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Figure S1 - Simulation results for sequencing error models alone

Fig S1. Simulation results for samples with sequencing error models. The simulation scenario
presented here is the same as Fig 1, but the type I error and power are estimated using the 20 samples
simulated with sequencing error, in order to separately evaluate the impact of sequencing errors on type
I errors and power. (A) Distribution of the skewing estimates. (B) Raw type 1 error. (C) Power after
rescaling thresholds until type 1 error of 0.05 is achieved in the training set. Scaled power of 0 for BayesMix
indicates that a type 1 error of 0.05 or less in the training set can only be achieved using a very high PPE
threshold, thus classifying every gene as silenced.
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Figure S2 - Simulation results for training error models alone

Fig S2. Simulation results for samples with training error models. The simulation scenario
presented here is the same as Fig 1, but the type I error and power were estimated using the 20 samples
simulated with training error, where a portion of the genes in the training set escapes XCI. This figure
separately evaluates the impact of training errors on type I error and power.This figure is identical to Fig 1.
but limited to the 20 samples simulated with sequencing error. (A) Distribution of the skewing estimates.
(B) Raw type 1 error. (C) Power after rescaling thresholds until type 1 error of 0.05 is achieved in the
training set. Scaled power of 0 for BayesMix indicates that a type 1 error of 0.05 or less in the training set
can only be achieved using a very high PPE, thus classifying every gene as silenced. When a portion of the
genes in the training data escape inactivation, the XCIR estimates of the skewing are less biased than other
approaches, leading to higher power in all scenarios.
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Figure S3 - Simulation results under a variable sequencing error
model

Fig S3. Simulation results assuming a random sequencing error model.
The simulation scenario is similar to Fig 1. but here we allow the sequencing er-
ror to vary between genes. For each gene, we simulate the sequencing error as:

πerr ∼ Unif(0, .1)

Nerr ∼ Bin(Ng, πerr)
Where Nerr is the number of sequencing error generated for each gene and Ng is the total number of reads
for the gene. (A) Distribution of the skewing estimates. (B) Raw type 1 error. (C) Power after rescaling
thresholds until type 1 error of 0.05 is achieved in the training set.
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Figure S4 - Single cell-derived lymphoblast cell line mixing exper-
iments

Fig S4. Single cell-derived lymphoblast cell line mixing experiments. (A) Overview of clonal
cell line mixing strategy to generate ”mosaic” samples. RNA-seq was then performed and independently
analyzed for each “mosaic” mixed sample. (B) XIST RNA FISH of clonal LCLs to verify X chromosome
content. For clones c32 and c1, 89% and 88% of nuclei, respectively, were positive for an XIST signal (at least
100 cells scored). (C) FISH on metaphase chromsomes using an XIST cosmid probe to verify X chromosome
content of clonal LCLs. For clones c32 andc1, 95% and 100%, respectively, contain two X chromosomes (>20
metaphases scored)
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Figure S5 - Accuracy change using phasing information

Fig S5. Effect of phasing on prediction accuracy. Using the same simulation setup as in Figure 1,
we allow sampling of an additional SNP on the haplotype in both training and test set. XCIR is then run
on the data using either the read count of the top SNP or using aggregated SNPs on the haplotype. We
compute the accuracy of the predicted XCI states for each sample. Boxplots show the distribution of the
prediction accuracy across skewings (µ) and ASE variance (σ2).
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Figure S6 - Quantile-Quantile plot of Lupus GWAS

Fig S6. Quantile-Quantile plot of Lupus GWAS. GWAS significances extracted from UK Biobank
summary statistics in self reported Lupus among female participants. Stratified for rare and common variants
(MAF < 2% and MAF ≥ 2%, respectively).
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Figure S7 - Manhattan plot of lupus GWAS

Fig S7. Manhattan plot of lupus GWAS. GWAS effect sizes and significances extracted from UK
Biobank summary statistics in self reported Lupus among female participants.
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Table S3 - Single cell-derived lymphoblast cell line mixing experi-
ments results

Method Raw Type 1 Error Recalibrated Power Recalibrated Threshold Experimental clone mix
Xi-threshold 0.338 0.192 0.0368 40:60

0.275 0.444 0.1216 30:70
0.197 0.571 0.1451 20:80
0.072 0.778 0.3297 10:90

BayesMix 0.394 0.038 0.9582 40:60
0.377 0.519 0.7517 30:70
0.211 0.607 0.8631 20:80
0.145 0.741 0.7874 10:90

XCIR 0.028 0.269 40:60
0.072 0.593 30:70
0.085 0.750 20:80
0.072 0.778 10:90

Table S3. Single cell-derived lymphoblast cell line mixing experiments. Type 1 error and power
comparison across methods for the single cell-derived lymphoblast cell line mixing experiment. The Recali-
brated thresholds show the values of Xi-threshold or BayesMix’s posterior probability of escape that yield a
type 1 error of less than 5% in the training set. Power is reported after recalibration. Due to the relatively
small number of genes that are consistently silenced, discreteness makes it impossible to calibrate type I
errors to exactly 0.05. Therefore, we chose thresholds so that the type I error is closest to 0.05.

Table S7 - Effect of eQTL on XCI inference

eQTL effect Type 1 Error Power
No adjustment Adjusted No adjustment Adjusted

Up 0.071 0.059 0.816 0.826
No eQTL 0.057 0.061 0.840 0.840

Down 0.048 0.056 0.800 0.835

Table S7. Effect of eQTL on XCI inference. Type 1 error and power comparison in the presence of
cis-eQTL with and without adjusting for the genotypes effect. The simulation scenario follows the settings
used for Fig 1, including both sequencing and train errors. For each test gene, we simulate an eQTL based
upon the MAF sampled from GTEx whole blood SNPs. Effect allele of the eQTL is placed on one haplotype.
In samples that carry an effect allele, we assume that it can increase or decrease the ASE ratios by modifying
the allelic expression (N2) as follow

C = N1(βeQTL − 1)

N ′2 = N2 ± C
(2)

Where βeQTL is the median allelic fold change (aFC) effect size of SNPs in GTEx, so that the eQTL effects
reflect realistic fold changes. XCIR is then used to analyze the gene expression N1,N ′2. When a list of known
eQTL is available, we can adjust their impact by regressing the observed allelic expression on the genotype
(G) of the eQTL and use the residuals with XCIR to perform XCI inference.
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Supplementary Methods

Simulation of allele specific expression

For our simulation scenarios (Figure 1, S1), we use distributions and parameters that closely match what
we observe in real data such as the GEUVADIS dataset.

First, we simulated samples true skewing parameters using a range of skewing mean µ ∈ (0.15, 0.25, 0.30)
and variance σ2 ∈ (4× 10−8, 2× 10−4, 1× 10−3) such that we get a representative range of individuals, from
very skewed with low variance of ASE (µ = 0.15, σ2 = 4× 10−8) that are typically easier to predict, to indi-
viduals that have a much more balanced skewing with large variation in their ASE (µ = 0.35, σ2 = 1×10−3)
that are much harder to predict and better separate methods on their ability to study a larger part of the
population. Although the skewing mean ranges from 0 to 0.5, at both extremes, the power to infer XCI-states
is either too high or too low for all methods, and as a result, not useful to compare the accuracy of different
approaches.

To evaluate the skewing estimation step of XCIR and BayesMix under different conditions, we simulated
60 samples for each of the 9 combinations above and split the samples evenly based on the quality of their
set of 40 training genes: The first 20 samples have 40 properly silenced genes, the next 20 have 10% of their
training genes that are sequencing errors where the SNP used is actually homozygous. The last 20 have 15%
of the training genes that escape. To evaluate the type 1 error and power associated with each method, we
also generated 100 silenced and 100 escape test genes, not included in the training set.

The simulation scenario does not assume the availability of phasing information. For every gene, ASE
ratios are observed from a single, highly expressed SNP. We generate total read counts and ASE ratios as
the following:

• The read depth N is simulated according to a negative-binomial distribution N ∼ NB(µ = 113, θ =
0.83)

• For silenced genes in both training and testing, the allelic expression is simulated according to a beta-
binomial (BB) distribution N1 ∼ BB(N,µ, σ2) where µ and σ2 are the sample specific true skewing
mean and variance as described above.

• For escape genes in the training (errors) and test set, the allelic expression is simulated according to
N1 ∼ BB(N,αesc, βesc)

• Training genes with sequencing errors allelic expression are sampled from a binomial distribution
N1 ∼ Bin(N, 0.01)

All simulated parameters and values are reported in Table S1. While we chose a constant rate of
sequencing errors to facilitate the interpretation of the results, additional simulations show that the results
of XCIR remain valid and XCIR retains its advantages when assuming a variable sequencing error rate
(Figure S3).

Experimental Validation Using RNA-seq Data from Single-cell derived Clonal
Cell Lines

In addition to simulation evaluation, we experimentally established the validity and power of proposed
method using single-cell derived lines with identical Xa/Xi assignment. Single-cell derived clonal lines were
isolated from the mosaic LCL GM07345 by plating into 0.7% Methocel (Dow Chemical Company) essentially
as described [Kriegler, 1990, Freshney, 2000]. About 400 cells per 35mm dish were diluted in methocel:RPMI
media and plated over irradiated mouse embryonic fibroblasts. Individual colonies were picked after 4-6 weeks
with sterile pipet tips under an inverted microscope, transferred to a 48-well plate and expanded. Clonality
was established by methylation at the Androgen Receptor locus [Allen et al., 1992] and validated by RNA-
seq, confirming that individual lines with maternal or paternal Xa were isolated.
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To facilitate the evaluation of XCIR, BayesMix and Xi-threshold in mosaic cell lines, the single-cell clonal
lines with differing Xa were mixed to generate five mosaic lines with an expected sample skewing of 50:50,
60:40, 70:30, 80:20 and 90:10. RNA-seq was performed on each of the single-cell clonal lines and on the five
“mosaic” samples.

The reads were aligned using HISAT2 [Kim et al., 2015] and adjusted for potential reference bias with
WASP [van de Geijn et al., 2015]. Allelic expression level at each heterozygous SNP position was quantified
using SAMtools mpileup (v1.3.1). The reference-based haplotype phasing was performed with SHAPEIT
(v2.r837), incorporating the 1000 Genome Project’s phase 3 panel as the reference. ASE was computed on
genes with at least 20 read counts. Based upon the quantified ASE, we applied XCIR, Xi-threshold, and
BayesMix to infer the XCI states for each mosaic mixes. The true XCI states for these synthetic mosaic cell
lines can be directly observed from the two single-cell clonal lines.

Processing of GEUVADIS Dataset

We utilized the same procedure to process the sequence data as in the analysis of the single-cell clones,
including the alignment, the adjustment of reference bias, and the pileups. The phased haplotype information
was extracted from the 1000 Genomes data. Reads that covered multiple heterozygous SNPs on each
haplotype are aggregated for the inference of XCI states. On average, each gene is covered by 1.65 SNPs
(1.66 when including only skewed samples). Sufficient coverage was available for an average 22.22 genes per
sample out of the 177 available in the training set (22.07 per sample for skewed samples alone).

Male Female Differential Gene Expression Analysis

The alignment-free method kallisto was used to estimate transcript abundance, which is measured by tran-
script per million (TPM). The R package limma (v3.30.13) was used to conduct differential expression
analysis of males vs. females for the GEUVADIS dataset.

Heritability estimates

The original LD score regression software did not support X Chromosome (as of version 1.0.0). We extend
the method to analyze X-linked genes. We first estimate the LD score by pooling males and females, so that
the sample size can be maximized. As a majority of genes on X is XCI-silenced, for each SNP, we encode
male genotypes as 0 and 2 or 0, 1 and 2 for the PAR regions, and female genotypes as 0, 1 and 2. We call
this XCI coding.

The coding for the dosage of the expressed alternative alleles for escape gene is complicated. When the
gene fully escapes XCI and both the Xa and Xi have equal dosage as the male X, we may encode males as 0,
1 and females as 0, 1 and 2. When the gene partially escape XCI, i.e., the Xi only expresses partially and the
genes may only escape in a subset of the individuals, it is hard to encode the genotype to reflect the actual
allelic dosage. However, as we will show below, the additive XCI coding will consistently underestimate the
genetic effect per expressed allele for E/VE genes, which will in turn lead to underestimated heritability by
E/VE genes. The enrichment of heritability for escape and variable escape genes would only be stronger if
the correct coding were known.

Specifically, we assume that the sample skewing is f which is the fraction of cells where the reference
allele is on the Xa. We denote the Xi expression level as EXi. The dosage of the expressed alternative allele
equals to

Ealt

 0 if genotype is REF/REF
fEXi + (1− f) if genotype is REF/ALT
(1 + EXi) if genotype is ALT/ALT

We would like to estimate the genetic effect as the change of phenotype means per unit of change in the
expressed alternative allele dosage. If we regress the phenotype over the XCI coding, the estimated genetic
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effect is downwardly biased. Specifically, assume the genotype frequencies for REF/REF, REF/ALT and
ALT/ALT are a00, a01 and a11, and the underlying genetic model is

Y = βaltEalt + ε

If we calculate the genetic effect based upon the XCI coding, GXCI from the model Y = βGXCI
+ ε using

least square estimate:

β̂XCI =

∑
iGXCI,iYi∑
iG

2
XCI,i

The estimate satisfies

E[β̂XCI ] =
a01f(EXi + (1− f)) + a11(1 + EXi)

a01 + 2a11
βALT

As 0 ≤ EXi ≤ 1 and 0 ≤ f ≤ 1 it is easy to check that E[β̂XCI ] ≤ALT . So the genetic effect for each
expressed alternative allele is always underestimated.

To compute the LD score for the 3.3 million SNPs (with MAF>1%) on Chromosome X, we use 503
European samples from the 1000 genome project. For each SNP, we calculate its correlations with the SNPs
within the 1 million basepair window and estimate the LD score as:

lj =
∑
k

r2jk

Assuming no confounding factors in the GWAS dataset (such as cryptic relatedness or population struc-
ture), the expected χ2 statistic of variant j given its LD score is approximately

E[χ2|lj ] =
Nh2lj
M

+ 1

Where N is the sample size and M is the number of SNPs.

Some phenotypes, including Lupus, have very imbalanced case:control ratios, which could result in inflated
type 1 error in low frequency variatns [Zhou et al., 2018]. For variants with MAF between 0.01 and 0.02,
the QQ plot is well behaved and shows no inflation (Figure S6). The manhattan plot is also well-behaved,
with clear peaks with a strand of signals. It shows no sign of standalone significant hits, which typically
indicate spurious associations with rare variants (Figure S7).

We found no inflation for variants with MAF between 0.01 and 0.02 and no signs of spurious associations
in rare variants. Therefore, we conclude that our results are reliable.

Partitioning heritability

This LD score regression can be generalized to allow the estimation of heritability explained by SNPs in
different functional annotation categories. We stratify the LD score regression by XCI states. Using the
updated classification obtained from the GEUVADIS dataset, we map each SNP to the nearest gene within
200kb. Genes with at least 5 skewed samples are used to annotate SNPs as Escape, Silenced or Variable-
Escape while SNPs mapped to un-annotated genes are annotated as NoCall. Finally, Intergenic SNPs not
within 200kb of the start or end of a gene are annotated as Intergenic. Together, these annotations cover
the entire X Chromosome. With these annotations, we can model the mean value of the chi-square statistic
as

E[χ2] = N
∑
C

τC l(j, C) + 1

Where τC is the total contribution to heritability of SNPs in category C and l(j, C) is the LD score of
SNP j with respect to neighboring SNPs in category C. Because error terms are correlated for SNPs in LD,
standard error estimates were obtained via a block jack-knife over blocks of 2000 adjacent SNPs, providing
robust estimates.
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Enrichment of Heritability

In order to make the estimates comparable across each XCI state, we compute the heritability enrichment
as the fraction of total heritability explained by category C over the proportion of SNPs mapped to C.

eC =
h2C/h

2

MC/M

GWAS summary results

We use GWAS results from the UK Biobank dataset as generated by Neale group. For each phenotype,
GWAS summary statistics are available for the combined analysis and sex specific analysis. For all analyses,
age and the first 20 principal components are included as covariates. The combined analyses of males and
females also include sex and age × sex interaction as additional covariates.

Permutation tests

To test for changes in enrichment between sex-biased and non-biased phenotypes, we use permutation tests.
For each XCI state, we randomly shuffle the state of sex-biased and sex-nonbiased for all diseases and
calculate the z-scores of the difference of mean enrichment values between the two groups. Repeating the
shuffling 5000 times, we obtain an empirical null distribution for the Z-scores of enrichment difference. P-
values are obtained by calculating the fraction of resampled Z-scores that are more extreme than the true
observed value.
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