
S1 File1010

6.1 Preliminary notation1011

Let N denote the total number of individuals (experts or participants), indexed by i =1012

1, . . . , N and C denote the total number of events or claims (hereafter, “claim”) to be1013

assessed, usually indexed by c = 1, . . . , C. Each claim has outcome 1 if the claim is1014

true, and 0 otherwise. For each claim c, each individual i provides assessments that1015
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the claim in question is true or false, by estimating three probabilities: Li,c, which is a1016

lower bound ; Ui,c, an upper bound and Bi,c which corresponds to the best estimate for1017

the probability given by individual i for claim c. These estimates satisfy the following1018

inequalities: 0 ≤ Li,c ≤ Bi,c ≤ Ui,c ≤ 1.1019

Each claim is assessed by more than one individual and we aggregate their probabilities1020

to obtain a group probability, denoted p̂c. We will further denote p̂c (Method ID) as the1021

aggregated probability calculated using the aggregation method with a given ID. For1022

example, the first simple average (arithmetic mean) aggregation for claim c is:1023

p̂c (ArMean) =
1

N

N∑
i=1

Bi,c (5)

6.2 Weights1024

Given that many of the aggregation methods proposed involve weighted linear combina-1025

tions of individual assessments, we can define some standard notation to enhance clarity.1026

We denote the unnormalized weights by w method (with subscripts denoting corre-1027

sponding individuals or claims) and the normalised versions by w̃ method. All weights1028

need to be normalised (i.e., to sum to one), but as the process is the same for all of1029

them, we will give the formulae for the unnormalized weights. All differentially weighted1030

combinations will take the form:1031

p̂c (Method ID) =
N∑
i=1

w̃ methodi,cBi,c (6)

We note that while most weights will be calculated on a per claim, per individual basis1032

(i.e., judgements from the same individual may be weighted differently on any given1033

claim), in three cases, the weights will be calculated across all claims on a per individual1034

basis only. In these cases, weights for a given individual will not vary across claims and1035

the weights’ subscript c from the right hand side of Equation (6) will be dropped.1036
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6.3 Aggregation Methods1037

Method IDs will simply be abbreviations of the mathematical operations used to calculate1038

the weights.1039

6.3.1 ArMean: Arithmetic mean of the best estimates1040

The simplest way to aggregate group estimates is to take the unweighted linear average1041

(i.e., simply takes the average of the best estimates Bi,c for each claim). As defined above,1042

the aggregate estimate for claim c is therefore calculated using Equation (5).1043

6.3.2 Median: Median of the best estimates1044

Another approach that is often used due to its simplicity is to take the median of the1045

individuals’ best estimates.1046

p̂c (Median) = Median {Bi,c}i=1,...,N (7)

6.3.3 LOArMean: Arithmetic mean of the log odds transformed best esti-1047

mates1048

Log odds are often used to model probabilities in generalised linear models and state1049

estimation algorithms, typically due to the advantages of mapping probabilities onto a1050

scale where very small values are still differentiable.1051

LogOddsc =
1

N

N∑
i=1

log

(
Bi,c

1−Bi,c

)
The average log odds estimate is then back transformed to give a final group estimate:1052

p̂c (LOArMean) =
eLogOddsc

1 + eLogOddsc
(8)

6.3.4 BetaArMean: A beta-transformed arithmetic mean1053

This method takes the average of best estimates and transforms it using the cumulative1054

distribution function of a beta distribution. This transformation makes the average more1055
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extreme, i.e. increases values larger than 0.5 and decreases values less than 0.5. The Beta1056

distribution is parameterised by two parameters α and β, and in this analysis, we chose1057

α = β and larger than one.1058

p̂c (BetaArMean) = Hα

(
1

N

N∑
i=1

Bi,c

)
(9)

where Hα is the cumulative distribution function of the Beta distribution with two equal1059

parameters.1060

6.3.5 DistribArMean: Arithmetic mean of the non-parametric distributions1061

This method assumes that the elicited probabilities and bounds can be considered to1062

represent participants’ subjective distributions associated with relative frequencies (rather1063

than unique events). That is to say that we considered that the lower bound of the1064

individual per claim corresponds to the 5% percentile of their subjective distribution on1065

the probability of replication, denoted q5,i, the best estimate corresponds to the median1066

q50,i, and the upper bound corresponds to the 95% percentile, q95,i. With these three1067

percentiles, we can build the minimally informative non-parametric distribution that1068

spreads the mass uniformly between the three percentiles, such that the constructed1069

distribution agrees with participant’s assessments and makes no extra assumptions. This1070

approach is inspired by methods for eliciting, constructing and aggregating quantities,1071

rather than probabilities [1].1072

Fi(x) =



0, for x < 0

0.05
q5,i
· x, for 0 ≤ x < q5,i

0.45
q50,i−q5,i · (x− q5,i) + 0.05, for q5,i ≤ x < q50,i

0.45
q95,i−q50,i · (x− q50,i) + 0.5, for q50,i ≤ x < q95,i

0.05
1−q95,i · (x− q95,i) + 0.95, for q95,i ≤ x < 1

1, for x ≥ 1.
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We then average all such constructed distributions of participants for each claim

AvDistribution =
1

N

N∑
i=1

Fi(x);

and the aggregation is the median of the average distribution1073

p̂c (DistribArMean) = AvDistribution−1(0.5) (10)

6.3.6 IntWAgg: Weighted by interval width1074

The width of the interval provided by individuals may be an indicator of certainty, and1075

arguably of accuracy of the best estimate contained between the bounds of the interval.We1076

weight according to the interval width across individuals for that claim, defined as follows:1077

w Intervali,c =
1

Ui,c − Li,c

p̂c (IntWAgg) =
N∑
i=1

w̃ Intervali,cBi,c (11)

6.3.7 IndIntWAgg: Weighted by the rescaled interval width (interval width1078

relative to largest interval width provided by that individual)1079

Because of the variability in the widths of intervals participants give for different claims,1080

we may need to re-scale interval widths across all claims per individual. This results in a1081

re-scaled interval width weight, for individual i for claim c, relative to the widest interval1082

provided by that individual across all claims C:1083

w nIndivIntervali,c =
1

Ui,c−Li,c

max({(Ui,d−Li,d):d=1,...,C})

where Ui,d − Li,d are individual i’s judgements for claim d. Then1084

p̂c (IndIntWAgg) =
N∑
i=1

w̃ nIndivIntervali,cBi,c (12)
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6.3.8 VarIndIntWAgg: Weighted by variation in individuals’ interval widths1085

A related issue is that participants differ in how much they vary in their interval widths. A1086

higher variance may indicate a higher responsiveness to the existing supporting evidence1087

to different claims. Such responsiveness might be predictive of more accurate assessors.1088

We define:1089

w varIndivIntervali = var {(Ui,c − Li,c) : c = 1, . . . , C}

where the variance (var) is calculated across all claims for individual i. Then1090

p̂c (V arIndIntWAgg) =
N∑
i=1

w̃ varIndivIntervaliBi,c (13)

6.3.9 AsymWAgg: Weighted by asymmetry of intervals1091

We use the asymmetry of an interval relative to the corresponding best estimate to define1092

the following weights:1093

w asymi,c =


1− 2 · Ui,c−Bi,c

Ui,c−Li,c
, forBi,c ≥ Ui,c−Li,c

2
+ Li,c

1− 2 · Bi,c−Li,c

Ui,c−Li,c
, otherwise

Then1094

p̂c (AsymAg) =
N∑
i=1

w̃ asymi,cBi,c (14)

6.3.10 IndIntAsymWAgg: Weighted by individuals’ interval widths and asym-1095

metry1096

Assuming that we want to reward both asymmetric and narrow intervals, we would1097

need to formulate a weight that combines the weights calculated in the AsymWAgg and1098

IndIntWAgg methods. One simple way of achieving this is to multiply the previously1099

defined and normalised weights.1100
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w nIndivInterval asymi,c = w̃ nIndivIntervali,c · w̃ asymi,c

p̂c (IndIntAsymWAg) =
N∑
i=1

w̃ nIndivInterval asymi,cBi,c (15)

6.3.11 KitchSinkWAgg: Weighted by everything but the kitchen sink1101

KitchSinkWAgg is an ad-hoc method developed and refined using a single dataset (later1102

used in the analysis as well). This method is informed by the intuition that we want1103

to reward narrow and asymmetric intervals, as well as variability between individuals’1104

interval widths (across their estimates).1105

w kitchSinki,c = w̃ nIndivIntervali,c · w̃ asymi,c · w̃ varIndivIntervali

p̂c (KitchSinkWAg) =
N∑
i=1

w̃ kitchSinki,cBi,c (16)

6.3.12 DistLimitWAgg: Weighted by the distance of the best estimate from1106

the closest certainty limit1107

We give greater weight to best estimates that are closer to certainty limits, as follows1108

w distLimiti,c = max{Bi,c, 1−Bi,c}

p̂c (DistLimitWAgg) =
N∑
i=1

w̃ distLimiti,cBi,c (17)

6.3.13 ShiftWAgg: Weighted by judgments that shifted the most after dis-1109

cussion1110

When judgements are elicited using the IDEA protocol (or any other protocol which1111

allows experts to revisit their original estimates), the second round of estimates may1112

differ from the original first set of estimates an expert provides. Greater changes between1113

47



rounds will be given greater weight, with more emphasis on changes in the best estimate1114

such that1115

w shifti,c = |B1i,c −Bi,c|+
|L1i,c − Li,c|+ |U1i,c − Ui,c|

2

p̂c (ShiftWAgg) =
N∑
i=1

w̃ shifti,cBi,c (18)

where L1i,c, B1i,c, U1i,c are the first round lower, best and upper estimates (prior to1116

discussion) and Li,c, Bi,c, Ui,c are the individual’s revised second round estimates (after1117

discussion).1118

6.3.14 GranWAgg: Weighted by the granularity of best estimates1119

More skilled forecasters might be expected to have a finer grained appreciation of uncer-1120

tainty and thus make more granular forecasts.1121

In our weighting scheme, individuals’ received a score of one for each claim that their1122

best estimate was specified at a more granular level than 0.05 (i.e., not a multiple of1123

0.05), and a zero otherwise. The mean of scores per claim forms a weight per individual,1124

such that1125

w grani =
1

C

C∑
d=1

⌈
Bi,d

0.05
−
⌊
Bi,d

0.05

⌋⌉
,

where b c and d e are the mathematical floor and ceiling functions respectively.1126

p̂c (GranWAgg) =
N∑
i=1

w̃ graniBi,c (19)

6.3.15 EngWAgg: Weighted by the level of engagement as measured by the1127

individuals’ verbosity1128

When assessing claims, individuals have the chance to comment and engage in discussion1129

with other participants. We consider giving greater weight to best estimates that are1130

accompanied by a greater number of comments/justifications. We will consider w engi,c1131
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to be the total number of words used by individual i in comments about their estimates1132

for claim c.1133

p̂c (EngWAgg) =
N∑
i=1

w̃ engi,cBi,c (20)

6.3.16 ReasonWAgg: Weighted by the breadth of reasoning provided to sup-1134

port the individuals’ estimate1135

When individuals provide multiple unique reasons in support of their judgment, this may1136

indicate a breadth of thinking, understanding and knowledge about the claim and its1137

context, and may also reflect engagement and conscientiousness. Giving greater weight1138

to best estimates that are accompanied by a greater number of supporting reasons may1139

be beneficial. We will consider w reasoni,c to be the number of unique reasons provided1140

by that individual i in support of their estimate for claim c.1141

p̂c (ReasonWAgg) =
N∑
i=1

w̃ reasoni,cBi,c (21)

Qualitative statements made by individuals as they evaluate claims/studies were coded1142

by the repliCATS Reasoning team, according to a detailed coding manual developed to1143

ensure analysts were each coding for common units of meaning in the same sets of textual1144

data. This manual emerged through an iterative process, that included calculating the1145

inter-coder-reliability (ICR), in the form of Krippendorf’s alpha [ 2 ]. Roughly, ICR1146

measures the extent to which different judges assign similar ratings to the evaluated1147

characteristics, here in the form of reasoning categories. For context, an ICR (here1148

Krippendorf’s alpha) of 1 indicates perfect reliability, while 0 indicates the absence of1149

reliability. Values less than 0 indicate systematic disagreements. From this manual, a1150

subset of 25 codes were selected as reasoning categories, each of which were included1151

in ReasonWAgg if the ICR was calculated at a minimum of 0.66 across two or more1152

analysts, or an ICR between two analysts of at least 0.75 and a minimum overall ICR1153

of 0.50. A quarter of the dataset was manually coded into these categories by multiple1154

analysts (using the NVivo Qualitative Data Analysis Software, Version 12, 2018), and1155
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these datasets provided the training data for the remaining text to be auto-coded in1156

NVivo. Reasoning scores were calculated for individuals who received one point for each1157

of these 25 reasoning categories that they drew on over the course of their evaluation (i.e.,1158

statements from both IDEA rounds). The reasoning categories include: the plausibility1159

of claim, effect size, sample size, presence of a power analysis, transparency of reporting,1160

journal reputation.1161

ReasonWAgg can be modified to incorporate not only the number of reasons, but also1162

their diversity across claims. This modified aggregation will be called ReasonWAgg2.1163

The latter component of this score will be calculated per individual from all the claims1164

they assessed, so it will be the same for each of the claims assessed by that individual.1165

We assume each individual answers at least two claims. If a participants has assessed1166

only one claim, for that claim we will default to the original ReasonWAgg.1167

Table 3 shows a hypothetical example of the reasons used by one participant when1168

assessing four claims.1169

Table 3: The distribution of the reasons one participant mentioned in the comments they
made when assessing four claims. A (Claim,R) cell is 1 if the R was used to justify
answers for Claim, and empty if R was not mentioned.

Claims/Reasons R1 R2 R3 . . . R25 Weighted “No. of Reasons”
Claim1 1 1 0.75 · 1 + 1 · 0.5 = 1.25
Claim2 1 0.75
Claim3 1 0.5
Claim4 1 1 1

Av. use of Rr
1
4

1
4

2
4

2
4

0
4

1 - Av. use of Rr 0.75 0.75 0.5 0.5 0

The penultimate row of the matrix showed in Table 3 gives the average use of reasons,1170

and the last row shows weights assigned to these reasons. These weights are then used1171

to calculate a final reasoning score per claim (per participant). This score is showed in1172

the last column of Table 3 and it is calculated as a weighted sum of the elements of the1173

vector of zeros and ones indicating use of reasons per claim.1174

We will consider w varReasoni,c to be the weighted “number of unique reasons”1175

provided by participant i in support of their estimate for claim c. Assume there are1176
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25 unique reasons any participant can use to justify their numerical answers. Then, for1177

each participant i we can construct a matrix CRi with 25 columns, each corresponding1178

to a unique reason, r, and C rows, where C is the number of claims assessed by that1179

participant. Each element of this matrix CRi(r, c) can be either 1 or 0. CRi(r, c) = 11180

if reason Rr was used to justify the estimates assessed for claim c, and CRi(r, c) = 0 if1181

reason Rr was not mentioned when assessing claim c.1182

w varReasoni,c =
25∑
r=1

CRi(c, r) ·

(
1−

∑C
c=1 CRi(c, r)

C

)
ReasonWAgg2 will use the weights calculated as above in the prediction given by Equation1183

21.1184

6.3.17 QuizWAgg: Weighted by performance on the quiz1185

As part of the repliCATS project, individuals were asked to take a quiz before commenc-1186

ing the main task of evaluating research claims. Hence, this aggregation method will1187

only apply to a dataset where such an exercise is undertaken prior to the elicitation. The1188

quiz aimed to gauge subject matter expertise, and in the case of the repliCATS project,1189

consisted of questions testing familiarity with previous research and concepts related to1190

assessments of replicability, e.g., understanding of statistical concepts, (false) positive1191

rates and replication rates in domain-relevant literature, and self-reported rates of ques-1192

tionable research practices. If answered, quiz responses would provide similar information1193

to that of seed questions, enabling differential performance-based weighted combinations1194

(giving greater weight to individuals with higher quiz scores). The quiz was encouraged,1195

but not compulsory, so choosing to take the quiz at all may also reflect engagement and1196

conscientiousness.1197

The quiz contains nquiz = 22 questions, 12 of which cover knowledge and understand-1198

ing of statistical concepts, and 10 are about meta-research. Questions that required less1199

effort to answer (i.e., 10 true/false questions and one two-part question) were assigned1200

half points.1201

Individuals provide answers for each question, resulting in a N×nquiz matrix Q, where
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each element Q(i, h) is 1 if individual i answered question h correctly, and 0 otherwise.

For each question answered correctly, the individual receives points, with the number of

points received for a correct answer for each of the 22 questions specified in the points

vector

v =


0.5, for questions 1 to 10, 16, 17

1, for questions 11 to 15, and 18 to 22

This results in a quiz score that ranges from 0 to 16, with higher scores indicating better1202

performance. Then the un-normalised weight based on the quiz score is1203

w quizi = Q · v

and the aggregated estimate is1204

p̂c (QuizWAgg) =
N∑
i=1

w̃ quiziBi,c (22)

where w quizi is the weight corresponding to the score of individual i on the quiz, as1205

defined above.1206

In the case of unanswered questions (missing data), individuals are assigned zero1207

points for that question. Individuals who did not take the quiz at all will receive zero1208

weight (and non-zero weight for those who responded to at least one item in the quiz).1209

If only one person assessing a given claim took the quiz, the QuizWAgg aggregated1210

estimate for that claim will be based solely on their judgment. If, however, nobody took1211

the quiz, this aggregation method is impossible to construct.1212

6.3.18 CompWAgg: Weighted by the level of self-rated comprehension of1213

the claim the individuals’ report1214

In the repliCATS project, before assessing a claim, individuals were asked to assess how1215

well they understood it. A 7-point scale, where 1 corresponds to “I have no idea what it1216

means” and 7 corresponds to “It is perfectly clear to me” is used for this comprehensibility1217

question. Intuitively, the numerical estimates of the individuals who are confident they1218
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understood the claim may be weighted more. We will consider w compi,c to be the number1219

assigned to the comprehensibility, as provided by individual i in support of their estimate1220

for claim c.1221

p̂c (CompWAgg) =
N∑
i=1

w̃ compi,cBi,c (23)

6.3.19 BayTriVar: Bayesian Triple-Variability Method1222

The last two aggregation methods proposed are Bayesian methods, and hence they use1223

the elicited probabilities differently, namely as data with which prior distributions are1224

updated.1225

Three kinds of variability around best estimates are considered: generic claim vari-

ability, generic participant variability, and claim - participant specific uncertainty (op-

erationalised by bounds). The model takes the log odds transformed individual best

estimates as input (data), uses a normal likelihood function and derives a posterior dis-

tribution for the probability of replication. That is to say, the log odds transformed best

estimate data are assumed to follow a Normal distribution log
(

Bi,c

1−Bi,c

)
∼ N(µc, σi,c),

where µc denotes the mean estimated probability of replication for claim c, and σi,c de-

notes the standard deviation of the estimated probability of replication for claim c and

individual i. Parameter σi,c is calculated as:

σi,c = (Ui,c − Li,c + 0.01)×
√
σ2
i + σ2

c

with σi denoting the standard deviation of estimated probabilities of replication for indi-1226

vidual i and σc denoting the standard deviation of the estimated probability of replication1227

for claim c. The above formula for the standard deviation is derived using the statistical1228

rules for calculating the variances of a sum of two independent random variables. The1229

distribution of the best estimates is considered to be the convolution of the claim and1230

participant distributions (thought of as independent). The sum of these two variables is1231

then scaled by a constant (the width of an interval for a particular claim) which represents1232

the claim - participant specific uncertainty. The variance then is the scaled addition of1233
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the two variances.1234

To complete the specification of the Bayesian model, priors need to be given for µc,1235

σi, and σc. These are defined as µc ∼ N(0, 3), σi ∼ U(0, 10) and σc ∼ U(0, 10), with1236

U(0, 10) denoting the Uniform distribution on the interval from 0 to 10. The quantity of1237

interest is the median of the posterior distribution of µc, the mean estimated probability1238

of replication. In Bayesian statistics the posterior distribution is proportional to the1239

product of the likelihood and the prior and in this instance a Monte Carlo Markov Chain1240

algorithm [ 3 ] is used to sample from this posterior distribution. After obtaining the1241

median of the posterior distribution of µc, we can back transform to obtain p̂c:1242

p̂c (BayTriV ar) =
eµc

1 + eµc
(24)

6.3.20 BayPRIORsAgg: Prior derived from predictive models, updated with1243

best estimates1244

This BayPRIORsAgg method uses Bayesian updating to update a prior probability of1245

replication estimated from a predictive model with an aggregate of the experts’ best1246

estimates for any given claim. The main difference between this method and the one1247

presented in Section 6.3.19 is that the parameters of the prior distribution of µc are1248

informed by the PRIORS model [ 4 ] which is a multilevel logistic regression model that1249

predicts the probability of replication using attributes of the original study.1250
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