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DNA fingerprint of genetic identification for donor gametes and diploid androgenic embryos
Androgenetic Diploid  F22S¥* 1  p_c Heritability* | Oocyte Donor P-C Heritability P-C Heritability ~fAndrogenetic
Embryo Donor 1 Freq(Donor1) 2 Freq(Donor2) Freq(Sperm) (Yes/No)
31682-1 B31682 0.888055 B31682 0.888055 0.96616 Yes
303234 B30571 0.891004 B30323 0.891956 0.999767 Yes
315791 B31579 0.884245 B31579 0.884245 0.99989 Yes
31640-3 B31640 0.893617 B31640 0.893617 0.999864 Yes
30497-3 B30497 0.987566 B30497 0.987566 0.956267 NO
31572-2 B31572 0.931614 B31572 0.931614 0.999864 Yes
30400-1 B30400 0.898622 B30400 0.898622 0.999926 Yes
08822-1 B08822 0.889883 B08822 0.889883 0.999873 Yes
30931-3 B30931 0.891324 B30931 0.891324 0.99989 Yes
30931-2 B30931 0.921917 B30931 0.921917 0.985571 Yes
14822-1 B30931 0.879684 B14822 0.879912 0.999421 Yes
27250-1 B27250 0.856771 B27250 0.856771 0.999676 Yes
27250-2 B27250 0.858671 B27250 0.858671 0.99966 Yes
31578-1 B31578 0.992213 B31578 0.992213 0.96616 NO
31640-2 B31640 0.877962 B31640 0.877962 0.996998 Yes
E

Genome-wide copy number variation of human diploid blastocyst

Androgenetic Diploid Embryo

Copy number variation
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31579-1
31640-3
31572-2
30400-1
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30931-2
14822-1
27250#1
27250#2
31640-2

Arr [h19] 46,XX
Arr [h19] 46,XX
Arr [h19] 46,XY
Arr [h19] 46,XY
Arr[h19148 XY , +2, +5
Arr [h19] 46, XY
Arr[h19]146,XY , del (1) (g41 —q44)
Arr [h19] 46,XY
Arr [h19] 38,XY,-5,-6,-7,-13,-19,-20,-21
Arr [h19] 46,XY,patialy UPD
Arr [h19] 46,XX(upd)(Genome-wide UPD all chromosome)
Arr [h19] 46,XX(upd)(Genome-wide UPD all chromosome)
Arr [h19] 34,XX,-1,-3,-5,-10,-11,-13,-15,-16,-18,-20,-21,-22

Figure S1. Generation of human diploid parthenogenetic and AG embryos

A. Haploid AG embryos after removal of the female pronucleus. B. After ICSI, pronuclear

Aneuploid

Euploid

formation of the biparental embryos. After ICSI for 5-6 h, the pronucleus appeared in more than

80% of the embryos. C. The rate of sex and chromosomal euploidy of human AG embryos.

D. Genetic identification of the parental-child relationship for donor gametes and diploid
embryos. E. The copy number variation of the human diploid AG embryos produced in our study
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Figure S2. RNA-Seq analysis of human uniparental and Bi-P blastocysts

A. Spearman correlation of gene expression among AG, GG and Bi-P replicates. B. Oocyte
specific and ZGA-related gene expression in Mll oocyte, 2-cell, 8-cell, Bi-P, AG and GG
blastocysts. C. Heatmap showing the expression of stage specific genes in 8-cell, ICM, TE, Bi-
P, AG and GG blastocysts. The GO terms are also listed. For the identification of the stage-
specifically expressed genes in the 8-cell, ICM and TE groups, the Shannon entropy-based
method was used as previously described(Wu et al. 2018). Maternally expressed genes
(FPKM=1 in GV or MIl oocytes) were first removed. For the remaining genes, only the genes
with entropy scores less than 2 and FPKM greater than 10 in the expressed stage but not in
other stages were selected as stage-specific genes. D. Gene expression of DNA methylation-
related enzymes.
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Figure S4

DNA methylation in known imprinted DMRs (with replicates)
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Figure S4. Heatmap of DNA methylation in known imprinted DMRs of each blastocyst
Heatmap showing the DNA methylation levels in known imprinted regions. Here, we showed the
DNA methylation for each replicate in AG, GG, and Bi-P blastocysts for validation.
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Figure S5. Putative DNA methylation in DMRs

A. UCSC snapshot of putative maternal and paternal imprinted DMRs around PDE4D and
VPS53. B. Heatmaps showing the DNA methylation levels for newly identified DMRs and the
related gene expression. DNA methylation in 2, 4, and 8-cell embryos published previously was
included as a control. The DMRs were firstly identified based on a pairwise comparison between
AG and GG blastocysts as previously described (Zhang et al. 2018). Only those DMRs with
changes in CG methylation levels between sperm and oocytes greater than 0.1 (for example, for
maternal DMRs, the oocyte showed higher methylation levels than the sperm.) were taken as
allelic putative DMRs. Here, the indicated genes are those nearest to the DMR in the 2 Mb
region. C. The distribution of differential methylation regions (DMRs) in repeats.
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Figure S6. Relationship between novel identified DMRs and gene expression

A. DMRs between uniparental and Bi-P blastocysts overlapped with the DEGs. B. DMRs
between the AG and GG blastocysts overlapped with the DEGs. C. Genomic distance of DEGs
(AG vs. GG blastocysts) to DMRs. Random regions with the same length to each DMR were
generated and used as controls.
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