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Supplementary text 1:

LK701-actin monomer

From the docking calculations in the actin monomer, all generated poses were clustered and 

all poses inside each cluster were ranked with the interaction score of DynaDock (see 

Experimental Procedures in the main text) and the best scored poses of the three highest 

populated clusters (Amono, Bmono and Cmono in the following, black in Figures S1A, S1C and 

S1E, respectively) were further investigated by simulating the dynamics for 200 ns in three 

independent molecular dynamics (MD) simulations each. For each selected pose, the three 

replica simulations were combined and clustered and the representative structure of the 

highest populated cluster was taken as the most dominant structure of the simulations and as 

the equilibrated pose of Amono, Bmono and Cmono, respectively (orange in Figures S1A, S1C and 

S1E). Detailed analysis of each simulation revealed that the protein is very well equilibrated in 

the presence of the ligand (blue lines in Figures S1B, S1D and S1F). For the analysis of the 

ligand dynamics of each selected pose, the root-mean square deviation (RMSD) of the position 

of LK701 heavy atoms throughout each simulation (Rep 1-3) was calculated relative to the 

docked position (black lines in Figures S1B, S1D and S1F).

For Amono (Figures S1A and S1B), the MD simulations revealed a stable position of LK701 in 

replica 2 and 3 indicated by low ligand RMSD values between 3-5 Å from the docked position. 

The same position is initially found in replica 1 for the first 50 ns of the simulation followed by 

larger structural rearrangements of the ligand inside the binding site due to the open and 

surface-exposed nature of the macrolide binding cleft. 

Large fluctuations of LK701 compared to the docked position of the second selected docking 

pose Bmono (Figure S1C) were observed during all replica simulations of that pose (black lines 

in Figure S1D). In replica 3 the ligand stayed at a position far from the docked location (8 Å), 

while in replica 1 and 2 it moved even further away, indicated by increasing RMSD values 

throughout the simulations. Thus, the position of Bmono was unstable as it could not be 

reproduced in independent long-term MD simulations.

The ligand lied half-outside the binding site in the third selected docking pose (Cmono, black in 

Figure S1E) and the dynamics of this pose revealed that it stayed very close to that position 

(2 Å) during most of the simulated time in replica 1 and 3 (Figure S1F). Only in replica 2 the 

ligand moved away from its docked position, leaving the binding site. Although the docked 

pose could be reproduced independently in two of the replicas, the docked position did not 

match the macrolide binding cleft (see position of miuraenamide A for comparison, gray in 

Figure S1E) and the ligand did not move further into the binding site during the simulations. 
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Summarizing the results of the MD simulations of the LK701-actin monomer complexes, it can 

be stated that a stable conformation inside the macrolide binding cleft could only be formed by 

Amono, which could be obtained independently in different simulations, while for Bmono and Cmono 

no stable positions inside the binding cleft were found. Therefore, the final equilibrated binding 

pose of LK701 in the actin monomer LK701mono was determined as the representative structure 

of the highest populated cluster obtained from all combined simulations of Amono (orange in 

Figure S1A). Comparing the final position of LK701 to the predicted binding pose of 

miuraenamide A1 (gray sticks in Figure S1A) shows that LK701 lies deeper inside the 

macrolide binding cleft.

LK701-actin nucleus

Similar to the docking in the actin monomer, three docking poses of LK701 in the actin nucleus 

Atri (best scored pose of the highest populated cluster of all docked poses), Btri (closest docking 

pose to the predicted binding position in LK701mono) and Ctri (second closest docking pose to 

the predicted binding position in LK701mono) were selected for which further MD simulations 

were performed. The analyses of those simulations are shown in Figure S2. Looking at all 

docked poses (data not shown) it was clear that the DNase-I binding loop (D-loop) of subunit 

n+2 was blocking the ligand from proper binding to the macrolide binding cleft since no poses 

were entirely located in the binding site after refinement. Most of the poses were located behind 

the binding site (exemplary shown for Atri in black in Figure S2A), while the remaining poses 

were located on the solvent exposed side of the subunit, closer to the equilibrated binding 

position found in the actin monomer (exemplary shown for Btri and Ctri in black in Figures S2D 
and S2G, respectively). 

As shown for the most dominant position of LK701 of the MD simulations of Atri, Btri and Ctri 

(orange in Figures S2A, S2D and S2G, respectively), LK701 did not move closer to the 

predicted position in LK701mono (green) compared to the initial docking position (black) and the 

D-loop of the adjacent subunit obtained a similar conformation inside the macrolide binding 

cleft (cyan) independent of the location of the ligand, emphasizing the strong longitudinal 

interaction between subunits in the nucleus. This is underlined by the respective secondary 

structure (DSSP) analysis for residues of the D-loop of subunit n in Figures S2B, S2E and 

S2H, that indicate that the backbone of the core-residues of this loop was in a bend or turn 

conformation for most of the simulated time and did not change its secondary structure type 

throughout the simulation, which proves a stable loop conformation. Figures S2C, S2F and 

S2I show the RMSD analyses of different regions of the complex. The overall protein backbone 

(blue) does not fluctuate much in RMSD, indicating a well equilibrated system in all three cases. 

Even the RMSD of the position of the D-loop backbone atoms (green) show only small 

oscillation around a constant value proving once more the stability of this formation. 
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Interestingly, the RMSD of the position of LK701 (black) with respect to the predicted LK701mono 

reference position shows that for Atri and Ctri (Figures S2C and S2I) the ligand stayed roughly 

at the same position outside of the binding cleft, while for Btri (Figure S2F), the ligand moved 

even further away from the binding site throughout the simulation. 

These results strongly suggest that LK701 cannot enter the macrolide binding cleft while the 

D-loop of the adjacent subunit is bound; furthermore, that this loop is forming a strong 

interaction across the longitudinal axis of the forming filament and that - in this arrangement - 

LK701 cannot form a stable complex with the actin nucleus.

Comparison between the actin binding modes of LK701 and miuraenamide A

As stated above, LK701 is located deeper in the macrolide binding cleft compared to the parent 

compound miuraenamide A. Aiming for a structural explanation of the observed experimental 

differences, the equilibrated binding positions of both compounds (LK701mono and the predicted 

binding position of miuraenamide A1, see Figure S1) were thoroughly investigated for their 

protein ligand interactions. Figure S3 shows an overview of the interactions predicted by 

PoseView2 in a 2D sketch, as well as transferred onto a three-dimensional representation of 

the poses highlighting the most important amino acid residues and their type of interaction. 

The macrolide binding cleft is mainly dominated by hydrophobic residues (see top of 

Figures S3A and S3B) that form interactions with the hydrophobic regions of the macrocycle 

and the phenyl side extensions of both compounds. In the case of miuraenamide bound to the 

actin trimer, the macrolide binding cleft is located at the inter-subunit interface of subunit n 

(cyan) and n+2 (light blue) and the compound, thus, interacts with residues of both subunits. 

Importantly, hydrogen bonds are formed with residues from subunit n, which promote the 

crucial rearrangement of the D-loop of that subunit as discussed in the previous study1. 

Additionally, the bulky aromatic side extensions of miuraenamide increase its steric hinderance, 

keeping it from binding deep into the macrolide binding cleft of subunit n+2. In contrast, LK701, 

bound to the actin monomer and therefore lacking interactions with an adjacent subunit as well 

as the second aromatic side extension, fills the macrolide binding cleft completely. The position 

of the macrocycle is slightly rotated compared to the bound miuraenamide and, thereby, the 

phenyl side extension of LK701 fits into a small hydrophobic sub-pocket formed by Tyr143, 

Leu346, Phe352, Leu349 and Met355, forming π-π stacking interactions with Phe352 at the tip of 

that pocket (top right in Figures S3B and S3D). Because of that, the hydrogen bond acceptor 

oxygen atoms of the macrocycle, which form hydrogen bridges across actin subunits in the 

miuraenamide bound actin trimer, are shielded by the entrance of the macrolide binding cleft 

and therefore less solvent exposed. Besides LK701 blocking the macrolide binding cleft, this 

could be a possible reason why an additional subunit cannot bind to the LK701-bound actin 

monomer, thereby inhibiting the proper nucleation of actin.
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Figure S1: Molecular dynamics simulations of three docking poses of LK701 in the actin monomer. A, 
C and E: final equilibrated pose of LK701 (orange) from the simulations of the best ranked poses of the 
three highest populated clusters of docking poses Amono, Bmono and Cmono (black), respectively, compared 
to the position of miuraenamide A (gray) for orientation. B, D and F: root-mean square deviation (RMSD) 
of protein backbone heavy atoms (blue) with respect to the first frame and RMSD of the position of 
ligand heavy atoms (black) relative to the docked pose corresponding to those shown in black in A, C 
and E, respectively, throughout 3x200 ns of molecular dynamics simulations (Rep 1-3).
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Figure S2: Molecular dynamics simulations of three selected docking poses of LK701 in the actin trimer 
nucleus: A, D and G: equilibrated position of LK701 (orange) from MD simulations of the best ranked 
structure of the highest populated cluster of docking poses (Atri), closest (Btri) and second closest docking 
pose (Ctri) with respect to the predicted binding position in the actin monomer (black), respectively. 
Predicted position of LK701mono shown in green for reference. B, E and H: secondary structure analysis 
of the D-loop of subunit n+2 throughout the MD of Atri, Btri and Ctri, respectively. C, F and I: root-mean 
square deviation (RMSD) of protein backbone heavy atoms (blue) throughout the simulation, RMSD of 
the position of LK701 heavy atoms relative to the predicted binding position in the actin monomer (black) 
and RMSD of the position of D-loop backbone heavy atoms with respect to the first frame of the 
simulation (green), key shown in C applies to F and I.
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Figure S3: Overview of protein ligand interactions comparing miuraenamide A (A: 3D and C: 2D) with 
LK701 (B: 3D and D: 2D). The interactions were calculated from the equilibrated binding poses of 
miuraenamide A in the bound actin trimer1 and LK701 in the bound actin monomer with PoseView2. In 
(A) and (B) the actin protein is shown as cartoon, the ligands and the relevant amino acids that form 
protein ligand interactions in sticks (color code according to Figure 3, additionally: yellow (sulfur), brown 
(bromine), other (carbon)). Polar hydrogen atoms on protein shown only for those involved in hydrogen 
bridging. Protein ligand interactions are displayed as: hydrogen bonds (dashed lines), π-π stacking 
(solid black lines) and hydrophobic interactions (in C and D: solid green lines). Amino acid numbering 
in accordance with the actin monomer published by Kabsch and coworkers3.
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