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ABSTRACT

Contents of this file include:
Methods: Dimensionality reduction of pre-clinical health conditions: Principal component analysis
Methods: Methodological background on various statistical learning models
Figures 1-2: Principal Component Analysis Results
Figure 3: Variable Importance Plot
Table 1: Sensitivity Analysis Results
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Dimensionality reduction of pre-clinical health conditions: Principal component
analysis
In our analysis, we considered twelve pre-clinical health conditions. They are, cancer, high cholesterol level, coronary
heart disease, arthritis, high blood pressure, stroke, chronic kidney disease, chronic obstructive pulmonary disease
(COPD), diabetes, obesity, asthma, and the mental health issues for up to fourteen days. To reduce the dimensions,
we performed the principal component analysis (PCA). PCA is an orthogonal transformation of the data into a new
coordinate system that explains the maximum variances in the data. The results obtained from the principal component
analysis for dimension reduction of the pre-existing health conditions are described. The Fig. 1, depicts the correlation
circle plot of the pre-clinical health conditions. The contribution of the variables (contrib) are depicted along with the
variance explained by the dimensions.
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Figure 1. The correlation circle plot of the pre-clinical conditions

Furthermore, to identify the number of reduced dimensions, we plotted the scree plot in Fig. 2. In multivariate
statistics, scree plot depicts the line plot of the eigenvalues or the percentage of explained variance of the principal
components. From the plot, it can be identified that, by choosing three dimensions, most of the variance has been
explained. The top three dimensions can explain 92% of the variance and hence this is considered as the output.

Methodological background on various statistical learning models
In this section, the methodological backgrounds of different statistical learning models other than the Bayesian Additive
Regression Trees (BART) used in our analysis are described. More specifically, here we discuss the methodological
backgrounds of the generalized linear model (GLM), ridge regression, lasso regression, generalized additive model
(GAM), multivariate additive regression splines (MARS), random forest (RF) and gradient boosting method (GBM).

Generalized linear model (GLM)
A GLM is an extension of the linear regression where the normality assumption of the error terms is relaxed. There are
three components of a GLM: an exponential family of probability distributions, a systematic component and a link
function. In this setting, the dependent variable Y belongs to an exponential family which can be expressed as,

Y ∼ fY (yi)

fY (yi) = exp{yiθi−b(θi)

a(φ)
+ c(yi,φ)}
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Figure 2. The scree plot of the pre-clinical conditions

Where, xi1,xi2, ...,xip is the set of p dimensional predictors and yi is the corresponding response value; fY (yi) is the
probability density function of Y , θi is a function of xi1,xi2, ...,xip known as the natural parameter; and φ is called the
scale parameter which is constant for all the observations i.

The systematic component is a linear combination of the predictor variables can be expressed as,

η = β0 +
p

∑
j=1

β jxi j

This systematic component η is linked to the response through a link function g() such that, E(Y |X) = g−1(η).
Essentially, the GLM is highly interpretable and easy to fit. However, due to its parametric nature, the predictive

accuracy of these models is less compared to other semi-parametric or non-parametric methods.

Ridge regression
In least square estimates, the variance of the model increases with increase in number of predictors, and some of the
predictor variables may not have a significant effect on the response. Ridge regression is a parametric method where,
the coefficients are estimated by minimizing the sum of the residual sum of squares and a shrinkage penalty. The
estimated coefficients of ridge regression are calculated by minimizing

n

∑
i=1

(yi−β0−
p

∑
j=1

β jxi j)
2 +λ

p

∑
j=1

β
2
j (1)

Essentially, the shrinkage penalty (λ ∑
p
j=1 β 2

j ) has an effect of reducing the estimates of β j towards 0. The tuning
parameter λ controls the shrinking parameters and it is estimated using cross-validation.

In a ridge regression setting, the coefficients are reduced but never made equal to 0 unless λ is infinitely large.
Hence, the ridge regression will always have all the p predictors in it.

Lasso regression
The Lasso regression is an improvement over the ridge regression that is capable of reducing the coefficients of some
predictors to 0. The lasso coefficients are estimated by minimizing,

n

∑
i=1

(yi−β0−
p

∑
j=1

β jxi j)
2 +λ

p

∑
j=1
|β j| (2)
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When the tuning parameter λ is sufficiently large, some of the coefficients are reduced to 0. Lasso regression can
perform variable selection and the models generated by this model are more interpretable.

Generalized Additive Model (GAM)
The GAM is a semi-parametric method that allows non-linear functions for each variable to be added to generate a final
model. It is essentially an extension of multiple regression, where to allow non-linear relationships between each of the
p predictors (xi j) and the response (yi), a smooth non-linear function ( f j(xi j) is introduced. In this setting, for each
variable, a non-linear function ( f j) is estimated non-parametrically and then added to generate the final model. The
model can be expressed as,

yi = β0 +
p

∑
j=1

f j(xi j)+ εi

Being a more flexible model compared to the parametric models, GAM is able to make superior predictions.
However, it is prone to overfit the data if proper cross-validation is not performed.

Multivariate Adaptive Regression Splines (MARS)
MARS is a semi-parametric regression technique that can model non-linearities and particularly suitable for high
dimensional data sets. It can be represented as a sum of splines where the response variable is allowed to vary
non-linearly with the predictor variables. The model can be represented as,

f (X) = β0 +
M

∑
m=1

βmhm(X)

where the output is f (X); β0 is the intercept; the spline for each predictor is hm(x) and βm is the vector of coefficients
estimated by minimizing the sum of square errors.

Random forest (RF)
Random Forest is a non-parametric ensemble tree based method. The method ensembles B bootstrapped regression
trees (Tb) where B is selected based on cross-validation. The final estimate is made by averaging the predictions across
all trees as shown in the equation below.

f B(X) =
1
B

B

∑
b=1

Tb(X)

The random forest are low bias techniques, i.e they can capture the pattern of the data very well. However, these
models have high variance and sensitive to outliers.
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Variable importance plot from BART
The variable importance plot depict the inclusion proportion of the variables in Fig 3.

Figure 3. Ranking of variable importance.
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Sensitivity analysis results

Perturbation scenario Mean
Kperturbation scenario

Mean
Kbase case scenario

Mean
∆K Conclusion

Economic
degradation 13.75 13.27 0.48 Worst case scenario

Economic
improvement 13.0 13.27 −0.27 Best case scenario

Less unavailability of
health insurance: 12.78 13.31 −0.53 Best case scenario

More unavailability of
health insurance: 13.84 13.31 0.53 Worst case scenario

Decreased access to
public health insurance 13.37 13.29 0.08 Worst case scenario

Increased access to
public health insurance 13.22 13.29 −0.07 Best case scenario

Cheaper mode of travel
and/or shorter commuting

distance to work:
13.27 13.29 −0.02 Best case scenario

Expensive mode of travel
and/or longer commuting

distance to work:
13.30 13.29 0.01 Worst case scenario

Community expanding
or, vacancy decreasing 13.31 13.30 0.01 Worst case scenario

Community shrinking
or, vacancy increasing 13.29 13.30 −0.01 Best case scenario

Table 1. Aggregated result
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