Human Fibrinogen inhibits amyloid assembly of most Phenol Soluble Modulins (PSM) from *Staphylococcus aureus*

Zahra Najarzadeh,[†] Janni Nielsen,[†] Azad Farzadfard,[†] Vita Sereikaite,[‡] Kristian Strømgaard,[‡] Rikke

Louise Meyer,[†] and Daniel Erik Otzen ^{†*}

[†] Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000

Aarhus C, Denmark

[‡] Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2,

2100 Copenhagen Ø, Denmark

* To whom correspondence should be addressed at dao@inano.au.dk

KEYWORDS: Phenol soluble modulin, bacterial amyloid, Fibrinogen, PSM peptides, Biofilm, *Staphylococcus aureus*.

Supplementary Information

TABLES

Table S1. Deconvolution results from FTIR of PSMs incubated with Fg

Peptide	[Fg] (mg/ml)	Peak position (cm ⁻¹)	% β-sheet content	% α-helix content
PSMa1	0	1628, 1655	73.6	26.4
PSMa1	0.25	1625, 1651	43.36	56.6
PSMα1	1	1621, 1650	11	89.0
PSMa3 (+Fg)	0-1	1685, 1653	4.4	95.6
ΡSMβ1	0	1630, 1660	71.1	28.9*
ΡSMβ1	0.25	1630, 1659	63.6	36.4*
ΡSMβ1	0.5	1629, 1657	68	32*
ΡЅΜβ2	0	1626, 1660	71.2	28.8*
ΡЅΜβ2	0.25	1621, 1650	8	92
ΡՏΜβ2	1	1619, 1650	2	98

Notes:

* Peak position at 1660 cm⁻¹ mainly matches to β -turn

Table S2: *p*-values of multiple regression analysis of the correlation between signal intensity of alanine scans from peptide arrays and the two parameters charge and hydrophobicity

Peptide	Charge	Hydrophobicity
PSMa1	8.4×10-5	0.008
PSMa3	2.9×10 ⁻⁵	5.7×10 ⁻⁵
ΡSMβ1	1.6×10 ⁻⁷	0.1
ΡSMβ2	1.6×10 ⁻⁷	0.1

Figure S1. Kinetics of PSM amyloid formation in presence and absence of fibrinogen monitored by ThT fluorescence. A) PSMα1, B) PSMα3, C) PSMβ1 and D) PSMβ2. Colour codes from panel A also apply to panels B-D.

Figure S2. FTIR analysis of the secondary structure of PSMs peptides in presence of different concentrations of fibrinogen. Deconvolution of peaks carried out in Origin. A) PSMα1 (0 mg/ml Fg), B) PSMα1 (0.25 mg/ml Fg), C) PSMα1 (1 mg/ml Fg) (D) PSMα3 (0-1 mg/ml Fg), E) PSMβ1 (0 mg/ml Fg), F) PSMβ1 (0.25 mg/ml Fg), G) PSMβ1 (0.5 mg/ml Fg) H) PSMβ2 (0 mg/ml Fg), I) PSMβ2 (0.25 mg/ml Fg), J) PSMβ2 (1 mg/ml Fg). Colour code from panel A applies to panels B-J. K) FTIR curves of PSMβ1(0.2 mg/ml) in presence of 0-1 mg/ml Fg.

Figure S3. SDS-PAGE of pellet and supernatants of aggregates formed in presence of 1 mg/ml Fg densitometrically quantified using ImageJ.

Figure S4. Computational prediction of aggregation propensity of different PSMs based on Rosetta energies that predict amyloid propensity in hexapeptides. Orange – red segments (energies < -23 kcal/mol) predicted to take part in fibril formation through higher aggregation propensity. Letters on x-axis denote the first residue of each hexapeptide.