Supplementary Information

A prelude to the proximity interaction mapping of CXXC5

Gamze Ayaz^{1,4,6*}, Gizem Turan^{1*}, Çağla Ece Olgun^{1*}, Gizem Kars¹, Burcu Karakaya¹, Kerim Yavuz¹, Öykü Deniz Demiralay¹, Tolga Can³, Mesut Muyan^{1,2,6}, and Pelin Yaşar^{1,5*}

¹Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey; ²Cansyl Laboratories, Middle East Technical University, Ankara 06800, Turkey; ³Department of Computer Engineering Middle East Technical University, Ankara 06800, Turkey

⁴Current Address: Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA

⁵Current Address: Epigenetics and Stem Cell Biology Laboratory, Single Cell Dynamics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA

⁶Corresponding Authors: gamze.ayazsen@nih.gov and mmuyan@metu.edu.tr

*Equal contributions; should be considered as first authors

Short title: The proximity interaction partners of CXXC5

Keywords: CXXC5, BioID, Proximity interactions, EMD, MAZ, MeCP2

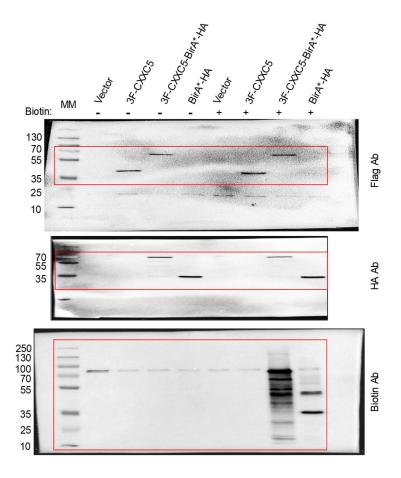


Figure S1. Biotinylation of endogenous proteins in MCF7 cells. MCF7 cells were transiently transfected for 24h with an expression vector (pcDNA3.1) bearing the cDNA for 3F-CXXC5, 3F-CXXC5-BirA*-HA, or BirA*-HA. Cells were then treated without (-) or with (+) biotin (50 μ M) and ATP (1 mM) for 16h. Total protein extracts of MCF7 cells were subjected to SDS-10%PAGE followed by WB using the Flag, the HA, or the Biotin antibody followed by an HRP-conjugated goat-anti-mouse secondary antibody for the Flag (Advansta R-05071-500) or goat-anti-rabbit secondary antibody for the HA or the Biotin antibody (Advansta R-05072-500). Molecular masses (MM) in kDa are indicated. Cropped images for Fig. 1 are indicated with red boxes.

Figure S2. The proximity interaction mapping of CXXC5 with GO term enrichment analyses by the use of the STRING interaction database. Images generated by STRING are shown. The majority of proteins with the proximity interactions are involved in the Regulation of Gene Expressions [(GO:0010468, (red)]. GO terms can further be functionally assigned to DNA [GO:0071103, DNA conformation change (red); GO:0006281, DNA repair (dark blue); GO:0006260, DNA replication (green); GO:0006310, DNA recombination (yellow); GO:0006306, DNA methylation (light blue)]; Chromatin and Histone [(GO:0006325, Chromatin Organization (red); GO:0016570, Histone modifications (dark blue); and, RNA [GO:0006396, RNA processing (red); GO:0031123, GO:0006403, RNA localization (dark blue)] processes.

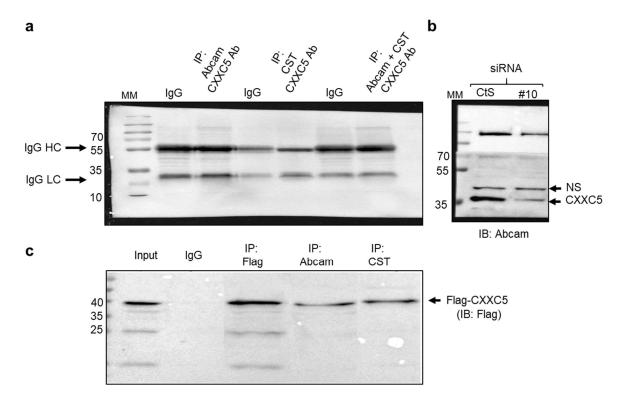


Figure S3. Assessing antibody efficiencies in immunoprecipitation. (a) The Abcam antibody (106533) is generated against a 15 aa-long peptide from near the amino terminus of the human CXXC5 protein (https://www.abcam.com/cxxc5-antibody-ab106533.html); whereas, the CST D104P antibody is generated against a peptide corresponding to residues surrounding Leu172 human CXXC5 protein (https://www.cellsignal.com/products/primary-antibodies/cxxc5-d1o4p-rabbit-mab/84546). Nuclear extracts of MCF7 cells (500 µg) were subjected to immunoprecipitation by using 5 µg normal rabbit IgG (IgG), Abcam, or CST (Cell Signaling Technology, D1O4P) antibody. Since the different regions on CXXC5 are used to generate CXXC5 antibodies, the efficiency of immunoprecipitation could be increased by subjecting the nuclear extracts of MCF7 cells (500 μg) to the combination of 2.5 μg Abcam and 2.5 μg CST antibodies. Immunoprecipitants were subjected to SDS-10% PAGE followed by immunoblotting with the Abcam antibody for visualization. (b) While both antibodies effectively detect CXXC5 in WB analysis of nuclear extracts of MCF7 cell transiently transfected with the control siRNA (CtS) or siRNA#10, shown with the Abcam antibody, the antibodies were ineffective in precipitating the endogenous CXXC5. Molecular masses (MM) are in kDa. IgG heavy (55 kDa) and IgG light (26 kDa) chains are indicated. (c) The efficiencies of antibodies to immunoprecipitate CXXC5 were also tested in transiently transfected HEK293 cells with an expression vector bearing sequences encoding a Flag-tag at the amino-terminus of CXXC5. Nuclear extracts (500 µg) were immunoprecipitated by using 5 µg of normal mouse IgG (IgG), the Flag-M2 (Sigma-Aldrich, F1804), Abcam, or CST antibody. Precipitates were then subjected to SDS-10% PAGE followed by immunoblotting with the Flag-M2 antibody. Input indicates 10% of the precipitate. Although the efficiency of the Abcam or the CST antibody to immunoprecipitate CXXC5 is lower than that of the Flag-M2 antibody, higher levels of the protein in cells allow an operational immunoprecipitation of CXXC5 by both antibodies.

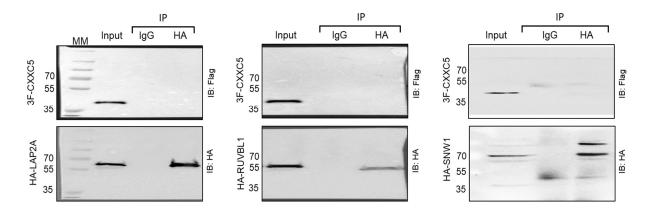


Figure S4. Initial assessment of CXXC5 interaction with LAP2A, RUVBL1, or SNW1. The nuclear extracts of HEK293 cells transiently co-transfected with the expression vectors bearing 3Flag-CXXC5 and HA-LAP2A, HA-RUVBL1, or HA-SNW1 were subjected to Co-IP using the HA antibody or the isotype-matched IgG followed by immunoblotting using the Flag or the HA antibody.

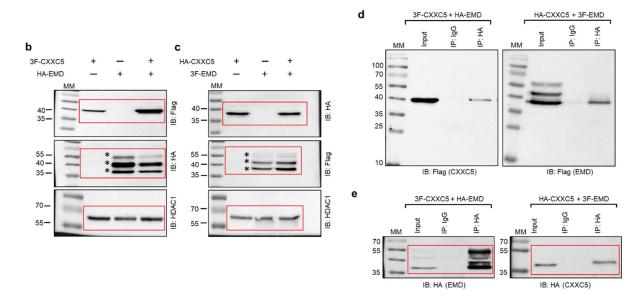


Figure S5. Interaction of EMD and CXXC5. (b & c) To examine the protein synthesis, HEK293 cells were transfected with the expression vector bearing (b) 3F-CXXC5 and/or HA-EMD cDNA; or (c) HA-CXXC5 and/or 3F-EMD cDNA for 48h. The synthesis of proteins was assessed by WB using the HA or the Flag antibody. HDAC1 used as a loading control was probed with the HDAC1 antibody. Star denotes distinct EMD species. (d & e) The nuclear extracts (500 μg) of transiently co-transfected HEK293 cells were subjected to Co-IP with the HA (d) or the isotype-matched IgG. 50 μg of nuclear lysates was used as input control. The precipitates were subjected to SDS-10%PAGE followed with WB using analyzed using the Flag (d) or the HA (e) antibody. Molecular masses (MM) in kDa are indicated. Cropped images for Fig. 2 are indicated with red boxes.

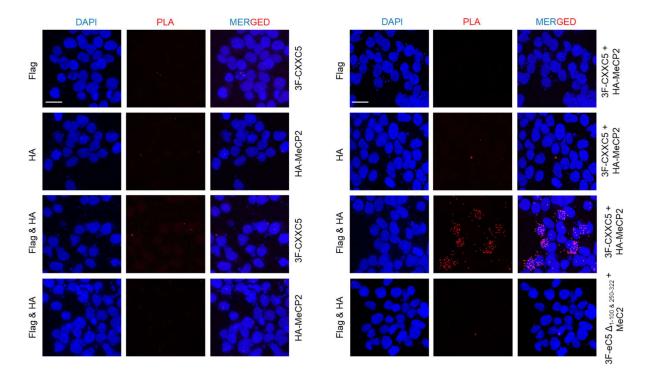


Figure S6. *In cellula* interaction of CXXC5 and MeCP2. Proximity ligation assay (PLA). To assess the *in cellula* interaction of CXXC5 and MeCP2, HEK293 cells grown in coverslips were transiently transfected the expression vector bearing the 3F-CXXC5 and/or HA-MeCP2 cDNA. Cells were also transiently co-transfected the expression vector bearing the 3F-eCXXC5 Δ_{1-100} & 250-322 (3F-C5 Δ_{1-100} & 250-322) and HA-MeCP2 cDNA. Cells were fixed, permeabilized, blocked, and probed with the Flag and/or the HA antibody. Cells were then subjected to fluorescent probes for circular DNA amplification. DAPI was used for nuclear staining. The scale bar is 25 μm.

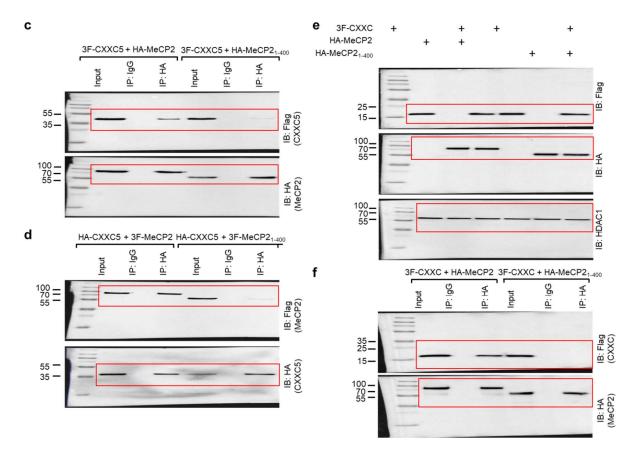


Figure S7. Identification of a sub-region of MeCP2 critical for interacting with CXXC5. (c & d) HEK293 cells were transiently co-transfected with the expression vector bearing cDNA for 3F-CXXC5 and HA-MeCP2 or HA-MeCP2₁₋₄₀₀. Nuclear extracts were subjected to Co-IP with the HA or the isotype-matched IgG. The precipitates were subjected to WB using the Flag antibody. The membrane was re-probed with the HA antibody. 10% of nuclear extracts was used as input control. Molecular masses (MM) in kDa are indicated. (e) Nuclear extracts of HEK293 cells transiently co-transfected with an expression vector bearing cDNA for the 3F-CXXC domain (3F-CXXC), HA-MeCP2, or HA-MeCP2₁₋₄₀₀, were subjected to WB using the Flag, HA or HDAC1 antibody. Molecular masses (MM) in kDa are indicated. (f) Nuclear extracts, 500 μg, co-synthesizing CXXC, and HA-MeCP2, or HA-MeCP2₁₋₄₀₀, were subjected to Co-IP with the HA antibody or the isotype-matched IgG. The precipitates were subjected to WB using the Flag antibody. The membrane was also re-probed with the HA antibody. 10% of nuclear extracts was used as input control. Molecular masses (MM) in kDa are indicated. Cropped images for Fig. 7c-f are indicated with red boxes.

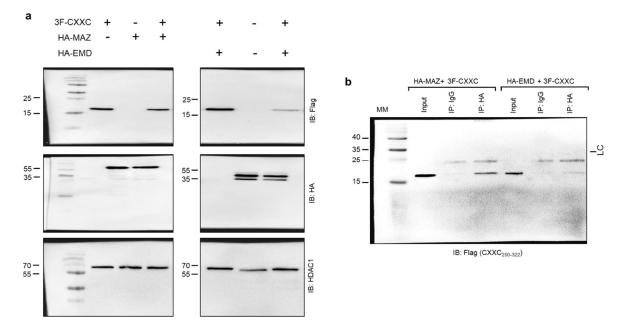


Figure S8. Interaction of the CXXC domain of CXXC5 with EMD or MAZ. To assess the interaction between the 3-Flag-CXXC domain (3F-CXXC) of CXXC5 and HA-MAZ or HA-EMD, HEK293 cells were transfected with the expression vector bearing the 3F-CXXC and/or the HA-MAZ or the HA-EMD cDNA for 48h. (a) Nuclear extracts (100 μg) were subjected to SDS-PAGE followed with WB using the HA or the Flag antibody. HDAC1 used as a loading control was probed with the HDAC1 antibody. (b) The nuclear extracts (500 μg) of transiently co-transfected HEK293 cells were subjected to Co-IP with the HA or the isotype-matched IgG. 50 μg of nuclear lysates were used as the input control. The precipitates were subjected to SDS-PAGE followed with WB using the Flag antibody. Molecular masses (MM) in kDa and the light chain of IgG (LC) are indicated.

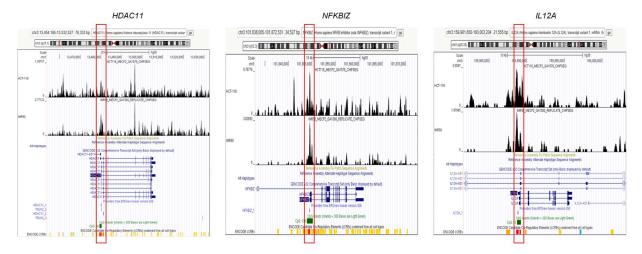


Figure S9. Binding profile of MeCP2 to the promoter, located within a CGI, of HDAC11, NFKBIZ, or IL12A gene. Snapshots of the binding profile of MeCP2 (Red rectangle) generated with Cistrome at gene loci using the UCSC genome browser with CGI (green), promoters (light blue arrows), and cis-regulatory elements (red boxes). To assess whether MeCP2 is enriched at the promoter region of HDAC11, NFKBIZ, or IL12A, datasets of IMR-90, a human lung fibroblast cell line, and HCT-166 cells derived from human colon carcinoma at the Cistrome Data Browser were visualized with the UCSC genome browser. Snapshots of the gene loci are shown. The red rectangle indicates the promoter region.

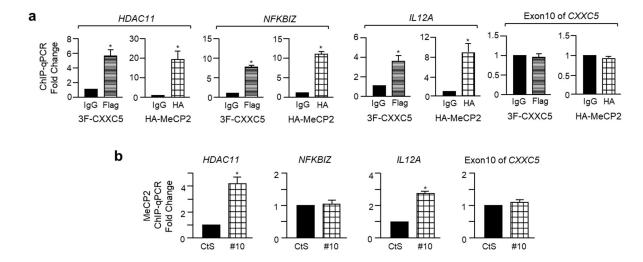


Figure S10. Assessing the interplay between CXXC5 and MeCP2 in CXXC5 target gene expressions. (a) To assess whether CXXC5 or MeCP2 is associated with target gene promoters, MCF7 cells were transfected with a vector bearing the 3F-CXXC5 or HA-MeCP2 cDNA for 48h. Cells were processed for ChIP using IgG, the Flag, or the HA antibody. Precipitates were subjected to qPCR using primer sets specific for target gene promoters. Results depict fold changes compared to IgG, which was set to 1. (b) To assess whether alterations in CXXC5 levels affect the MeCP2 loading on target promoters, MCF7 cells transfected with CtS or siRNA#10 for 48h were subjected to ChIP using IgG or a MeCP2 antibody. Recovered DNAs were subjected to qPCR using primer sets for target gene promoters. Results, normalized to IgG, depict fold changes compared to CtS, which was set to 1.

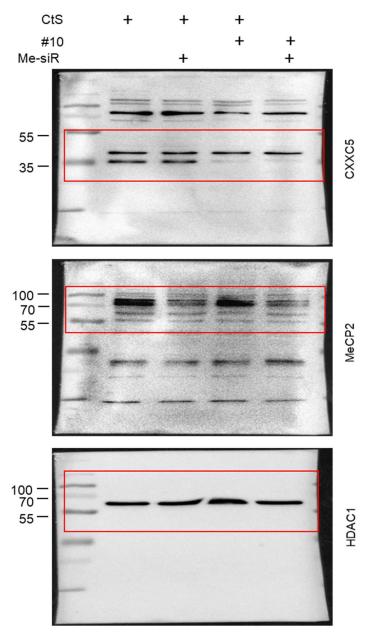


Figure S11. The effects of siRNA on protein levels of CXXC5 and/or MeCP2 in MCF7 cells. MCF7 cells were untransfected (UT), or were transiently transfected with CtS, siRNA specific for CXXC5 (#10), and/or siRNA pool for MeCP2 (Me-SiR) for 48h. To equalize the total amount of siRNA (20 nM) used in co-transfection experiments, 10 nM gene-specific siRNA was used together with 10 nM CtS. Nuclear extracts of transfected cells were subjected to WB using the CXXC5 or MeCP2 antibody. HDAC1 was probed with an HDAC1-specific antibody. MMs in kDa are indicated. (c) To assess the effect of reduction in CXXC5 and/or MeCP2 levels on gene expressions, MCF7 cells were transfected with CtS, #10, and/or Me-SiR as indicated for 48h. Cropped images for Fig. 8b are indicated with red boxes.

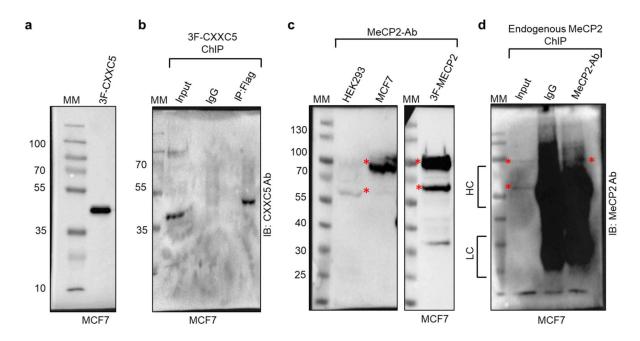


Figure S12. Immunoprecipitation of 3F-CXXC5 and ChIP of MeCP2. (a & b) To assess the efficiency of the Flag antibody to precipitate 3F-CXXC5 protein in ChIP assay, (a) nuclear extracts of MCF7 cells transiently transfected with an expression vector bearing the 3F-CXXC5 cDNA for 48h were subjected to SDS-10%PAGE followed with WB using an antibody specific to CXXC5. (b) Transfected MCF7 cells were also subjected to ChIP using the Flag antibody or the isotype-matched IgG followed by immunoblotting using the CXXC5-specific antibody. Molecular masses (MM) in kDa are indicated. (c) To assess the efficiency of the MeCP2 antibody to detect the endogenous MeCP2 protein in WB, the synthesis of the endogenous MeCP2 protein in HEK293 or MCF7 cells in comparison with that of 3F-MeCP2 in transiently transfected MCF7 was assessed in WB with an antibody specific to MeCP2. Molecular masses (MM) in kDa are shown. Asterisks (red) indicate MeCP2 isoforms with molecular masses of approximately 60 and 80 kDa, the latter which is likely a post-translationally modified form. (d) To assess the efficiency of the MeCP2 antibody to precipitate the endogenous MeCP2 protein in ChIP assay, MCF7 cells were also subjected to ChIP using the MeCP2-specific antibody or the isotype-matched IgG followed by immunoblotting using the MeCP2-specific antibody. HC and LC indicate the heavy and light chain of IgG. 5% of ChIP was used as input control.

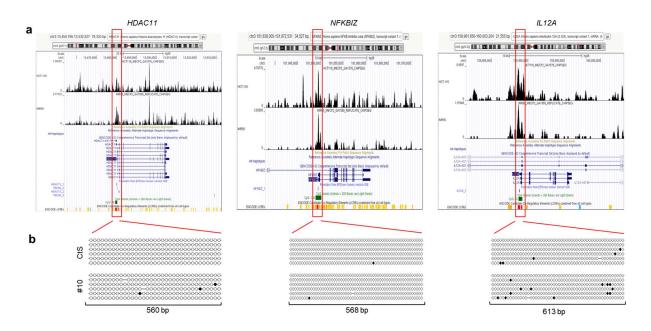


Figure S13. The methylation state of the promoter, located within a CGI, of *HDAC11*, *NFKBIZ*, or *IL12A* gene. (a) Snapshots of the binding profile of MeCP2 (Red rectangle) generated with Cistrome at gene loci using the UCSC genome browser with CGI (green), promoters (light blue arrows), and cis-regulatory elements (red boxes). The red rectangle indicates the promoter region. (b) The methylation state of promoter regions was examined with bisulfite sequencing. Isolated genomic DNA of MCF7 cells was subjected to bisulfite reaction for the conversion of unmethylated cytosine residues to uracil followed by bisulfite PCR. PCR amplicons, the lengths in base pairs (bp) of which are indicated, produced with bisulfite primers were cloned and sequenced. Aligned sequences to the corresponding regions were depicted as a lollipop distribution of two independent determinations with three independent samples each. Filled circles indicate methylated and empty circles denote unmethylated CpG dinucleotides.

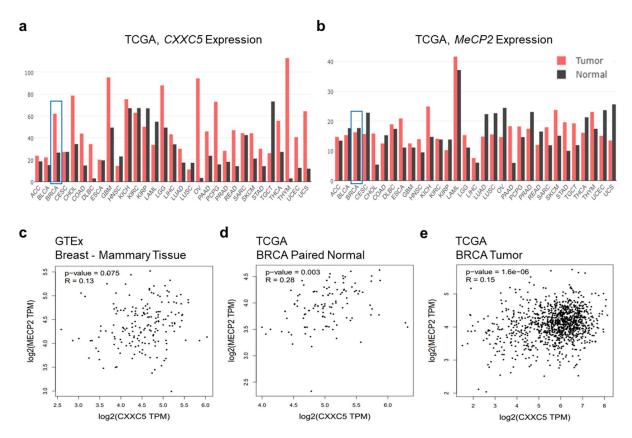


Figure S14. Expression analyses of *CXXC5* and *MeCP2* across paired normal tissues and tumor samples and the correlation between mRNA expressions of CXXC5 and MeCP2 in normal and breast tumor samples. (a & b) Snapshots of bar-plot analyses of the median *CXXC5* (a) or *MeCP2* (b) expression, as transcripts *per* million (TPM), in various tissue samples are shown. The red bar-plot indicates expressions in tumors and the black bar-plot denotes expressions in paired normal tissues. BRCA (blue rectangle) indicates breast invasive carcinoma. (c-e) Snapshots of dot-plot analyses with the use of the Pearson correlation coefficient indicate the correlation between expressions of *CXXC5* and *MeCP2* in GTEx normal breast tissue (c), TCGA paired normal (d), and TCGA breast tumor samples (e) as log2 TPM.

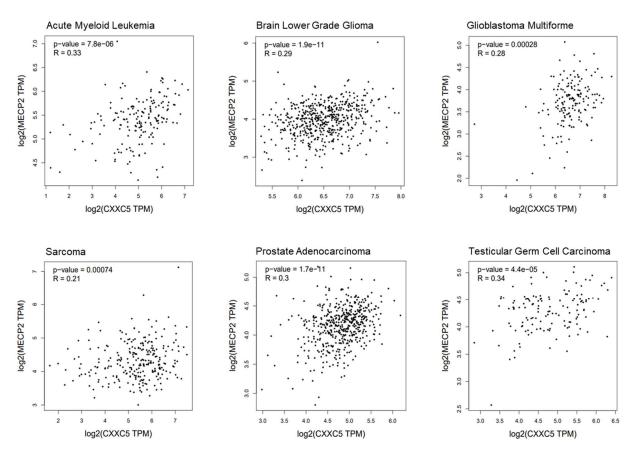


Figure S15. The correlation between mRNA expressions of *CXXC5* and *MeCP2* in tumor samples of various tissues. Snapshots of dot-plot analyses with the use of the Pearson correlation coefficient indicate the correlation between expressions of *CXXC5* and *MeCP2* in TCGA tumor samples of various tissues as log2 transcript per million (TPM) are shown.

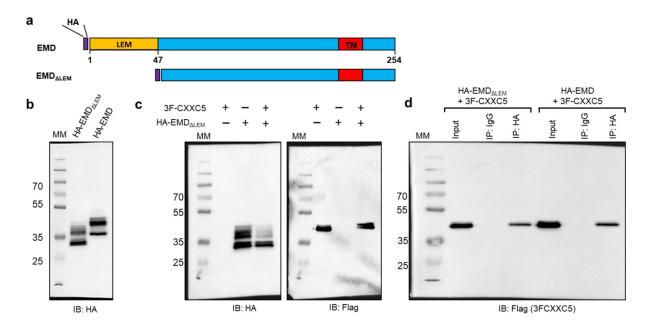


Figure S16. Interaction of EMD lacking LEM domain (EMD_{ΔLEM}) with CXXC5. (a) Schematics of EMD and EMD lacking LEM domain (HA-EMD_{ΔLEM}). (b) To assess synthesis of HA-EMD and HA-EMD_{ΔLEM}, HEK293 cells were transiently transfected for 48h followed by WB using the HA antibody. (c) HEK293 cells were also transiently cotransfected for 48h with an expression vector (pcDNA3.1) bearing the 3F-CXXC5 and the HA-EMD_{ΔLEM} cDNAs. The synthesis of proteins (50 μg of lysate) was assessed by WB using the HA or the Flag antibody. (d) The nuclear extracts (500 μg) of HEK293 cells co-synthesizing 3xF-CXXC5 and HA-EMD_{ΔLEM} or 3xF-CXXC5 and HA-EMD were subjected to Co-IP with the HA or the isotype-matched IgG. 10% of nuclear lysates was used as input control. The precipitates were subjected to SDS-10%PAGE followed with WB using analyzed using the Flag antibody. Molecular masses (MM) in kDa are indicated.

TABLE S1. CXXC5 Pro	TABLE S1. CXXC5 Proximity Interactors, G AYAZ et al.						Biological Reolicate I			Biological Replicate II		
						1st Technical Replicate	Біон		nd Technical Replicate	1st Technical Replicate		2nd Technical Replicate
No Accession # 1 Q9H2P0	String Id 1 9606.ENSP00000379346	Preferred Name ADNP	Description Activity-dependent neuroprotector homeobox protein	# AAs MW [kDa] calc. pl 1102 123.49 7.34	Σcoverage Σ# Protein 15.06 2		ptides	Σcoverage Σ# Proteins 18.87 2	Σ# Unique Peptides Σ# Peptides Σ# PS 15 15 26		s Σ# Peptides Σ# PSMs 5 10	Σcoverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs 6.81 2 5 5 10
2 P05549	9606.ENSP00000379340	TFAP2A	Transcription factor AP-2-alpha	437 48.03 8.02	24.49 14		14 33	26.54 14	8 16 38	3 11.44 13 3	4 7	11.44 15 4 4 10
3 Q8WWM7 4 Q9NRL2	9606.ENSP00000378917 9606.ENSP00000353458	ATXN2L BAZ1A	Ataxin-2-like protein Bromodomain adjacent to zinc finger domain protein 1A	1075 113.30 8.59 1556 178.59 6.60	2.79 9 1.99 2	2	2 4 2 5	2.14 8 4.05 2	1 1 2	2.14 8 1 5.14 3 6	1 2 6 12	2.14 8 1 1 2 2.76 3 4 4 8
5 Q9UIG0	9606.ENSP000003342434	BAZ1B	Tyrosine-protein kinase BAZ1B	1483 170.80 8.48	18.81 2	25 2	25 49	19.82 2	26 26 53		20 42	16.93 2 17 17 36
6 Q9NYF8 7 Q12830	9606.ENSP00000435210 9606.ENSP00000307208	BCLAF1 BPTF	Bcl-2-associated transcription factor 1	920 106.06 9.98 3046 338.05 6.54	8.15 10 3.05 5	<u> </u>	6 10 8 13	4.57 9 3.61 6	3 3 4 9 9 17	0.00	3 8	5.22 9 3 3 8 2.43 6 5 5 10
8 Q8N163	9606.ENSP00000317208	CCAR2	Nucleosome-remodeling factor subunit BPTF Cell cycle and apoptosis regulator protein 2	923 102.84 5.22	1.52 3	-	1 2	1.52 3	1 1 2	1.74 5 4	1 2	1.52 3 1 1 2
9 Q14839 10 Q9HCK8	9606.ENSP00000349508 9606.ENSP00000382863	CHD4 CHD8	Chromodomain-helicase-DNA-binding protein 4 Chromodomain-helicase-DNA-binding protein 8	1912 217.87 5.86 2581 290.34 6.47	9.36 3 7.25 7		14 28 13 24	12.45 3 8.21 6	15 19 39 12 14 28		16 33 9 18	10.3 4 13 17 35 4.49 4 7 7 14
11 Q9BR76	9606.ENSP00000377471	CORO1B	Coronin-1B	489 54.20 5.88	15.13 4	5	5 10	10.43 4	3 3 6		3 6	5.52 4 2 2 6
12 Q16630 13 P49711	9606.ENSP00000266679 9606.ENSP00000264010	CPSF6 CTCF	Cleavage and polyadenylation specificity factor subunit 6 Transcriptional repressor CTCF	551 59.17 7.15 727 82.73 6.96	2.72 4 8.39 2	1 4	1 2 4 9	9.44 4 10.73 2	3 3 6 5 5 9		1 2 4 9	7.08 4 2 2 4 11.2 5 5 5 9
14 P39880	9606.ENSP00000353401	CUX1	Homeobox protein cut-like 1	1505 164.09 5.90	16.68 11		18 33	14.68 11	16 16 32	2 5.05 11 6	6 12	4.98 11 5 5 10
15 Q7LFL8 16 Q9NR30	9606.ENSP00000302543 9606.ENSP00000346120	DDX21	CXXC-type zinc finger protein 5 Nucleolar RNA helicase 2	322 32.96 9.10 783 87.29 9.28	45.03 12 5.75 2		22 108 4 6	45.03 12 5.49 2	20 20 110 3 3 5		8 50	
17 P17844	9606.ENSP00000225792	DDX5	Probable ATP-dependent RNA helicase DDX5	614 69.10 8.92	16.29 14	9	9 17	19.87 14	11 11 20		4 8	8.63 9 4 4 8
18 Q08211 19 Q9BTC0	9606.ENSP00000356520 9606.ENSP00000266070	DHX9 DIDO1	ATP-dependent RNA helicase A Death-inducer obliterator 1	1270 140.87 6.84 2240 243.72 7.88	5.75 2 1.38 2	6	6 10 2 3	4.41 1 2.5 4	6 6 9		5 10 7 13	4.09 2 4 4 8 3.93 2 6 6 14
20 060832	9606.ENSP00000358563	DKC1	H/ACA ribonucleoprotein complex subunit 4	514 57.64 9.42	10.31 6	3	3 6	6.61 6	3 3 4		1 2	2.53 5 1 1 2
21 P32519 22 Q6PJG2	9606.ENSP00000239882 9606.ENSP00000286523	ELF1 ELMSAN1	ETS-related transcription factor Elf-1 ELM2 and SANT domain-containing protein 1	619 67.46 5.21 1045 114.92 9.19	17.61 11 5.17 2	7	7 15	9.69 6 6.6 3	3 4 8	5.82 2 2 1.82 1 2	2 4	2.91 2 1 1 2 2.87 1 3 3 6
23 Q8WYP5	9606.ENSP00000355465	ELYS	Protein ELYS	2266 252.34 6.60	3.18 3	4	4 7	2.43 3	3 3 6		2 3	0.71 3 1 1 2
24 P50402 25 Q7Z589	9606.ENSP00000358857 9606.ENSP00000433205	EMD C11orf30 (EMSY)	Emerin Protein FMSY	254 28.98 5.50 1322 141.38 9.33	10.24 2 6.43 12	2	2 3 5 11	10.24 2 14.07 13	2 2 3	12.24 3 2 7 4.54 9 3	2 3 5	14.1 4 2 2 4 2.04 8 2 2 4
26 P22087	9606.ENSP00000221801	FBL	rRNA 2'-methyltransferase fibrillarin	321 33.76 10.18	18.38 10		4 8	24.92 10	6 6 12	2 22.43 10 5	5 10	12.77 10 3 3 6
27 Q6ISB3 28 P78347	9606.ENSP00000251808	GRHL2 GTF2I	Grainyhead-like protein 2 homolog General transcription factor II-I	625 71.06 6.44 998 112.35 6.39	19.04 2 2.51 4	7	7 16 2 4	23.84 2 1.5 4	9 9 22		6 11	17.6 2 7 7 12 2.91 5 2 2 6
29 O60814	9606.ENSP00000349430	HIST1H2BK	Histone H2B type 1-K	126 13.88 10.32	69.84 2		13 50	74.6 3	1 16 53	3 19.05 17 2	2 14	19.05 17 2 2 12
30 P51610 31 Q9UGU5	9606.ENSP00000309555 9606.ENSP00000216106	HCFC1 HMGXB4	Host cell factor 1 HMG domain-containing protein 4	2035 208.60 7.46 601 65.67 9.32	7.27 5 6.16 3	12 1	12 25 2	7.52 5 6.16 3	12 12 22 3 3 5		8 18 1 2	6.54 5 10 10 20 2.83 3 1 1 2
32 O43390	9606.ENSP00000363745	HNRNPR	Heterogeneous nuclear ribonucleoprotein R	633 70.90 8.13	7.9 11	3	3 6	9.64 6	4 5 10	7.74 5 2	5 9	4.27 5 1 3 6
33 P08107 34 P11142	9606.ENSP00000364802 F 9606.ENSP00000432083	HSP71(HSPA1A)	Heat shock 70 kDa protein 1A/1B Heat shock cognate 71 kDa protein	641 70.01 5.66 646 70.85 5.52	8.74 9 8.82 16	3 4	4 10 5 10	9.2 10 4.49 15	3 4 6	2.5 3 1 4.49 12 2	1 4	6.55 4 3 3 5 4.18 13 2 2 4
35 P55010	9606.ENSP00000216554	IF5 (EIF5)	Eukaryotic translation initiation factor 5	431 49.19 5.58	12.06 3	5	5 8	12.53 1	6 6 10	16.01 7 6	6 11	6.96 7 3 3 6
36 P08727 37 Q9Y2K7	9606.ENSP00000355124 9606.ENSP00000432786	KRT19 KDM2A	Keratin, type I cytoskeletal 19 Lysine-specific demethylase 2A	400 44.08 5.14 1162 132.71 7.58	11.5 15 1.46 5	2	5 10 1 2	19.75 17 2.5 5	4 7 13 2 2 4		12 28 1 2	21.5 8 2 12 24 1.46 5 1 1 2
38 P46013	9606.ENSP00000357643	KI67 (MKI67)	Antigen KI-67	3256 358.47 9.45	13.85 3		29 55	17.57 3	35 35 66	3 11.92 3 24	24 50	12.07 3 26 26 50
39 Q03164 40 Q9UMN6	9606.ENSP00000436786 9606.ENSP00000398837	KMT2A KMT2B	Histone-lysine N-methyltransferase 2A Histone-lysine N-methyltransferase 2B	3969 431.50 9.09 2715 293.33 8.22	3.2 4 0.88 2	<u> </u>	9 17 2 4	3.63 4 0.99 2	11 11 21 2 2 4		16 30 2 4	5.29 5 14 14 27 1.18 1 2 2 4
41 P42166	9606.ENSP00000266732	LAP2A (TMPO)	Lamina-associated polypeptide 2, isoform alpha	694 75.45 7.66	43.37 2	18 2	25 46	41.07 2	19 26 53	3 29.68 2 10	15 29	19.16 3 6 11 21
42 P42167 43 Q6PKG0	9606.ENSP00000266732 9606.ENSP00000336721	LAP2B (TMPO)	Lamina-associated polypeptide 2, isoforms beta/gamma La-related protein 1	454 50.64 9.38 1096 123.43 8.82	37.22 5 2.19 4	9 1	16 35 1 2	46.92 5 1.19 4	10 17 34 1 1 2		8 15 2 4	23.79 5 2 7 15 2.65 5 2 2 3
44 Q6MZP7	9606.ENSP00000341947	LIN54	Protein lin-54 homolog	749 79.44 9.01	8.54 5	4	4 8	6.81 4	3 3 6		3 6	4.94 4 3 3 6
45 Q96AG4 46 Q5T3J3	9606.ENSP00000225972 9606.ENSP00000358778	LRRC59	Leucine-rich repeat-containing protein 59 Ligand-dependent nuclear receptor-interacting factor 1	307 34.91 9.57 769 84.52 9.72	18.24 1 13.26 1	4	4 7 6 10	13.36 1 12.74 1	4 4 7	5.21 1 1 7.8 1 4	1 2	8.14 1 2 2 4 7.67 1 4 4 8
47 Q86UE4	9606.ENSP00000338235	MTDH	Protein LYRIC	582 63.80 9.32	3.44 2	1	1 2	3.26 1	1 1 1	1.89 3 1	1 2	1.89 3 1 1 2
48 P56270 49 Q14676	9606.ENSP00000219782 9606.ENSP00000365588	MAZ MDC1	Myc-associated zinc finger protein Mediator of DNA damage checkpoint protein 1	477 48.58 8.95 2089 226.53 5.47	6.08 5 2.25 5	1 3	2 4 3	8.6 5 1.63 5	2 3 6	6.18 6 1	2 4 3 6	9.6 6 2 3 6 3.88 4 4 4 8
50 P51608	9606.ENSP00000395535	MECP2	Methyl-CpG-binding protein 2	486 52.41 9.95	3.29 4	 	1 2	7.41 4	2 2 3	4.94 4 2	2 4	8.23 4 4 4 8
51 Q9ULH7 52 Q9H0A0	9606.ENSP00000339086 9606.ENSP00000257829	MKL2 NAT10	MKL/myocardin-like protein 2 N-acetyltransferase 10	1088 118.05 6.28 1025 115.66 8.27	10.94 6 2.93 3	6	6 11 2 3	10.66 16 5.46 5	7 7 12 4 4 7		2 4	2.21 6 2 2 4 1.66 3 1 1 2
53 O00712	9606.ENSP00000370340	NFIB	Nuclear factor 1 B-type	420 47.41 8.87	2.62 6	1	1 2	8.1 8	2 2 4	3.33 10 1	1 3	3.33 10 1 1 2
54 Q14938 55 Q6P4R8	9606.ENSP00000380781 9606.ENSP00000436926	NFIX NFRKB	Nuclear factor 1 X-type Nuclear factor related to kappa-B-binding protein	502 55.06 8.68 1299 138.92 9.25	2.39 8 7.54 4	1 8	1 2 8 14	2.39 8 6 4	1 1 2 6 6 12	2.10	1 4	2.79 12 1 1 4 2.31 3 2 2 4
56 Q15233	9606.ENSP00000276079	NONO	Non-PU domain-containing octamer-binding protein	471 54.20 8.95	7.43 5	3	3 6	2.55 2	1 1 2	6.37 4 2	2 4	3.18 4 1 1 2
57 P49116 58 O96028	9606.ENSP00000483059 9606.ENSP00000372351	NR2C2 NSD2	Nuclear receptor subfamily 2 group C member 2 Histone-lysine N-methyltransferase NSD2	596 65.37 6.28 1365 152.16 8.69	2.52 5 1.47 7	1 1	1 2	2.52 5 2.78 7	1 1 2 2 3	4.87 3 2 1.17 4 1	1 2	4.87 3 2 2 4 1.98 4 2 2 3
59 Q14980-2	9606.ENSP00000377298	NUMA1	Nuclear mitotic apparatus protein 1	2101 236.37 5.80	21.13 9	- "	44 60	21.56 9	41 41 55	01.22 22 01	54 62	30.75 22 51 51 60
60 P19338 61 C9JPD0	9606.ENSP00000318195 9606.ENSP00000384551	NCL NXPH1	Nucleolin Neurexophilin-1 (Fragment)	710 76.57 4.70 143 16.46 9.35	27.04 6 7.69 4	12 1	12 23	23.66 6 7.69 4	10 10 24 1 1 1 1	4 13.38 2 6 7.69 4 1	6 14	15.35 2 7 7 16 7.69 4 1 1 2
62 Q13416	9606.ENSP00000234296	ORC2	Origin recognition complex subunit 2	577 65.93 6.51	4.33 1	2	2 4	1.73 1	1 1 1	0.12	1 2	3.12 1 1 1 2
63 Q86YP4 64 Q8WXI9		GATAD2A (P66A) GATAD2B (P66B)	Transcriptional repressor p66-alpha Transcriptional repressor p66-beta	633 68.02 9.94 593 65.22 9.70	30.02 11 21.92 1		17 39 9 21	33.97 11 18.04 1	17 18 43 6 7 18		6 11 6 12	12.48 11 5 5 10 11.64 1 4 4 7
65 Q8NC51	9606.ENSP00000360034	SERBP1	Plasminogen activator inhibitor 1 RNA-binding protein	408 44.94 8.65	7.11 4	3	3 4	11.76 4	4 4 6		1 2	4.41 4 1 1 2
66 Q15365 67 Q8WWQ0	9606.ENSP00000305556 9606.ENSP00000275034		Poly(rC)-binding protein 1 PH-interacting protein	356 37.47 7.09 1821 206.56 8.85	14.61 2 4.01 1	4	3 6 4 6	12.92 2 3.02 1	3 4 7 3 3 5	3.00 20 2	2 4 5 10	9.55 20 2 2 4 4.17 6 5 5 10
68 P14923	9606.ENSP00000377508	PLAK (JUP)	Junction plakoglobin	745 81.69 6.14	2.28 1	· ·	1 2	2.42 1	1 1 2		3 6	8.59 5 5 10
69 Q7Z3K3 70 Q96QC0	9606.ENSP00000271715 9606.ENSP00000365694	POGZ PPP1R10	Pogo transposable element with ZNF domain Serine/threonine-protein phosphatase 1 regulatory subunit 10	1410 155.24 7.40 940 99.00 9.17	1.42 7 11.38 1	8	2 4 8 12	2.2 6 13.09 1	3 3 6 9 9 14		2 4 3 5	2.06 6 2 2 4 5.21 1 3 3 6
71 O43395 72 P35251	9606.ENSP00000315379 9606.ENSP00000371321	PRPF3	U4/U6 small nuclear ribonucleoprotein Prp3	683 77.48 9.50 1148 128.18 9.36	17.72 2 1.05 3	11 1	11 20 1 2	21.82 2 1.05 3	12 12 19	9 12.3 2 6 1.83 3 2	6 11 2 3	13.03 2 6 6 13 1.05 3 1 1 2
73 P22670			Replication factor C subunit 1 MHC class II regulatory factor RFX1	979 104.69 6.29	4.19 1	3	3 6	7.05 1	4 4 9		1 2	1.05 3 1 1 2
74 Q02543 75 P22626	9606.ENSP00000222247	RPL18A	60S ribosomal protein L18a	176 20.75 10.71 353 37.41 8.95	19.89 5 18.7 3		3 7 4 8	14.2 5 22.38 3	3 3 5 6 6 11	1100	1 2	7.39 5 1 1 2
75 P22626 76 Q92766	9606.ENSP00000346694 RC	RREB1	Heterogeneous nuclear ribonucleoproteins A2/B1 Ras-responsive element-binding protein 1	353 37.41 8.95 1687 181.31 6.98	6.4 8		4 8 8 12	5.99 9	6 6 11 8 8 13	3 1.54 5 2	2 4	2.73 5 3 3 6
77 P62851 78 Q9Y265	9606.ENSP00000435096 9606.ENSP00000318297	RPS25	40S ribosomal protein S25 RuvB-like 1	125 13.73 10.11 456 50.20 6.42	15.2 1 12.28 3	2	2 4	15.2 1 12.28 3	2 2 4		3 6	24 1 3 3 6 12.28 5 4 4 8
79 P31151	9606.ENSP00000357712	S100A7	Protein S100-A7	101 11.46 6.77	13.86 1	1	1 2	10.89 2	1 1 1	10.89 2 1	1 2	10.89 2 1 1 2
80 Q9UQR0 81 Q13435	9606.ENSP00000251900 9606.ENSP00000318861	SCML2 SF3B2	Sex comb on midleg-like protein 2 Splicing factor 3B subunit 2	700 77.21 8.54 895 100.16 5.67	13.57 3 0.78 3	6	6 13 1 2	15.71 3 3.69 4	7 7 15 3 3 6		3 8 1 2	9 3 4 4 8 1.45 4 1 1 2
82 O60264	9606.ENSP00000283131		SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5	1052 121.83 8.09	17.68 3	 	15 34	13.5 3	12 12 26		5 10	4.37 3 5 5 10
83 A6NHR9 84 Q13573	9606.ENSP00000326603 9606.ENSP00000261531	SMCHD1	Structural maintenance of chromosomes flexible hinge domain-containing protein 1 SNW domain-containing protein 1	2005 226.23 7.30 536 61.46 9.52	2 4 17.54 4	3 7	3 6 7 15	3.14 4 19.22 4	5 5 9 7 7 12		3 6	1.75 4 3 3 6 7.28 4 2 2 4
85 G5E9C0	9606.ENSP00000258381	SP110	SNW domain-containing protein 1 SP110 nuclear body protein, isoform CRA_b	547 61.70 9.54	25.23 10	1 1	13 18	28.15 10	1 16 22	2 34.37 11 17	17 25	34.92 11 19 19 27
86 Q8IYB3 87 P42224	9606.ENSP00000326261 9606.ENSP00000354394		Serine/arginine repetitive matrix protein 1 Signal transducer and activator of transcription 1-alpha/beta	904 102.27 11.84 750 87.28 6.05	7.63 5 1.6 3	 	4 7 1 2	5.53 5 1.6 3	3 3 5 1 1 2		6 14 2 4	10.95 6 7 7 14 3.33 3 2 2 4
88 Q13148	9606.ENSP00000240185		TAR DNA-binding protein 43	414 44.71 6.19	4.35 3	<u> </u>	1 2	4.35 3	1 1 2		1 2	2.9 16 1 1 2
89 P37802 90 Q9UGU0	9606.ENSP00000357076 9606.ENSP00000352463	TAGLN2 TCF20	Transgelin-2 Transcription factor 20	199 22.38 8.25 1960 211.64 9.04	13.07 5 3.52 2	2	2 4 4 6	13.07 5 2.45 2	2 2 4		3 6	26.13 3 3 6 1.22 2 1 1 2
91 P50990	9606.ENSP00000286788	TCPQ (CCT8)	T-complex protein 1 subunit theta	548 59.58 5.60	11.68 5	· ·	6 11	12.77 4	5 5 9	14.78 4 6	6 12	14.78 4 6 6 14
92 Q5QJE6 93 P28347	9606.ENSP00000411010 1 9606.ENSP00000435233		Deoxynucleotidyltransferase terminal-interacting protein 2 Transcriptional enhancer factor TEF-1	756 84.42 6.16 426 47.91 8.15	4.1 1 2.35 13	2	2 4 1 2	3.84 2 2.82 14	3 3 6 1 1 2		1 2	3.84 2 2 2 4 2.58 14 1 1 2
94 Q86V81	9606.ENSP00000421592 T	THOC4 (ALYREF)	TH complex subunit 4	257 26.87 11.15	20.23 2	3	3 4	20.23 2	3 3 5	4.28 2 1	1 2	4.28 2 1 1 4
95 Q13263 96 P11388	9606.ENSP00000253024 9606.ENSP00000411532	TRIM28 TOP2A	Transcription intermediary factor 1-beta DNA topoisomerase 2-alpha	835 88.49 5.77 1531 174.28 8.72	6.83 3 4.25 4	5	4 8 5 9	2.87 3 6.4 5	2 2 6 8 8 11		2 4 5 8	4.31 3 2 2 4 1.7 4 1 2 4
97 Q02880	9606.ENSP00000396704	TOP2B	DNA topoisomerase 2-beta	1626 183.15 8.00	0.55 3	1	1 2	1.29 3	2 2 4	3.01 3 3	4 8	3.01 3 3 4 8
98 O94842 99 P12270	9606.ENSP00000477868 9606.ENSP00000356448	TOX4 TPR	TX high mobility group box family member 4 Nucleoprotein TPR	621 66.15 5.06 2363 267.13 5.02	16.43 10 0.59 1	8	8 17 1 2	14.98 10 1.35 1	9 9 20 2 2 5		4 7 4 9	5.64 9 3 3 4 4.06 1 7 7 15
100 Q14258	9606.ENSP00000323889	TRIM25	E3 ubiquitin/ISG15 ligase TRIM25	630 70.93 8.09	1.6 1	 	1 3	1.9 1	1 1 2	1.9 1 1	1 2	1.9 1 1 1 1
101 Q9UPN9 102 Q9UHF7	9606.ENSP00000351250 9606.ENSP00000379065	TRIM33 TRPS1	E3 ubiquitin-protein ligase TRIM33 Zinc finger transcription factor Trps1	1127 122.46 6.67 1281 141.43 7.58	5.68 4 11.94 7	5 11 1	5 7 11 21	6.03 4 12.18 7	5 5 9 12 12 25		2 4 3 6	2.13 4 2 2 4 3.51 6 3 3 5
103 Q14157	9606.ENSP00000389445	UBAP2L	Ubiquitin-associated protein 2-like	1087 114.47 7.11	1.84 11	2	2 4	3.13 11	3 3 5	4.05 11 3	3 6	5.7 11 4 4 8
104 Q9Y4E8 105 P12956	9606.ENSP00000280377 9606.ENSP00000352257	USP15 XRCC6	Ubiquitin carboxyl-terminal hydrolase 15 X-ray repair cross-complementing protein 6	981 112.35 5.22 609 69.80 6.64	1.6 4 14.12 3	7	1 2 7 16	1.8 3 20.69 3	1 1 3 10 10 18		1 2 4 8	1.43 3 1 1 2 10.67 3 5 5 14
106 Q96KM6	9606.ENSP00000393795	ZNF512B	Zinc finger protein 512B	892 97.20 9.83	13 1	7	7 12	8.63 1	5 5 12	2 5.94 1 3	3 5	5.94 1 3 3 5
107 Q96C00 108 Q9UQR1	9606.ENSP00000378503 9606.ENSP00000353863		Zinc finger and BTB domain-containing protein 9 Zinc finger protein 148	473 50.57 6.76 794 88.92 6.48	4.02 3 7.05 1	<u> </u>	1 2 7	5.92 3 9.32 1	2 2 3 4 5 8		1 2 3 6	4.02 3 1 1 2 3.78 1 2 2 4
109 Q14966	9606.ENSP00000386433		Zinc finger protein 638	1978 220.49 6.38	0.86 4	1	1 2	0.86 4	1 1 2		2 4	0.86 4 1 1 2

TABLE S2. Primers, G AYAZ et al.

IL12A

Cloning Primers	Forward Primer Sequence (5' to 3')	Reverse Primer Sequence (5' to 3')
CXXC5	CGCATATACTCGAGATTACCATGGAAGCTAGCATGTCGAGCCTCGGCGGTGGCTC	CGCATGGGATCCTTTATTAGAATTCCTGAAACCACCGGAAGGCGG
EMD	CTGATCTCGAGCCATGGCTAGCGACAACTACGCAGATCTTTCG	CTGATGGGATCCTTTATTAGTCGACGAAGGGGTTGCCTTCTTCAGCCTGC
	TTAGTGCTAGCAGCTCGTCCGCCGCCTCTTATAG	
EMD ALEMD		CTGATGGGATCCTTTATTAGTCGACGACGAGGGGTTGCCTTCTTCAGCCTGC
FL-MAZ	CTGATGCTAGCTTCCCGGTGTTTCCTTGCACGCTGCTG	CTGATGGATCCTTTATTACCAGGGTTGGGAGGGAAGTGGCTGAGAGCT
ΜΑΖΔΝ	CGCATCTCGAGACGCGTAACCATGGCTAGCGTGCCCCTGAGCCTCCTGAGC	CGCATGGGATCCTCTAGATTTATTAGAATTCGCAGGTGGGCTGTGGCTGGGG
MeCP2	CTGATGATAGCGTAGCTGGGATGTTAGGGCTC	CGCATGGGATCCTTTATTAGAATTCGCTAACTCTCTCGGTCACGGG
MeCP21-400	CTGATGATAGCGTAGCTGGGATGTTAGGGCTC	CGCATGGGATCCTTTATTAGAATTCGGTGGGGTCCTCGGAGCTCTCGGG
Tag sequences (DNA and aminoacid)	Nucleotide Sequence (5' to 3')	Amino Acid Sequence
Flag	GATTACAAGGATGACGACGATAAG	DYKDDDDK
3xFlag	GACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCGACTACAAAGACGATGACGACAAG	DYKDHDGDYKDHDIDYKDDDDK
HA	TACCCATACGATGTTCCAGATTACGCT	YPYDVPDYA
NLS (Nuclear Localization Signal)	CCCAAGAAAAAGAGGAAGGTGGCTCACCCAAGAAAAAGAGGAAGGTGGCGGCTCA	PKKKRKVGSPKKKRKVGSS
NEO (Nuoical Eodalization Olynai)	000,770,7777,700,700,700,700,700,700,70	Triuditivos rututivos
CXXC5 Truncation and Deletion Primers	Forward Primer Sequence (5' to 3')	Reverse Primer Sequence (5' to 3')
3F-CXXC5	CGCATGCTAGCACCGGTTCGAGCCTCGGCGGTGGCTCC	CGCATGGGATCCTTTATTAGAATTCCTGAAACCACCGGAAGGCGG
3F-CXXC5-Δ101-149	GCAGCATGATGGGCGGAGCGGGCCACGGAGCTGGCAGC	GCTGCCAGCTCCGTGGCCCGCTCTCCGCCCATCATGCTGC
3F-CXXC-Δ150-199	GCCTGCTGAGCAAGGCAGAGGAAGCCCTCAATGGCCAGTC	GACTGGCCATTGAGGGCTTCCTCTGCCTTGCTCAGCAGGC
3F-CXXC-Δ200-249	TGGAGGCTGTGGCAGGTGCCGCCTCTGCCATCAGCTCCGG	CCGGAGCTGATGGCAGAGGCGGCACCTGCCACAGCCTCCA
3F-CXXC5-Δ1-100	CGCATGCTAGCACCGGTTCTGCTGACAAGGCCACTGCG	CGCATGGGATCCTTTATTAGAATTCCTGAAACCACCGGAAGGCGG
3F-CXXC5-Δ250-322	CGCATGCTAGCACCGGTTCGAGCCTCGGCGGTGGCTCC	CGCATGGGATCCTTTATTAGAATTCCAGCTCTCCCTGCATGGGGTAC
3F-CXXC5-Δ1-100 & 250-322	CGCATGCTAGCACCGGTTCTGCTGACAAGGCCACTGCG	CGCATGGGATCCTTTATTAGAATTCCAGCTCTCCCTGCATGGG
3F-CXXC	CGCATGCTAGCACCGGTGCCTCTGCCATCAGCTCCGGC	CGCATGGGATCCTTTATTAGAATTCCTGAAACCACCGGAAGGCGG
3F-CXXC-DBM	CGCATGCTAGCACCGGTGCCTCTGCCATCAGCTCCGGC	CGCATGGGATCCTTTATTAGAATTCCTGAAACCACCGGAAGGCGG
3F-CXXC5-DBM	CGCATGCTAGCACCGGTTCGAGCCTCGGCGGTGGCTCC	CGCATGGGATCCTTTATTAGAATTCCTGAAACCACCGGAAGGCGG
Generation of DBM (AAAA-188-191)		
1st round	CGCATATACTCGAGATTACCATGGAAGCTAGCATGTCGAGCCTCGGCGGTGGCTC	CCATGTCCGCTGCGGCAGCACCCGCCTCGCTC
2nd round	GAGCGAGGCGGTGCTGCCGCAGCGGACATGG	CGCATGGGATCCTTTATTAGAATTCCTGAAACCACCGGAAGGCGG
Overlapping PCR (using template 1st & 2nd rounds)	CGCATATACTCGAGATTACCATGGAAGCTAGCATGTCGAGCCTCGGCGGTGGCTC	CGCATGGGATCCTTTATTAGAATTCCTGAAACCACCGGAAGGCGG
RT-qPCR Primers	Forward Primer Sequence (5' to 3')	Reverse Primer Sequence (5' to 3')
CXXC5	CACCAGGCATCTCTGTTGTGG	TTGTCTGCTGCTCCTGCCTTT
HDAC11	CAGCTGTGGCCCTGATCAAATC	ATCTTGGAACCCTTCTCCCTGC
NFKBIZ IL12A	ACTCAGCTGCAAAGATAAGTTCAC TGCAAAGCTTCTGATGGATCC	ACATTATTTTGCTTGCCGCTGG AAAATCCGGTTCTTCAAGGGA
	Forward Primer Communes (Flds 20)	Parama Prima Carraga (FIAs 20)
ChIP Primers	Forward Primer Sequence (5' to 3')	Reverse Primer Sequence (5' to 3')
HDAC11	CTGTGGGGGCATTTATTACG	TGCTTAAACTGGCTGCCTTT
NFKBIZ	ACGTACGCACCTTAGCCATC	AGAGAGCGAGCGATCTCCTG
IL12A	CGCTTTCATTTTGGGCCGAG	ACATCAGCTTCTCGGTGACA
Exon10 of CXXC5	TCAACCCAGGCCTCTTCATT	TGGCCAGTCTTTCGATTCCT
Bisulfite Primers	Forward Primer Sequence (5' to 3')	Reverse Primer Sequence (5' to 3')
HDAC11	GTTAGTTTAAGGTTATATAGTGAAGTTT	ACCAACAAATCTAAACCCTTACCTAA
NFKBIZ	GGGGGTTTAGAGGGTAGGGATGGTT	CCATAAAAATAACTCAAATTAAAC
U 40A	TATOTA A A CORO	074074074770044707070077444044

CTACTACTATTCCAATCTCTCCTTAAACAA

TATGTAAAGTGGGAGGTATTTTTTTTTA