f) Fujian (13 stations); (g) Zhejiang (60 
stations); (h) Taiwan/Republic of China (ROC) (72 stations); and (i) Hong Kong Special 
Administrative Region (SAR) (12 stations). O3 measurements are available from April to July 2014. 
The model bias (NMBF) and correlation (r2) between modelled and measured values are given at 
the top of the righthand figures. Simulated values are shown for three model simulations: without 
fire emissions (WRFChem_nofire); with FINN fire emissions (WRFChem_FINN); and with FINN 
emissions scaled upwards by a factor 1.5 (WRFChem_FINNx1.5). 
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Figure S7. Spatial distribution of WRF-Chem-simulated annual mean surface (a) PM2.5 and (c) 
ozone concentrations across Southeast Asia for 2014. Simulated concentrations are shown for the 
model simulation with FINN emissions scaled upwards by a factor 1.5 (WRFChem_FINNx1.5) in 
(a) and (c), and the model simulation without fire emissions (WRFChem_nofire) in (b) and (d). 
Regions in grey are outside the model domain. 



 
 

16 
 

 

Figure S8. Spatial distribution of subnational infant mortality rate (IMR) estimates across 
Southeast Asia for the year of 2015 (CIESIN, 2018a). The gridded IMR estimates are at a spatial 
resolution of 30 arc-seconds (~1 km). The IMR for a region or country is defined as the number of 
children who die before their first birthday for every 1,000 live births. 
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Figure S9. Gridded subnational Infant Mortality Rate (IMR; CIESIN, 2018a) values versus 
WRF-Chem simulated annual mean (a) fire-derived PM2.5, (b) non-fire-derived PM2.5, and (c) 
total PM2.5 concentrations across the Southeast Asian domain. The blue data points show mean 
values for binned IMR data (bin size = 10 deaths per 1,000 live births); error bars show the 
standard deviation. The grey data points show all 0.25°x0.25° grid cell values across the domain.  
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