Supporting Information

Nickel-Catalyzed Radical Migratory Coupling Enables C-2 Arylation of Carbohydrates

Gaoyuan Zhao,¹ Wang Yao,¹ Ilia Kevlishvili,³ Jaclyn N. Mauro,¹ Peng Liu,^{*,3,4} and Ming-Yu Ngai^{*,1,2}

pengliu@pitt.edu ming-yu.ngai@stonybrook.edu

¹Department of Chemistry, State University of New York, Stony Brook, NY 11794-3400, United States

²Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, NY 11794-3400, United States

> ³Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260-8709, United States

⁴Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261-0001, United States

Table of Contents

General Information	4
Experimental Data	5
Synthesis of 1-Bromo Sugars	5
General Procedure A:	5
2,3,4,6-Tetra- <i>O</i> -acetyl-α-D-glucopyranosyl bromide (1a)	5
2,3,4,6-Tetra-O-acetyl-α-D-galactopyranosyl bromide (1m)	5
2,3,4-Tri-O-acetyl-α-L-fucopyranosyl bromide (1n)	6
2,3,4-Tri-O-acetyl-6-O-[(1,1-dimethylethyl)diphenylsilyl]-α-D-glucopyranosyl bromide (10)	6
2,3,4-Tri-O-acetyl-6-O-benzyl-α-D-galactopyranosyl bromide (1p)	7
2,3-Di-O-acetyl-4,6-O-[(R)-(4-methoxyphenyl)methylene]- α -D-glucopyranosyl bromide (1q)	7
(2R,3R,4S,5R,6R)-2-((benzoyloxy)methyl)-6-bromo-5-(pivaloyloxy)tetrahydro-2H-pyran-3,4-diyl	
dibenzoate (1r)	7
3,4,6-Tri-O-Benzoyl -2-O-acetyl-α-D-glucopyranosyl bromide (1s)	8
3,4,6-Tri-O-Benzoyl-2-O-(4-cyanobenzoyl)-α-D-glucopyranosyl bromide (1t)	8
2,3,4,6-Tetra-O-benzoyl-α-D-glucopyranosyl bromide (1u)	9
3,4,6-Tri-O-Benzoyl-2-O-(4-methoxybenzoyl)-α-D-glucopyranosyl bromide (1v)	9
3,4,6-Tri-O-Benzoyl-2-O-(furan-2-carbonyl)-α-D-glucopyranosyl bromide (1w)1	0
3,4,6-Tri-O-Benzoyl-2-O-(thiophene-2-carbonyl)-α-D-glucopyranosyl bromide (1x)1	0
2,3,4,2',3',4',6'-Hepta-O-acetyl-α-D-melibiosyl bromide (4a)1	1
2,3,4-Tri-O-acetyl-6-O-[((4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-acetoxy-2,2,6a,6b,9,9,12a-	
heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-	
carbonyl)]-α-D-glucopyranosyl bromide (4b)1	1
2,3,4-Tri-O-acetyl-6-O-[(4-(N,N-dipropylsulfamoyl)benzoyl)]-α-D-glucopyranosyl bromide (4c) 1	2
$2,3,4-Tri-O-acetyl-6-O-[((2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoyl)]-\alpha-D-acetyl-6-O-[((2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoyl)]-\alpha-D-acetyl-6-O-[((2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoyl)]-\alpha-D-acetyl-6-O-[((2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoyl)]-\alpha-D-acetyl-6-O-[((2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoyl)]-\alpha-D-acetyl-6-O-[((2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoyl)]-\alpha-D-acetyl-6-O-[((2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoyl)]-\alpha-D-acetyl-6-O-[((2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoyl)]-\alpha-D-acetyl-6-O-[((2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoyl)]-\alpha-D-acetyl-6-O-[((2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoyl)]-\alpha-D-acetyl-6-O-[((2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoyl)]-\alpha-D-acetyl-6-O-[((2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoyl)]-\alpha-D-acetyl-6-O-[((2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoyl)]-\alpha-D-acetyl-6-O-[((2-(10-(10-(10-(10-(10-(10-(10-(10-(10-(10$	
glucopyranosyl bromide (4d)1	3
$2,3,4-Tri-\textit{O}-acetyl-6-\textit{O}-[(2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carbonyl)]-\alpha-D-(1-1)$	
glucopyranosyl bromide (4e)	3
$3,4,6-Tri-\textit{O}-benzoyl-6-\textit{O}-[(6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)]-\alpha-D-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)]-\alpha-D-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)]-\alpha-D-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)]-\alpha-D-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)]-\alpha-D-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)]-\alpha-D-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)]-\alpha-D-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)]-\alpha-D-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)]-\alpha-D-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)]-\alpha-D-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)]-\alpha-D-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)]-\alpha-D-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)]-\alpha-D-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)]-\alpha-D-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)]-\alpha-D-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)]-\alpha-D-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)]-2-naphthoy$	-
glucopyranosyl bromide (4f)1	4
Nickel-Catalyzed C-2 Arylation Reaction	6
Reaction Optimization:	6
General Procedure B:	0
General Procedure C:	0
(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-phenyltetrahydro-2H-pyran-2,4,5-triyl triacetate (3a)2	0
(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(p-tolyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3b) 2	1
(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(4-(tert-butyl)phenyl)tetrahydro-2H-pyran-2,4,5-triyl	
triacetate (3c)	2

(2R,3S,4R,5S,6R)-3-([1,1'-biphenyl]-4-yl)-6-(acetoxymethyl)tetrahydro-2H-pyran-2,4,5-triyl
triacetate (3d)
(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(4-methoxyphenyl)tetrahydro-2H-pyran-2,4,5-triyl
triacetate (3e)
(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(3-(diphenylamino)phenyl)tetrahydro-2H-pyran-2,4,5-triyl
triacetate (3f)
(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(3-(methylthio)phenyl)tetrahydro-2H-pyran-2,4,5-triyl
triacetate (3g)
(2R, 3S, 4R, 5S, 6R) - 6 - (acetoxymethyl) - 3 - (3 - (ethoxycarbonyl) phenyl) tetrahydro - 2H - pyran - 2, 4, 5 - triyl - 2, 5 -
triacetate (3h)
(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(4-methoxy-3,5-dimethylphenyl)tetrahydro-2H-pyran-
2,4,5-triyl triacetate (3i)
(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(naphthalen-2-yl)tetrahydro-2H-pyran-2,4,5-triyl triacetate
(3j)26
(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(9-phenyl-9H-carbazol-3-yl)tetrahydro-2H-pyran-2,4,5-
triyl triacetate (3k)
(2R, 3R, 4R, 5S, 6R) - 6 - (acetoxymethyl) - 3 - (benzofuran - 2 - yl) tetrahydro - 2H - pyran - 2, 4, 5 - triyl triacetate - 2H - pyran - 2, 4, 5 - triyl
(31)
(2R,3R,4R,5R,6R)-6-(acetoxymethyl)-3-phenyltetrahydro-2H-pyran-2,4,5-triyl triacetate (3m)28
(2S,3S,4S,5R,6S)-6-methyl-3-phenyltetrahydro-2H-pyran-2,4,5-triyl triacetate (3n)
(2R, 3S, 4R, 5S, 6R) - 6 - (((tert-butyldiphenylsilyl) oxy) methyl) - 3 - phenyltetrahydro - 2H - pyran - 2, 4, 5 - 2,
triyl triacetate (30)
(2R,3R,4R,5R,6R)-6-((benzyloxy)methyl)-3-phenyltetrahydro-2H-pyran-2,4,5-triyl triacetate (3p)
(2R,4aR,6R,7S,8R,8aS)-2-(4-methoxyphenyl)-7-phenylhexahydropyrano[3,2-d][1,3]dioxine-6,8-
diyl diacetate (3q)
(2R,3S,4R,5S,6R)-2-((benzoyloxy)methyl)-5-phenyl-6-(pivaloyloxy)tetrahydro-2H-pyran-3,4-diyl
dibenzoate (3r)
(2R,3S,4R,5S,6R)-6-acetoxy-2-((benzoyloxy)methyl)-5-phenyltetrahydro-2H-pyran-3,4-diyl
dibenzoate (3s)
(2R,3S,4R,5S,6R)-2-((benzoyloxy)methyl)-6-((4-cyanobenzoyl)oxy)-5-phenyltetrahydro-2H-
pyran-3,4-diyl dibenzoate (3t)
(2R,3S,4R,5S,6R)-6-((benzoyloxy)methyl)-3-phenyltetrahydro-2H-pyran-2,4,5-triyl tribenzoate
(3u)
(2R,3S,4R,5S,6R)-2-((benzoyloxy)methyl)-6-((4-methoxybenzoyl)oxy)-5-phenyltetrahydro-2H-
pyran-3,4-diyl dibenzoate (3v)
(2R,3S,4R,5S,6R)-2-((benzoyloxy)methyl)-6-((furan-2-carbonyl)oxy)-5-phenyltetrahydro-2H-
pyran-3,4-diyl dibenzoate (3w)
(2R, 3S, 4R, 5S, 6R) - 2 - ((benzoyloxy) methyl) - 5 - phenyl - 6 - ((thiophene - 2 - carbonyl) oxy) tetrahydro - 2H - 2
pyran-3,4-diyl dibenzoate (3x)

(2R, 3R, 4S, 5R, 6S) - 2 - (acetoxymethyl) - 6 - (((2R, 3S, 4R, 5S, 6R) - 3, 4, 6 - triacetoxy - 5 - phenyltetrahydro-pheny
2H-pyran-2-yl)methoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (5a)
(2R,3S,4R,5S,6R)-6-(((((4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-acetoxy-2,2,6a,6b,9,9,12a-
heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-
carbonyl)oxy)methyl)-3-phenyltetrahydro-2H-pyran-2,4,5-triyl triacetate (5b)
(2R,3S,4R,5S,6R)-6-(((4-(N,N-dipropylsulfamoyl)benzoyl)oxy)methyl)-3-phenyltetrahydro-2H-
pyran-2,4,5-triyl triacetate (5c)
(2R,3S,4R,5S,6R)-6-(((2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoyl)oxy)methyl)-3-
phenyltetrahydro-2H-pyran-2,4,5-triyl triacetate (5d)
(2R,3S,4R,5S,6R)-6-(((2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carbonyl)oxy)methyl)-
3-phenyltetrahydro-2H-pyran-2,4,5-triyl triacetate (5e)
(2R,3S,4R,5S,6R)-6-((6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)oxy)-2-
((benzoyloxy)methyl)-5-phenyltetrahydro-2H-pyran-3,4-diyl dibenzoate (5f)
Other Aryl Boronic Acids Tested
Mechanistic Studies
Radical trapping experiment
Studies of stereochemical outcome using 2-iodo sugar
Cross-over experiment
DFT calculations
Computational Details
Spectroscopic Data
Cartesian Coordinates (Å) and Energies of the Optimized Structures126
References179

General Information

All air- and moisture-insensitive reactions were carried out under an ambient atmosphere, magnetically stirred, and monitored by thin-layer chromatography (TLC) using Agela Technologies TLC plates pre-coated with 250 µm thickness silica gel 60 F254 plates and visualized by fluorescence quenching under UV light. Flash column chromatography was performed on SiliaFlash[®] Silica Gel 40-63µm 60 Å particle size using a forced flow of eluent at 0.3–0.5 bar pressure.¹ Preparative TLC was performed on Uniplate[®] UV254 (20 x 20 cm) with 1000 µm thickness and visualized fluorescence quenching under UV light.

All air and moisture-sensitive manipulations were performed using oven-dried glassware, including standard Schlenk and glovebox techniques under an atmosphere of nitrogen. All reaction vials were capped using green caps with F-217 PTFE liners. Isopropyl acetate was distilled from calcium chloride CaCl₂. Diethyl ether and THF were distilled from deep purple sodium benzophenone ketyl. Acetonitrile was dried over CaH₂ and distilled. Isopropyl acetate and acetonitrile were degassed *via* three freeze-pump-thaw cycles. All other chemicals were used as received.

All deuterated solvents were purchased from Cambridge Isotope Laboratories. NMR spectra were recorded on either a Bruker Ascend 700 spectrometer operating at 700 MHz for ¹H acquisitions and 175 MHz for ¹³C acquisitions, a Bruker 500 Advance spectrometer operating at 500 MHz for ¹H acquisitions and 125 MHz for ¹³C acquisitions. A Bruker 400 Nanobay spectrometer was operating at 400 MHz, 100 MHz, and 376 MHz for ¹H, ¹³C, and ¹⁹F acquisitions, respectively. Chemical shifts were referenced to the residual proton solvent peaks (¹H: CDCl₃, δ 7.26; CD₃CN, δ 1.94) and ¹³C solvent signals (CDCl₃, δ 77.16; CD₃CN, δ 118.26).² Signals are listed in ppm, and multiplicity identified as s = singlet, br = broad, d = doublet, t = triplet, q = quartet, m = multiplet; coupling constants in Hz; integration.

High-resolution mass spectra were performed at Mass Spectrometry Services at Stony Brook University and were obtained using an Agilent LC-UV-TOF mass spectrometer. Concentration under reduced pressure was performed by rotary evaporation at 25–30 °C at the appropriate pressure. Purified compounds were further dried under a high vacuum (0.01–0.05 Torr). Yields refer to purified and spectroscopically pure compounds. Abbreviations: DCM = dichloromethane; THF = tetrahydrofuran; DIAD = Diisopropyl azodicarboxylate; DMAP = 4-dimethylaminopyridine; DCC = N,N'-Dicyclohexylcarbodiim -ide; EDCI·HCl = N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride; DIPEA = N,N-Diisopropylethylamine.

Experimental Data

Synthesis of 1-Bromo Sugars

General Procedure A:

The C-1 acetyl protected sugar (1.00 equiv) was dissolved in dry DCM (0.500 M) and cooled to 0 °C. HBr (33% Wt in AcOH, 2.00 equiv) was added, and the reaction mixture was slowly warmed to room temp over 10 min. After stirring at room temperature for 3 h, the reaction mixture was poured onto an ice/water mixture. The organic phase was collected and the aqueous phase was extracted with DCM twice. The combined organic layers were washed with satd. NaHCO₃, brine, dried over Mg₂SO₄, and filtered. The filtrate was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel to afford the desired compound.

2,3,4,6-Tetra-*O*-acetyl-α-D-glucopyranosyl bromide (1a)

The reaction was performed according to the General Procedure A using **S1** (2.00 g, 5.13 mmol, 1.00 equiv) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford the title compound (1.85 g, 4.50 mmol, 88%) as a white solid. **R**_f = 0.65 [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 6.58 (d, *J* = 4.0 Hz, 1H), 5.52 (t, *J* = 9.7 Hz, 1H), 5.13 (t, *J* = 9.8 Hz, 1H), 4.81 (dd, *J* = 10.0, 4.0 Hz, 1H), 4.33 – 4.21 (m, 2H), 4.13 – 4.06 (m, 1H), 2.07 (s, 3H), 2.06 (s, 3H), 2.02 (s, 3H), 2.00 (s, 3H). ¹³C **NMR** (125 MHz, CDCl₃, 25 °C, δ): 170.52, 169.87, 169.82, 169.50, 86.66, 72.20, 70.64, 70.21, 67.21, 61.00, 20.72, 20.70, 20.67, 20.60. The spectroscopic data corresponds to previously reported data.³

2,3,4,6-Tetra-*O*-acetyl-α-D-galactopyranosyl bromide (1m)

The reaction was performed according to the General Procedure A using **S2** (2.00 g, 5.13 mmol, 1.00 equiv) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford the title compound (1.73 g, 4.21 mmol, 82%) as a

white solid. $\mathbf{R}_f = 0.65$ [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 6.69 (d, J = 3.9 Hz, 1H), 5.57 – 5.48 (m, 1H), 5.40 (dd, J = 10.6, 3.3 Hz, 1H), 5.04 (dd, J = 10.6, 4.0 Hz, 1H), 4.48 (t, J = 6.6 Hz, 1H), 4.18 (dd, J = 11.4, 6.4 Hz, 1H), 4.11 (dd, J = 11.4, 6.8 Hz, 1H), 2.15 (s, 3H), 2.11 (s, 3H), 2.06 (s, 3H), 2.01 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 170.45, 170.20, 170.02, 169.89, 88.25, 71.19, 68.12, 67.90, 67.11, 60.96, 20.88, 20.77, 20.72, 20.69. The spectroscopic data corresponds to previously reported data.³

2,3,4-Tri-O-acetyl-a-L-fucopyranosyl bromide (1n)

The reaction was performed according to the General Procedure A using **S3** (2.02 g, 6.00 mmol, 1.00 equiv) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [5:1 (v/v)] to afford the title compound (1.66 g, 4.70 mmol, 78%) as a white solid. **R**_f = 0.25 [Hexanes: EtOAc 5:1 (v/v)]. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 6.68 (d, *J* = 3.5 Hz, 1H), 5.39 (dd, *J* = 10.5, 3.5 Hz, 1H), 5.34 (d, *J* = 3.5 Hz, 1H), 5.01 (dd, *J* = 10.5, 3.5 Hz, 1H), 4.39 (q, *J* = 7.0 Hz, 1H), 2.16 (s, 3H), 2.09 (s, 3H), 1.99 (s, 3H), 1.20 (d, *J* = 7.0 Hz, 3H). ¹³C **NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.37, 170.24, 169.91, 89.40, 70.08, 69.91, 68.51, 67.95, 20.89, 20.73, 20.67, 15.56. The spectroscopic data corresponds to previously reported data.⁴

2,3,4-Tri-O-acetyl-6-O-[(1,1-dimethylethyl)diphenylsilyl]-α-D-glucopyranosyl bromide (10)

To a solution of the **S4** (571 mg, 1.05 mmol, 1.00 equiv) in dry DCM (2.00 mL) was added triphenylphosphine (301 mg, 1.15 mmol, 1.09 equiv) and tetrabromomethane (383 mg, 1.15 mmol, 1.09 equiv). The reaction mixture was stirred under nitrogen at room temperature for 16 h. Saturated NaHCO3 was added until the pH of the solution became neutral. The organic layer was collected, washed with brine, dried with solid anhydrous Mg₂SO₄ and filtered. The filtrate was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [8:1 (v/v)] to afford the title compound (171 mg, 0.28 mmol, 27%) as a white foam. **R**_{*f*} = 0.70 [Hexanes: EtOAc 4:1 (v/v)]. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.63 (dd, *J* = 16.1, 7.0 Hz, 4H), 7.34-7.46 (m, 6H), 6.67 (d, *J* = 3.5 Hz, 1H), 5.54 (t, *J* = 9.8 Hz, 1H), 5.35 (t, *J* = 9.8 Hz, 1H), 4.82 (dd, *J* = 10.5, 4.2 Hz, 1H), 4.13 (d, *J* = 10.5 Hz, 1H), 3.76 (dd, *J* = 11.9, 1.4 Hz, 1H), 3.72 (dd, *J* = 11.9, 4.2 Hz, 1H), 2.11 (s, 3H), 2.04 (s, 3H), 1.93 (s, 3H), 1.05 (s, 9H). ¹³C **NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.28, 170.04, 169.39, 135.81, 135.81, 135.79, 135.79, 133.00, 132.92, 129.69, 129.93, 127.88, 127.88, 127.88, 127.88 87.68, 74.85, 70.97, 70.82, 67.40, 61.54,

26.85, 26.85, 26.85, 20.86, 20.86, 20.67, 19.35. The spectroscopic data corresponds to previously reported data.⁵

2,3,4-Tri-O-acetyl-6-O-benzyl-α-D-galactopyranosyl bromide (1p)

$$\begin{array}{c} A_{CO} \bigvee_{OBn} \\ A_{CO} & \bigoplus_{A_{CO}} \\ A_{CO} & \bigoplus_{OAc} \\ \mathbf{S5} \end{array} \xrightarrow{HBr (33\% \text{ in } A_{CO}H)} \\ \begin{array}{c} A_{CO} & \bigoplus_{A_{CO}} \\ A$$

The reaction was performed according to the General Procedure A using **S5** (635 mg, 1.45 mmol, 1.00 equiv) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [4:1 (v/v)] to afford the title compound (315 mg, 0.78 mmol 47%) as a white solid. **R**_f = 0.50 [Hexanes: EtOAc 4:1 (v/v)]. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.34 (t, *J* = 7.3 Hz, 2H), 7.28 (m, 3H), 6.70 (d, *J* = 3.9 Hz, 1H), 5.57 (d, *J* = 2.7 Hz, 1H), 5.40 (dd, *J* = 10.6, 2.7 Hz, 1H), 5.03 (dd, *J* = 10.6, 3.9 Hz, 1H), 4.55 (d, *J* = 12.0 Hz, 1H), 4.45 (t, *J* = 6.0 Hz, 1H), 4.42 (d, *J* = 12.0 Hz, 1H), 3.54 (dd, *J* = 9.8, 6.0 Hz, 1H), 2.10 (s, 3H), 2.04 (s, 3H), 2.00 (s, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.23, 169.95, 169.83, 137.37, 128.60, 128.60, 128.04, 128.04, 128.04, 88.77, 73.57, 72.17, 68.29, 68.08, 67.50, 66.84, 20.88, 20.73, 20.65. The spectroscopic data corresponds to previously reported data.⁶

2,3-Di-O-acetyl-4,6-O-[(R)-(4-methoxyphenyl)methylene]-α-D-glucopyranosyl bromide (1q)

The title compound was prepared according to the literature procedure.⁷ ¹**H** NMR (400 MHz, CDCl₃, 25 °C, δ): 7.37 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 6.60 (d, J = 4.1 Hz, 1H), 5.65 (t, J = 9.8 Hz, 1H), 5.47 (s, 1H), 4.84 (dd, J = 9.7, 4.1 Hz, 1H), 4.32 (dd, J = 10.2, 4.9 Hz, 1H), 4.23 (td, J = 9.8, 5.0 Hz, 1H), 3.86 – 3.63 (m, 5H), 2.11 (s, 3H), 2.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C, δ): 170.15, 169.61, 160.35, 129.12, 127.63, 113.75, 101.87, 87.11, 78.15, 71.52, 68.91, 67.94, 67.09, 55.41, 20.88, 20.81. The spectroscopic data corresponds to previously reported data.⁷

(2R,3R,4S,5R,6R)-2-((benzoyloxy)methyl)-6-bromo-5-(pivaloyloxy)tetrahydro-2H-pyran-3,4-diyl dibenzoate (1r)

The compound **S6** was prepared according to the literature procedure.⁸ To a solution of **S6** (278 mg, 0.500 mmol, 1.00 equiv) in dry DCM (3.00 mL) was added Et₃N (101 mg, 1.00 mmol, 2.00 equiv), pivaloyl

chloride (90.4 mg, 0.75 mmol, 1.50 equiv) and DMAP (3.05 mg, 0.0250 mmol, 5.00 mol%) at 0 °C. After the reaction mixture was stirred at 0 °C for 3 h, it was quenched with saturated NaHCO₃ solution (6.00 mL) and extracted with DCM (2 × 50 mL). The combined organic layers were washed with brine, dried with anhydrous Mg₂SO₄ and filtered. The filtrate was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [5:1 (v/v)] to afford the title compound (256 mg, 0.40 mmol, 80%) as a white solid. **R**_f = 0.50 [Hexanes: EtOAc 4:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.06 (d, *J* = 7.2 Hz, 2H), 7.95 (d, *J* = 7.2 Hz, 2H), 7.90 (d, *J* = 7.6 Hz, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.51 (dd, *J* = 16.1, 7.5 Hz, 2H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.37 (dt, *J* = 13.7, 4.6 Hz, 4H), 6.70 (d, *J* = 4.0 Hz, 1H), 6.11 (t, *J* = 9.8 Hz, 1H), 5.73 (dt, *J* = 13.9, 9.9 Hz, 1H), 5.06 (dd, *J* = 10.0, 4.0 Hz, 1H), 4.70 – 4.58 (m, 2H), 4.48 (dd, *J* = 12.4, 4.4 Hz, 1H), 1.08 (s, 9H). ¹³C **NMR** (175 MHz, CDCl₃, 25 °C, δ): 177.47, 166.15, 165.55, 165.22, 133.78, 133.55, 133.39, 130.09, 129.95, 129.85, 129.59, 129.01, 128.67, 128.64, 128.59, 128.58, 86.90, 72.76, 70.86, 70.63, 68.07, 62.09, 38.73, 26.87. **HRMS** (ESI-TOF) *m/z* calcd for C₃₂H₃₂BrO₉ [(M + H)⁺], 639.1224, found, 639.1227.⁸

3,4,6-Tri-O-Benzoyl -2-O-acetyl-α-D-glucopyranosyl bromide (1s)

The reaction was performed according to the same procedure as **1r**. acetyl chloride (58.9 mg, 0.750 mmol, 1.50 equiv). After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford title compound (194 mg, 0.330 mmol, 65%) as white solid. **R**_{*f*} = 0.70 [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.08 – 8.01 (m, 2H), 7.91 (dt, J = 8.4, 4.3 Hz, 4H), 7.57 (t, J = 7.4 Hz, 1H), 7.51 (td, J = 7.6, 1.1 Hz, 2H), 7.44 (t, J = 7.8 Hz, 2H), 7.37 (td, J = 8.0, 2.4 Hz, 4H), 6.72 (d, J = 4.0 Hz, 1H), 6.08 (t, J = 9.8 Hz, 1H), 5.72 (t, J = 9.8 Hz, 1H), 5.12 (dd, J = 10.0, 4.0 Hz, 1H), 4.72 – 4.60 (m, 2H), 4.47 (dd, J = 12.3, 4.3 Hz, 1H), 2.04 (s, 3H). ¹³C **NMR** (125 MHz, CDCl₃, 25 °C, δ): 170.07, 166.13, 165.57, 165.23, 133.76, 133.60, 133.39, 130.08, 129.96, 129.93, 129.59, 128.95, 128.62, 128.61, 128.59, 86.84, 72.77, 71.03, 70.64, 68.24, 62.04, 20.80. **HRMS** (ESI-TOF) *m/z* calcd for C₂₉H₂₆BrO₉ [(M + H)⁺], 597.0755, found, 597.0755.

3,4,6-Tri-O-Benzoyl-2-O-(4-cyanobenzoyl)-α-D-glucopyranosyl bromide (1t)

The reaction was performed according to the same procedure as synthesizing **1r**. 4-Cyanobenzoyl chloride (124 mg, 0.750 mmol, 1.50 equiv) was used as the acylating agent. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford

the title compound (256 mg, 0.374 mmol, 75%) as a white solid. $\mathbf{R}_f = 0.60$ [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.10 (d, J = 8.4 Hz, 2H), 8.07 (d, J = 7.2 Hz, 2H), 7.95 (d, J = 7.2 Hz, 2H), 7.87 (d, J = 7.3 Hz, 2H), 7.71 (d, J = 8.4 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.46 (q, J = 7.3 Hz, 3H), 7.38 (t, J = 7.8 Hz, 2H), 7.32 (t, J = 7.8 Hz, 2H), 6.85 (d, J = 4.0 Hz, 1H), 6.25 (t, J = 9.8 Hz, 1H), 5.84 (t, J = 10.0 Hz, 1H), 5.32 (dd, J = 9.9, 4.1 Hz, 1H), 4.78 – 4.71 (m, 1H), 4.68 (dd, J = 12.5, 2.6 Hz, 1H), 4.52 (dd, J = 12.5, 4.5 Hz, 1H). ¹³**C** NMR (175 MHz, CDCl₃, 25 °C, δ): 166.13, 165.71, 165.18, 163.86, 133.89, 133.72, 133.46, 132.54, 132.30, 130.68, 130.07, 129.97, 129.89, 129.53, 128.68, 128.63, 128.61, 128.53, 117.87, 117.37, 86.42, 72.93, 72.27, 70.72, 67.85, 61.96. **HRMS** (ESI-TOF) *m*/*z* calcd for C₃₅H₂₇BrNO₉ [(M + H)⁺], 684.0864, found, 684.0869.

2,3,4,6-Tetra-*O*-benzoyl-α-D-glucopyranosyl bromide (1u)

The reaction was performed according to the General Procedure A using **S7** (2.00 g, 2.86 mmol, 1.00 equiv) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford the title compound (1.51 g, 2.29 mmol, 80%) as a white solid. **R**_{*f*} = 0.68 [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.07 (d, *J* = 7.3 Hz, 2H), 8.01 (d, *J* = 7.3 Hz, 2H), 7.96 (d, *J* = 7.3 Hz, 2H), 7.88 (d, *J* = 7.3 Hz, 2H), 7.60 – 7.50 (m, 3H), 7.47 – 7.35 (m, 7H), 7.31 (t, *J* = 7.8 Hz, 2H), 6.87 (d, *J* = 4.0 Hz, 1H), 6.27 (t, *J* = 9.8 Hz, 1H), 5.83 (t, *J* = 10.0 Hz, 1H), 5.34 (dd, *J* = 10.0, 4.0 Hz, 1H), 4.80 – 4.71 (m, 1H), 4.68 (dd, *J* = 12.5, 2.6 Hz, 1H), 4.52 (dd, *J* = 12.5, 4.5 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 166.16, 165.70, 165.44, 165.23, 133.94, 133.78, 133.49, 133.40, 130.22, 130.07, 129.97, 129.88, 129.59, 128.94, 128.70, 128.66, 128.63, 128.60, 128.50, 87.01, 72.85, 71.61, 70.76, 68.13, 62.08. The spectroscopic data corresponds to previously reported data.⁹

3,4,6-Tri-O-Benzoyl-2-O-(4-methoxybenzoyl)-α-D-glucopyranosyl bromide (1v)

The reaction was performed according to the same procedure as synthesizing **1r**. 4-Methoxybenzoyl chloride (128 mg, 0.750 mmol, 1.50 equiv) was used as the acylating agent. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford the title compound (189 mg, 0.274 mmol, 55%) as a white solid. **R**_f = 0.60 [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.07 (d, *J* = 7.9 Hz, 2H), 7.95 (d, *J* = 8.6 Hz, 4H), 7.87 (d, *J* = 7.9 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 3H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.31

(t, J = 7.4 Hz, 2H), 6.88 (d, J = 7.9 Hz, 2H), 6.85 (d, J = 3.8 Hz, 1H), 6.24 (t, J = 9.7 Hz, 1H), 5.81 (t, J = 9.9 Hz, 1H), 5.29 (dd, J = 9.8, 3.4 Hz, 1H), 4.72 (d, J = 10.2 Hz, 1H), 4.66 (d, J = 12.5 Hz, 1H), 4.51 (dd, J = 12.4, 4.2 Hz, 1H), 3.83 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 166.18, 165.73, 165.24, 165.11, 164.19, 133.78, 133.47, 133.40, 132.39, 130.08, 129.97, 129.89, 129.59, 128.99, 128.68, 128.63, 128.61, 128.51, 120.82, 114.00, 87.32, 72.83, 71.35, 70.80, 68.13, 62.10, 55.61. **HRMS** (ESI-TOF) *m/z* calcd for C₃₅H₃₃BrNO₁₀ [(M + NH₄)⁺], 706.1282, found, 706.1289.

3,4,6-Tri-O-Benzoyl-2-O-(furan-2-carbonyl)-α-D-glucopyranosyl bromide (1w)

The reaction was performed according to the same procedure as synthesizing **1r**. Furan-2-carbonyl chloride (97.5 mg, 0.750 mmol, 1.50 equiv) was used as the acylating agent. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford the title compound (198 mg, 0.305 mmol, 61%) as a white solid. **R**_{*f*} = 0.60 [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 8.06 (d, *J* = 7.9 Hz, 2H), 7.94 (d, *J* = 7.9 Hz, 2H), 7.89 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 10.1 Hz, 2H), 7.52 (t, *J* = 7.2 Hz, 1H), 7.49 – 7.42 (m, 3H), 7.37 (t, *J* = 7.4 Hz, 2H), 7.32 (d, *J* = 7.5 Hz, 2H), 7.22 (d, *J* = 3.1 Hz, 1H), 6.82 (d, *J* = 3.7 Hz, 1H), 6.47 (d, *J* = 1.4 Hz, 1H), 6.20 (t, *J* = 9.8 Hz, 1H), 5.79 (t, *J* = 9.9 Hz, 1H), 5.29 (dd, *J* = 9.9, 3.6 Hz, 1H), 4.71 (d, *J* = 10.2 Hz, 1H), 4.66 (d, *J* = 12.5 Hz, 1H), 4.50 (dd, *J* = 12.4, 4.6 Hz, 1H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 166.16, 165.61, 165.20, 157.21, 147.79, 143.01, 133.80, 133.54, 133.42, 130.09, 129.98, 129.91, 129.57, 128.91, 128.64, 128.61, 128.55, 120.26, 112.31, 86.71, 72.83, 71.39, 70.65, 68.09, 62.01. **HRMS** (ESI-TOF) *m*/*z* calcd for C₃₂H₂₆BrO₁₀ [(M + H)⁺], 649.0704, found, 649.0704.

3,4,6-Tri-O-Benzoyl-2-O-(thiophene-2-carbonyl)-α-D-glucopyranosyl bromide (1x)

The reaction was performed according to the same procedure as synthesizing **1r**. Thiophene-2-carbonyl chloride (110 mg, 0.750 mmol, 1.50 equiv) was used as the acylating agent. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford the title compound (219 mg, 0.329 mmol, 66%) as a white solid. **R**_{*f*} = 0.60 [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.06 (d, *J* = 7.2 Hz, 2H), 7.97 – 7.92 (m, 2H), 7.89 (d, *J* = 7.2 Hz, 2H), 7.80 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.46 (dd, *J* = 14.4, 6.3 Hz, 3H), 7.37 (t, *J* = 7.8 Hz, 2H), 7.32 (t, *J* = 7.8 Hz, 2H), 7.10 – 7.00 (m, 1H), 6.85 (d, *J* = 4.0 Hz, 1H), 6.22 (t, *J* = 9.8 Hz, 1H), 5.80 (t, *J* = 10.0 Hz, 1H), 5.26 (dd, *J* = 9.9, 4.1 Hz, 1H), 4.75 – 4.68 (m, 1H), 4.66 (dd, *J* = 12.5, 2.5 Hz, 1H), 4.50 (dd, *J* = 12.5, 4.5 Hz, 1H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 166.17, 165.60,

165.22, 160.95, 135.13, 134.24, 133.80, 133.49, 133.42, 131.81, 130.09, 129.98, 129.91, 129.58, 128.97, 128.65, 128.61, 128.53, 128.21, 86.83, 72.83, 71.70, 70.66, 68.10, 62.06. **HRMS** (ESI-TOF) *m*/*z* calcd for C₃₂H₂₆BrO₉S [(M + H)⁺], 665.0475, found, 665.0477.

2,3,4,2',3',4',6'-Hepta-O-acetyl-α-D-melibiosyl bromide (4a)

The reaction was performed according to the General Procedure A using **S8** (1.22 g, 1.80 mmol, 1.00 equiv) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [1.5:1 (v/v)] to afford the title compound (320 mg, 0.460 mmol, 25%) as a white solid. **R**_f = 0.70 [Hexanes: EtOAc 1:1 (v/v)]. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 6.58 (d, *J* = 4.2 Hz, 1H), 5.55 (t, *J* = 9.8 Hz, 1H), 5.46 (d, *J* = 3.5 Hz, 1H), 5.32 (dd, *J* = 10.5, 3.5 Hz, 1H), 5.15-5.18 (m, 2H), 5.08 (dd, *J* = 10.5, 3.5 Hz, 1H), 4.78 (dd, *J* = 9.8, 4.2 Hz, 1H), 4.23 (ddd, *J* = 10.5, 4.2, 2.1 Hz, 1H), 4.16 (t, *J* = 7.0 Hz, 1H), 4.06 (qd, *J* = 11.2, 7.0 Hz, 1H), 3.76 (dd, *J* = 11.9, 4.2 Hz, 1H), 3.62 (dd, *J* = 11.9, 2.1 Hz, 1H), 2.13 (s, 3H), 2.11 (s, 3H), 2.09 (s, 3H), 2.06 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H), 1.98 (s, 3H). ¹³C **NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.67, 170.50, 170.30, 170.02, 169.98, 169.93, 169.48, 96.37, 86.64, 73.02, 70.72, 70.33, 68.16, 68.06, 67.73, 67.55, 66.56, 65.51, 61.72, 20.93, 20.85, 20.79, 20.79, 20.76, 20.76, 20.72. The spectroscopic data corresponds to previously reported data.⁹

2,3,4-Tri-*O*-acetyl-6-*O*-[((4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-acetoxy-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carbonyl)]-α-D-glucopyranosyl bromide (4b)

To a solution of **S9** (147 mg, 0.400 mmol, 1.00 equiv) and **S10** (239 mg, 0.480 mmol, 1.20 equiv) in dry DCM (8.00 ml, M = 0.0500) was added triphenylphosphine (126 mg, 0.480 mmol, 1.20 equiv) at 0 °C. DIAD (94.5 ul, 0.480 mmol, 1.20 equiv) was then added dropwise to the resulting mixture. After the reaction mixture was stirred at room temperature for 12 h, the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [9:1 (v/v)] to afford the title compound as an off-white solid (129 mg, 0.152 mmol, 38% yield). **R**_f = 0.45 [Hexanes: EtOAc 2:1]

(v/v)]. ¹**H** NMR (700 MHz, CDCl₃, 25 °C, δ): 6.59 (d, *J* = 3.5 Hz, 1H), 5.54 (t, *J* = 9.8 Hz, 1H), 5.29 (t, *J* = 3.5 Hz, 1H), 5.12 (t, *J* = 9.8 Hz, 1H), 4.77 (dd, *J* = 9.8, 4.2 Hz, 1H), 4.47-4.50 (m, 1H), 4.30 (dd, *J* = 12.6, 2.1 Hz, 1H), 4.27 (ddd, *J* = 10.5, 4.2, 1.4 Hz, 1H), 4.04 (dd, *J* = 12.6, 4.9 Hz, 1H), 2.83 (dd, *J* = 14.0, 4.2 Hz, 1H), 2.10 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H), 1.99 (td, *J* = 14.0, 4.2 Hz, 1H), 1.82-1.92 (m, 2H), 1.50-1.71 (m, 11H), 1.45 (td, *J* = 12.6, 4.2 Hz, 1H), 1.37 (td, *J* = 12.6, 2.8 Hz, 1H), 1.33 (td, *J* = 14.0, 4.2 Hz, 1H), 1.23-1.30 (m, 1H), 1.94-1.21 (m, 1H), 1.14-1.17 (m, 1H), 1.12 (s, 3H), 1.09 (dt, *J* = 14.0, 2.8 Hz, 1H), 1.01-1.06 (m, 1H), 0.93 (s, 3H), 0.92 (s, 3H), 0.89 (s, 3H), 0.86 (s, 3H), 0.85 (s, 3H), 0.83 (d, *J* = 11.2 Hz, 1H), 0.71 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 177.15, 171.18, 170.05, 169.96, 169.41, 143.54, 122.70, 86.67, 81.07, 72.54, 70.82, 70.36, 67.63, 60.84, 55.43, 47.68, 47.06, 45.96, 41.81, 41.36, 39.41, 38.24, 37.82, 37.06, 33.98, 33.20, 32.79, 32.33, 30.80, 28.18, 27.75, 25.91, 23.69, 23.66, 23.54, 23.21, 21.47, 20.81, 20.79, 20.72, 18.36, 17.06, 16.82, 15.53. **HRMS** (ESI-TOF) *m/z* calcd for C₄₄H₆₆BrO₁₁ [(M + H)⁺], 849.3783, found, 849.3776.

2,3,4-Tri-*O*-acetyl-6-*O*-[(4-(*N*,*N*-dipropylsulfamoyl)benzoyl)]-α-D-glucopyranosyl bromide (4c)

To a solution of compound **S11** (294 mg, 0.800 mmol, 1.00 equiv) in dry DCM (4.00 mL, 0.20 M) were added Probenecid **S12** (274 mg, 0.960 mmol, 1.20 equiv), DMAP (29.3 mg, 0.240 mmol, 0.300 equiv), EDCI·HCl (276 mg, 1.44 mmol, 1.80 equiv) and DIPEA (0.25 mL, 1.44 mmol, 1.80 equiv). After stirring at room temperature for 12 h, the reaction mixture was diluted with DCM and washed with saturated NaHCO₃ and brine successively. The organic phase was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by silica gel column chromatograph Hexanes: EtOAc [3:1 (v/v)] to give **S13** (209 mg, 0.340 mmol, 46.4% yield) as a colorless oil.

4c was synthesized according to the General Procedure A using **S13** (209 mg, 0.340 mmol, 1.00 equiv) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [4:1 (v/v)] to afford the title compound (90.0 mg, 0.140 mmol, 40%) as a white foam. **R**_{*f*} = 0.50 [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 8.16 (d, *J* = 8.4 Hz, 1H), 7.90 (d, *J* = 8.4 Hz, 1H), 6.62 (d, *J* = 4.2 Hz, 1H), 5.60 (t, *J* = 9.8 Hz, 1H), 5.26 (t, *J* = 9.8 Hz, 1H), 4.85 (dd, *J* = 9.8, 4.2 Hz, 1H), 4.55 (d, *J* = 12.6, 2.1 Hz, 1H), 4.42-4.49 (m, 2H), 3.05-3.14 (m, 4H), 2.11 (s, 2H), 2.07 (s, 1H), 2.04 (s, 2H), 1.50-1.58 (m, 4H), 0.88 (t, *J* = 7.0 Hz, 6H).¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 169.98, 169.96, 169.62, 164.85, 144.72, 132.78, 130.58, 130.58, 127.29, 127.29, 86.54, 72.22, 70.72, 70.25, 67.45, 62.07, 50.22, 50.22, 22.19, 22.19, 20.80, 20.76, 20.73, 11.31, 11.31.**HRMS** (ESI-TOF) *m*/*z* calcd for C₂₅H₃₅BrNO₁₁S [(M + H)⁺], 636.1109, found, 636.1113.

2,3,4-Tri-*O*-acetyl-6-*O*-[((2-(10-oxo-10,11-dihydrodibenzo[*b*,*f*]thiepin-2-yl)propanoyl)]-α-D-glucopyranosyl bromide (4d)

To a solution of compound **S11** (452 mg, 1.30 mmol, 1.00 equiv) in dry DCM (6.5 mL, 0.20 M) were added Zaltoprofen **S14** (237 mg, 1.43 mmol, 1.10 equiv), DMAP (47.6 mg, 0.390 mmol, 0.300 equiv), EDCI·HCl (448 mg, 2.34 mmol, 1.80 equiv) and DIPEA (0.480 mL, 2.34 mmol, 1.80 equiv). After stirring at room temperature for overnight, the reaction mixture was diluted with DCM and washed with saturated NaHCO₃ and brine successively. The organic phase was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography Hexanes: EtOAc [2:1 (v/v)] to give **S15** (700 mg, 1.11 mmol, 86% yield) as a colorless oil.

4d was synthesized according to the General Procedure A using **S15** (440 mg, 0.700 mmol, 1.00 equiv) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)]. to afford the title compound (289 mg, 0.450 mmol, 64%) as a white foam. **R**_{*J*} = 0.25 [Hexanes: EtOAc 3:1 (v/v)]. the **NMR** (700 MHz, CDCl₃, 25 °C, δ): 8.20 (dd, *J* = 3.5, 1.4 Hz, 115H), 7.58- 7.63 (m, 4.12H), 7.39-7.44 (m, 4.30H), 7.29-7.33 (m, 2.15H), 7.16 (t, *J* = 2.1 Hz, 1.15H), 7.15 (dt, *J* = 2.1 Hz, 11H), 6.55 (d, *J* = 4.2 Hz, 1H), 6.52 (d, *J* = 4.2 Hz, 1.15H), 5.49 (t, *J* = 9.8 Hz, 2.15H), 5.02 (t, *J* = 9.8 Hz, 1.15H), 4.97 (t, *J* = 9.8 Hz, 1H), 4.70 (dd, *J* = 9.8, 4.2 Hz, 1H), 4.65 (dd, *J* = 9.8, 4.2 Hz, 1.15H), 4.38 (s, 4.30H), 4.16-4.30 (m, 6.45H), 3.77 (qd, *J* = 7.0, 2.1 Hz, 2.15H), 2.10 (s, 3H), 2.09 (s, 3.45H), 2.04 (s, 3.45H), 2.03 (s, 3.45H), 2.03 (s, 3H), 1.99 (s, 3H), 1.51 (d, *J* = 7.0 Hz, 3H), 1.49 (d, *J* = 7.0 Hz, 3.45H). the form (175 MHz, CDCl₃, 25 °C, δ): 191.50, 191.48, 173.48, 173.41, 169.99, 169.96, 169.87, 169.85, 169.54, 169.37, 142.30, 142.08, 140.31, 140.29, 138.15, 138.10, 136.33, 136.30, 133.58, 133.55, 132.63, 132.60, 131.70, 131.67, 131.65, 131.62, 131.00, 131.00, 128.98, 128.66, 126.97, 126.96, 126.73, 126.52, 86.55, 86.51, 72.32, 72.27, 70.68, 70.67, 70.23, 70.22, 67.42, 67.19, 61.54, 61.27, 51.20, 51.19, 45.16, 45.03, 20.79, 20.79, 20.79, 20.70, 20.61, 18.26, 18.15. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₉H₃₀BrO₁₀S [(M + H)⁺], 649.0738, found, 649.0738.

2,3,4-Tri-*O*-acetyl-6-*O*-[(2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carbonyl)]-α-D-glucopyranosyl bromide (4e)

A suspension of febuxostat **S16** (190 mg, 0.600 mmol, 1.20 equiv) and DMAP (3.00 mg, 0.0250 mmol, 5.00 mol%) in DCM (3.00 mL) was added a solution of DCC (124 mg, 0.600 mmol, 1.20 equiv) in DCM (1.00 mL) at 0 °C. After stirring for 10 min at 0 °C, **S9** (185 mg, 0.50 mmol, 1.00 equiv) was added. The reaction mixture was stirred at room temperature for 12 h, quenched with saturated NaHCO₃ solution (6.00 mL), and extracted with DCM (2×30 mL). The organic layer was collected, washed with brine, dried with anhydrous Mg₂SO₄, and filtered. The filtrate was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [2:1 (v/v)] to afford the title compound (214 mg, 0.320 mmol, 64%) as a white solid. **R**_{*f*} = 0.30 [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.20 (d, *J* = 2.2 Hz, 1H), 8.11 (dd, *J* = 8.8, 2.3 Hz, 1H), 7.00 (d, *J* = 8.9 Hz, 1H), 6.63 (d, *J* = 4.0 Hz, 1H), 5.59 (t, *J* = 9.7 Hz, 1H), 5.20 (t, *J* = 9.8 Hz, 1H), 4.85 (dd, *J* = 10.0, 4.1 Hz, 1H), 4.44 (d, *J* = 4.0 Hz, 2H), 4.40 (dd, *J* = 10.3, 2.7 Hz, 1H), 3.90 (d, *J* = 6.5 Hz, 2H), 2.75 (s, 3H), 2.26 – 2.13 (m, 1H), 2.10 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H), 1.08 (d, *J* = 6.7 Hz, 6H). ¹³C **NMR** (125 MHz, CDCl₃, 25 °C, δ): 169.96, 169.94, 169.54, 168.01, 162.71, 162.32, 161.45, 132.83, 132.33, 126.00, 120.80, 115.48, 112.71, 103.13, 86.57, 75.81, 72.23, 70.75, 70.23, 67.46, 61.72, 28.28, 20.77, 20.75, 20.70, 19.17, 17.71. **HRMS** (ESI-TOF) *m/z* calcd for C₂₈H₃₂BrN₂O₁₀S [(M + H)⁺], 667.0956, found, 667.0966.

3,4,6-Tri-*O*-benzoyl-6-*O*-[(6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)]-α-D-glucopyranosyl bromide (4f)

To a solution of Adapalene **S17** (248 mg, 0.6 mmol, 1.00 equiv) in dry DCM (6 mL, 0.10 M) were added DMF (60.0 uL) and oxalyl chloride (457 mg, 6.60 mmol, 6.00 equiv) at 0 °C. After stirring at room temperature for 12 h, the solvent was removed under vacuum and the residue was directly used for next step. To a solution of crude mixture obtained above in dry DCM (6.00 mL) were added Et₃N (101 mg, 1.00 mmol, 2.00 equiv), **S6** (278 mg, 0.500 mmol, 1.00 equiv) and DMAP (3.05 mg, 0.0250 mmol, 5.00 mol%) at 0 °C. The reaction mixture stirred at room temperature for 6 h, then quenched with saturated NaHCO₃ solution (6.00 mL) and extracted with DCM (2×30 mL). The organic layer was collected, washed with brine, dried with anhydrous Mg₂SO₄ and filtered. The filtrate was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford the title compound **4f** (237 mg, 0.250 mmol, 50%) as a white solid. **R**_f = 0.70 [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.57 (s, 1H), 8.09 (d, *J* = 7.3 Hz, 2H), 8.01 – 7.95 (m, 5H), 7.88 (dd, *J* = 15.3, 8.1 Hz, 3H), 7.79 (dd, *J* = 8.7, 1.4 Hz, 1H), 7.62 – 7.56 (m, 2H), 7.55 – 7.51 (m, 2H), 7.43 (ddd, *J* = 24.4,

15.6, 7.7 Hz, 5H), 7.29 (t, J = 7.8 Hz, 2H), 6.99 (d, J = 8.5 Hz, 1H), 6.93 (d, J = 4.0 Hz, 1H), 6.33 (t, J = 9.8 Hz, 1H), 5.85 (dd, J = 16.7, 6.7 Hz, 1H), 5.39 (dd, J = 10.0, 4.1 Hz, 1H), 4.83 – 4.75 (m, 1H), 4.69 (dd, J = 12.5, 2.4 Hz, 1H), 4.53 (dt, J = 12.3, 4.4 Hz, 1H), 3.90 (s, 3H), 2.18 (s, 6H), 2.10 (s, 3H), 1.80 (s, 6H). ¹³C **NMR** (125 MHz, CDCl₃, 25 °C, δ): 166.18, 165.80, 165.69, 165.25, 159.14, 141.97, 139.16, 136.46, 133.79, 133.48, 133.40, 132.50, 132.01, 131.24, 130.09, 129.98, 129.88, 129.61, 128.96, 128.70, 128.65, 128.61, 128.58, 128.51, 126.71, 126.09, 125.88, 125.61, 125.18, 124.77, 112.24, 87.14, 72.88, 71.74, 70.88, 68.17, 62.12, 55.30, 40.72, 37.34, 37.25, 29.23. **HRMS** (ESI-TOF) *m*/*z* calcd for C₅₅H₄₉BrO₁₀Na [(M + Na)⁺], 971.2401, found, 971.2402.

Nickel-Catalyzed C-2 Arylation Reaction

Reaction Optimization:

AcO O	NiBr ₂ ·DN dtbbpy	$ME (5.00 \text{ mol}\%) \qquad AcO - Ph \\ (10.0 \text{ mol}\%) \qquad AcO - IQ$	Aco O
AcO AcO 1a 1.00 equiv	+ PhB(OH) ₂ Cs ₂ CC 2a diox; 2.00 equiv Temp	y ₃ (3.00 equiv.) ane (0.10 M) 3a-ax OAc erature, 15 h	+ AcO PhOAc 3a-eq
Entry	Temperature	Yield of 3a (%)	ax:eq
1	rt	<1	-
2	40 °C	7	2.5:1
3	60 °C	28	2.5:1
4	80 °C	43	2.3:1
5	100 °C	13	1.4:1

Table S1. Different Reaction Temperature

Table S2. Different Catalysts

Entry	Catalyst	Yield of 3a (%)	ax:eq
1	NiBr ₂ ·DME	46	2.1:1
2	NiCl ₂ ·DME	43	2.3:1
3	Ni(cod) ₂	29	2.2:1
4	Ni(NO ₂) ₂ ·6H ₂ O	20	3.0:1
5	Ni(NH ₃) ₂ (SO ₄) ₂	0	-
6	Ni powder	0	-
7	NiSO ₄ ·6H ₂ O	0	-
8	Ni(OAc) ₂ 4H ₂ O	39	2.0:1
9	Ni(acac) ₂	13	1.6:1
10	NiCl ₄ ·6H ₂ O	0	-
11	NiO	0	-

AcO O	NiBr ₂ ·D dtbbr	ME (5.00 mol%) AcO Ph AcO Ph	Aco o
AcO 1a 1.00 equiv	+ PhB(OH) ₂ Bas 2a dio. 2.00 equiv	e (3.00 equiv.) xane (0.10 M) 80 °C, 15 h 3a-ax	Ac 3a-eq
Entry	Base	Yield of 3a (%)	ax:eq
1	Cs ₂ CO ₃	43	2.1:1
2	K ₂ CO ₃	31	2.1:1
3	Na ₂ CO ₃	26	3.3:1
4	Li ₂ CO ₃	0	-
5	CsOAc	0	-
6	KOAc	0	-
7	NaOAc	0	-
8	LiOAc	0	-
9	K ₃ PO ₄	0	-
10	Li ₃ PO ₄	21	-
11	CsF	23	-
12	PhCO ₂ Na	0	-
13	t-BuOK	0	-
14	TMSOK	0	-
15	2,6-lutidine	0	-
16	DIPEA	0	-

Table S3. Different Bases

Table S4. Different Stoichiometric Ratio

Aco o		NiBr ₂ ·DME (5.00 mol%) dtbbpy (10.0 mol%)	AcO Ph	AcO O
Ac	1a 2a X equiv Y equiv	Cs ₂ CO ₃ (3.00 equiv.) dioxane (0.10 M) 80 °C, 15 h	3a-ax OAc	AcO PhOAc 3a-eq
Entry	x	Y	Yield of 3a (%)	ax:eq
1	1.0	1.0	28	2.1:1
2	1.0	2.0	42	2.2:1
3	1.0	3.0	39	2.5:1
4	2.0	1.0	18	3.5:1
5	3.0	1.0	trace	-

AcO O		NiBr ₂ ·DME (5.00 mol%) dtbbpy (10.0 mol%)	AcO Ph	Aco o
AcO 1a 1.00 equiv	← PhB(OH) ₂ — 2a 2.00 equiv	Cs ₂ CO ₃ (1.50 equiv.) Solvent (0.10 M) 80 °C, 15 h	3a-ax OAc	AcO PhOAc 3a-eq
Entry	Solv	ent	Yield of 3a (%)	ax:eq
1	diox	ane	37	3.1:1
2	<i>i</i> -PrO	DAc	16	3.0:1
3	triflouro	oluene	36	3.5:1
4	DCE		44	2.2:1
5	MeCN		0	-
6	DMF		0	-
7	DMSO		0	-
8	DMA		0	-
9	CHCI3		0	-
10	THF		17	2.6:1
11	chlorobenzene		0	-
12	benzene		57	3.3:1
13	toluene		32	2.2:1
14	<i>t</i> -BuOH		0	-
15	DME		26	3.3:1
16	dibutyl ether		0	-

Table S5. Different Solvents

Table S6. Different Ligands

Table S7. Different Alcohol Additives

AcO O	NiBr ₂ DME (5 dtbbpy (10	5.00 mol%) .0 mol%) AcO Ph	AcO AcO
AcO AcO F 1a AcO Br 1.00 equiv	PhB(OH)2 Cs2CO3 (2a <i>i</i> -PrOH (1.0 2.00 equiv benzene 80 °C,	X equiv) 00 equiv.) (0.10 M) , 15 h	+ AcO PhOAc 3a-eq
Entry	x	Yield of 3a (%)	ax:eq
1	1.5	61	2.9:1
2	2.0	67	3.0;1
3	3.0	65	3.3:1

Table S8. Different Amount of Base

Table S9. Different Amount of Alcohol Additives

AcO O	NiBr ₂ ·DME (5.00 mol%) dtbbpy (10.0 mol%)	NiBr ₂ ·DME (5.00 mol%) dtbbpy (10.0 mol%)	AcO Ph	AcO O
AcO AcO Br 1a 1.00 equiv	PnB(OH) ₂ — 2a 2.00 equiv	<i>i</i> -PrOH (X equiv) Cs ₂ CO ₃ (2.00 equiv.) benzene (0.10 M) 80 °C, 15 h	3a-ax OAc	AcO Ph _{OAc} 3a-eq
Entry	2	x	Yield of 3a (%)	ax:eq
1	0.2	25	54	2.9:1
2	0.5	50	87	3.0;1
3	0.7	75	88	3.1:1
4	1.0	00	79	3.6:1
5	1.2	25	73	3.3:1

Table S10. Different Amount of Ligand

Aco o	NiBr ₂ DME (5.00 dtbbpy (X mo	mol%) AcO Ph	AcO AcO
AcO 1a 1.00 equiv	PhB(OH)2 <i>i</i> -PrOH (0.75 e 2a Cs2CO3 (2.00 e 2.00 equiv benzene (0.10 80 °C, 20	quiv) Aco aquiv.) 3a-ax OAc D M) 3a-ax	+ AcO PhOAc 3a-eq
Entry	x	Yield of 3a (%)	ax:eq
1	5.0	37	4.2:1
2	7.5	51	3.0;1
3	10.0	84	3.6:1

General Procedure B:

In a glovebox, to an oven-dried 4 mL screw cap vial was added NiBr₂•DME (3.08 mg, 10.0 µmol, 5.00 mol%), dtbbpy (5.36 mg, 20.0 µmol, 10.0 mol%), and benzene (1.00 mL). The mixture was stirred for 4 hours to get light blue catalyst solution. To another oven-dried 4 mL screw cap vial was added Cs₂CO₃ (130.3 mg, 0.400 mmol, 2.00 equiv), phenyl boronic acid (0.400 mmol, 2.00 equiv), 1-bromo sugar (0.200 mmol, 1.00 equiv), and benzene (1.00 mL). To the reaction mixture was added the prepared catalyst solution and stirred for 2 minutes. The vial was capped with a septum cap, taken out of the glovebox, and sealed with parafilm. To this suspension were added *i*-PrOH (11.4 µL, 0.150 mmol, 0.75 equiv) using a microliter syringe. The reaction mixture was stirred at 80 °C for 20 h, then, the reaction mixture was filtered through a short silica gel column and washed with ethyl acetate. The resulted solution was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel to afford the desired product. Given that many products are new and have not been characterized, if the diastereomers could not be separated by the flash column chromatography, we purified them through HPLC system [Lux[®] 5µm i-Amylose-1 column eluting with isopropanol:hexane (v/v) at the flow rate of 1.0 ml/min] to obtain a pure NMR spectra.

General Procedure C:

In a glovebox, to an oven-dried 4 mL screw cap vial was added NiBr₂•DME (3.08 mg, 10.0 μ mol, 5.00 mol%), dtbbpy (5.36 mg, 20.0 μ mol, 10.0 mol%), and benzene (1.00 mL). The mixture was stirred for 4 hours to get light blue catalyst solution. To another oven-dried 100 mL pressure vessel was added Cs₂CO₃ (260.6 mg, 0.800 mmol, 4.00 equiv), Aryl boronic acid (0.800 mmol, 4.00 equiv), 1-bromo sugar (0.200 mmol, 1.00 equiv), *i*-PrOH (11.4 μ L, 0.150 mmol, 0.75 equiv), and benzene (19.00 mL). To the reaction mixture was added the prepared catalyst solution and stirred for 2 minutes. The pressure vessel was capped and taken out of the glovebox. After the reaction mixture was stirred at 90 °C for 8 h, it was filtered through a short silica gel column and washed with ethyl acetate. The resulted solution was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel to afford the desired product.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-phenyltetrahydro-2H-pyran-2,4,5-triyl triacetate (3a)

According to the General Procedure B, the title compound was obtained as a white solide (68.5 mg, 0.168 mmol, 84% yield, axial: equatorial = 3.6:1). $\mathbf{R}_f = 0.25$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3a**-*ax*): $t_R = 12.9$ min, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H** NMR (500 MHz, CDCl₃, 25 °C, δ): 7.37 (dd, J = 7.8, 1.7 Hz, 2H), 7.36 – 7.31 (m, 3H), 6.36 (s, 1H, *H1*), 5.45 (dd, J = 9.9, 6.2 Hz, 1H, *H3*), 5.33 (t, J = 10.0 Hz, 1H, *H4*), 4.32 (dd, J = 12.4, 4.0 Hz, 1H, *H6*), 4.18 (ddd, J = 9.2, 7.8, 2.4 Hz, 2H, *H5*, *H7*), 3.61 (dd, J = 6.1, 1.0 Hz, 1H, *H2*), 2.17 (s, 3H), 2.14 (s, 3H), 2.02 (s, 3H), 1.92 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 170.76, 170.53, 169.50, 168.96, 134.93, 129.58, 128.69, 128.03, 93.87, 70.97, 70.85, 65.49, 62.26, 47.38, 21.21, 20.97, 20.85, 20.81. HRMS (ESI-TOF) *m/z* calcd for C₂₀H₂₄O₉Na [(M + Na)⁺], 431.1313, found, 431.1316.

Data for equatorial product (**3a**-*eq*): $t_R = 7.6 \text{ min}$, 5% (v/v) isopropanpl in hexane at the flow rate of 1.0 ml/min. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.32 – 7.21 (m, 5H), 6.20 (d, *J* = 3.3 Hz, 1H, *H1*), 5.91 (dd, *J* = 11.7, 9.2 Hz, 1H, *H3*), 5.21 (t, *J* = 9.7 Hz, 1H, *H4*), 4.38 (dd, *J* = 12.4, 4.0 Hz, 1H, *H6*), 4.23 – 4.16 (m, 1H, *H5*), 4.09 (dd, *J* = 12.4, 2.0 Hz, 1H, *H7*), 3.41 (dd, *J* = 11.8, 3.3 Hz, 1H, *H2*), 2.11 (s, 3H), 2.05 (s, 3H), 2.01 (s, 3H), 1.77 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 170.86, 170.50, 169.90, 168.56, 133.63, 128.78, 128.78, 128.11, 93.15, 70.18, 69.87, 69.75, 62.02, 50.54, 20.89, 20.82, 20.63. HRMS (ESI-TOF) *m/z* calcd for C₂₀H₂₄O₉Na [(M + Na)⁺], 431.1313, found, 431.1316.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(p-tolyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3b)

According to the General Procedure C, the title compound was obtained as a white solide (72.7 mg, 0.172 mmol, 86% yield, axial: equatorial = 4.0:1). $\mathbf{R}_f = 0.25$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3b**-*ax*): $t_R = 12.0$ min, Lux® 3 µm Cellulose-4 column eluting with 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.25 (d, *J* = 8.4 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H), 6.34 (d, *J* = 1.4 Hz, 1H), 5.43 (dd, *J* = 5.6, 9.8 Hz, 1H), 5.32 (t, *J* = 10.5 Hz, 1H), 4.31 (dd, *J* = 4.2, 11.9 Hz, 1H), 4.14-4.20 (m, 2H), 3.57 (dd, *J* = 1.4, 6.3 Hz, 1H), 2.35 (s, 3H), 2.17 (s, 3H), 2.15 (s, 3H), 2.02 (s, 3H), 1.92 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.80, 170.57, 169.52, 169.01, 137.68, 131.80, 129.43, 129.43, 129.40, 129.40, 94.02, 70.96, 70.92, 65.49, 62.26, 46.98, 21.24, 21.19, 21.01, 20.88, 20.82. HRMS (ESI-TOF) *m*/*z* calcd for C₂₁H₂₃O₉Na [(M + Na)⁺], 445.1469, found, 445.1468.

Data for equatorial product (**3b**-eq): $t_R = 10.5 \text{ min}$, Lux® 3 μ m Cellulose-4 column eluting with 5% (v/v)

isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.07-7.12 (m, 4H), 6.17 (d, *J* = 3.5 Hz, 1H), 5.88 (dd, *J* = 9.2, 11.9 Hz, 1H), 5.20 (dd, *J* = 9.8, 10.5 Hz, 1H), 4.37 (dd, *J* = 4.2, 12.6 Hz, 1H), 4.18 (ddd, *J* = 2.1, 3.5, 9.8 Hz, 1H), 4.09 (dd, *J* = 2.1, 12.6 Hz, 1H), 3.37 (dd, *J* = 3.5, 11.9 Hz, 1H), 2.30 (s, 3H), 2.11 (s, 3H), 2.05 (s, 3H), 2.02 (s, 3H), 1.78 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.90, 170.55, 169.93, 168.64, 137.77, 130.51, 129.48, 129.48, 128.64, 128.64, 93.25, 70.14, 69.97, 69.78, 62.05, 50.16, 21.21, 20.91, 20.88, 20.84, 20.70. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₁H₂₇O₉N [(M + NH₄)⁺], 440.1915, found, 440.1919.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(4-(tert-butyl)phenyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3c)

AcO AcO AcO AcO Sc

According to the General Procedure C, the title compound was obtained as a white solide (69.3 mg, 0.149 mmol, 74% yield, axial: equatorial = 3.8:1). $\mathbf{R}_f = 0.50$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3c**-*ax*): $t_R = 5.8 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.33 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 6.34 (s, 1H), 5.44 (dd, *J* = 9.9, 6.1 Hz, 1H), 5.33 (t, *J* = 9.9 Hz, 1H), 4.31 (dd, *J* = 12.3, 4.1 Hz, 1H), 4.21 – 4.13 (m, 2H), 3.58 (d, *J* = 6.0 Hz, 1H), 2.17 (s, 3H), 2.15 (s, 3H), 2.03 (s, 3H), 1.93 (s, 3H), 1.32 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 170.80, 170.59, 169.63, 168.95, 150.78, 131.76, 129.26, 125.58, 94.08, 70.98, 70.94, 65.69, 62.36, 46.93, 34.61, 31.43, 21.22, 21.03, 20.90, 20.84. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₄H₃₂O₉Na [(M + Na)⁺], 487.1939, found, 487.1938.

Data for equatorial product (**3c**-*eq*): $t_R = 7.0 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.29 (d, *J* = 8.4 Hz, 2H), 7.14 (d, *J* = 8.4 Hz, 2H), 6.17 (d, *J* = 3.3 Hz, 1H), 5.89 (dd, *J* = 11.8, 9.2 Hz, 1H), 5.21 (dd, *J* = 10.1, 9.3 Hz, 1H), 4.37 (dd, *J* = 12.4, 4.0 Hz, 1H), 4.18 (ddd, *J* = 10.3, 3.9, 2.3 Hz, 1H), 4.09 (dd, *J* = 12.4, 2.2 Hz, 1H), 3.38 (dd, *J* = 11.8, 3.3 Hz, 1H), 2.11 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H), 1.78 (s, 3H), 1.28 (s, 9H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.91, 170.61, 169.93, 168.73, 150.93, 130.44, 128.42, 125.65, 100.13, 93.30, 72.05, 70.10, 70.01, 69.86, 69.82, 68.49, 62.07, 58.05, 50.04, 34.62, 31.40, 20.93, 20.85, 20.73. HRMS (ESI-TOF) *m*/*z* calcd for C₂₄H₃₂O₉Na [(M + Na)⁺], 487.1939, found, 487.1938.

(2R,3S,4R,5S,6R)-3-([1,1'-biphenyl]-4-yl)-6-(acetoxymethyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3d)

According to the General Procedure C, the title compound was obtained as a white solide (77.8 mg, 0.160 mmol, 80% yield, axial: equatorial = 3.5:1). $\mathbf{R}_f = 0.30$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3d**-*ax*): $t_R = 6.5 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.60 (d, *J* = 7.3 Hz, 2H), 7.56 (d, *J* = 8.2 Hz, 2H), 7.49 – 7.42 (m, 4H), 7.36 (t, *J* = 7.4 Hz, 1H), 6.40 (s, 1H), 5.49 (dd, *J* = 9.9, 6.1 Hz, 1H), 5.37 (t, *J* = 9.9 Hz, 1H), 4.34 (dd, *J* = 12.3, 3.9 Hz, 1H), 4.21 (dt, *J* = 9.7, 2.7 Hz, 2H), 3.66 (d, *J* = 6.0 Hz, 1H), 2.19 (s, 3H), 2.16 (s, 3H), 2.03 (s, 3H), 1.95 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 170.76, 170.56, 169.53, 168.95, 140.90, 140.62, 133.92, 130.00, 128.95, 127.60, 127.38, 127.24, 93.88, 71.00, 70.87, 65.49, 62.24, 47.12, 21.21, 21.01, 20.89, 20.81. **HRMS** (ESI-TOF) *m/z* calcd for C₂₆H₂₈O₉Na [(M + Na)⁺], 507.1626, found, 507.1626.

Data for equatorial product (**3d**-*eq*): $t_R = 5.4 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.57 (d, *J* = 7.3 Hz, 2H), 7.54 (d, *J* = 8.2 Hz, 2H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 1H), 7.30 (d, *J* = 8.2 Hz, 2H), 6.24 (d, *J* = 3.4 Hz, 1H), 5.95 (dd, *J* = 11.8, 9.2 Hz, 1H), 5.26 – 5.21 (m, 1H), 4.39 (dd, *J* = 12.4, 4.0 Hz, 1H), 4.24 – 4.18 (m, 1H), 4.10 (dd, *J* = 12.4, 2.1 Hz, 1H), 3.46 (dd, *J* = 11.8, 3.4 Hz, 1H), 2.12 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H), 1.81 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.89, 170.58, 169.93, 168.64, 140.84, 140.42, 132.63, 129.22, 128.96, 127.64, 127.41, 127.12, 93.14, 70.18, 69.90, 69.75, 62.03, 50.22, 20.92, 20.90, 20.85, 20.73. HRMS (ESI-TOF) *m*/*z* calcd for C₂₆H₂₈O₉Na [(M + Na)⁺], 507.1626, found, 507.1622.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(4-methoxyphenyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3e)

According to the General Procedure C, the title compound was obtained as a white solide (59.2 mg, 0.135 mmol, 67% yield, axial: equatorial = 2.6:1). $\mathbf{R}_f = 0.25$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3e**-*ax*): $t_R = 9.0 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.29 (d, *J* = 8.7 Hz, 2H), 6.86 (d, *J* = 8.7 Hz, 2H), 6.33 (s, 1H), 5.41 (dd, *J* = 9.9, 6.0 Hz, 1H), 5.30 (t, *J* = 10.0 Hz, 1H), 4.31 (dd, *J* = 12.4, 4.1 Hz, 1H), 4.17 (ddd, *J* = 9.1, 7.4, 2.9 Hz, 2H), 3.81 (s, 3H), 3.56 (d, *J* = 6.0 Hz, 1H), 2.17 (s, 3H), 2.14 (s, 3H), 2.02 (s, 3H), 1.92 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 170.76, 170.55, 169.51, 169.00, 159.30, 130.64, 126.86, 114.06, 94.10, 70.98, 70.95, 65.51, 62.29, 55.38, 46.60, 21.22, 20.99, 20.87, 20.81. **HRMS** (ESI-TOF) *m/z* calcd for $C_{21}H_{26}O_{10}Na$ [(M + Na)⁺], 461.1418, found, 461.1408.

Data for equatorial product (**3e**-*eq*): $t_R = 9.4 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.14 (d, *J* = 8.7 Hz, 2H), 6.82 (d, *J* = 8.7 Hz, 2H), 6.16 (d, *J* = 3.4 Hz, 1H), 5.85 (dd, *J* = 11.8, 9.2 Hz, 1H), 5.24 – 5.16 (m, 1H), 4.37 (dd, *J* = 12.4, 4.0 Hz, 1H), 4.20 – 4.15 (m, 1H), 4.09 (dd, *J* = 12.4, 2.2 Hz, 1H), 3.78 (s, 3H), 3.35 (dd, *J* = 11.8, 3.3 Hz, 1H), 2.11 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H), 1.79 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.90, 170.54, 169.91, 168.63, 159.30, 129.88, 125.55, 114.15, 100.13, 93.28, 71.98, 70.15, 70.06, 69.74, 65.89, 62.05, 56.41, 55.32, 52.73, 49.77, 36.66, 20.91, 20.84, 20.70. HRMS (ESI-TOF) *m*/*z* calcd for C₂₁H₂₆O₁₀Na [(M + Na)⁺], 461.1418, found, 461.1408.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(3-(diphenylamino)phenyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3f)

According to the General Procedure C, the title compound was obtained as a white solide (94.0 mg, 0.163 mmol, 82% yield, axial: equatorial = 6.1:1). $\mathbf{R}_f = 0.15$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3***f*-*ax*): $t_R = 6.8 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H** NMR (700 MHz, CDCl₃, 25 °C, δ): 7.23-7.27 (m, 3H), 7.20 (t, *J* = 7.7 Hz, 1H), 6.99-7.09 (m, 9H), 6.33 (d, *J* = 1.4 Hz, 1H), 5.40 (dd, *J* = 6.3, 9.8 Hz, 1H), 5.18 (t, *J* = 9.8 Hz, 1H), 4.07-4.12 (m, 2H), 4.01 (dd, *J* = 5.6, 12.6 Hz, 1H), 3.45 (dd, *J* = 1.4, 6.3 Hz, 1H), 2.15 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H), 1.85 (s, 3H). ¹³**C** NMR (175 MHz, CDCl₃, 25 °C, δ): 170.75, 170.46, 169.55, 168.98, 148.17, 147.84, 147.84, 136.05, 129.51, 129.51, 129.51, 125.57, 124.40, 124.40, 124.40, 124.40, 124.40, 123.65, 123.53, 123.10, 123.10, 93.66, 71.04, 70.60, 65.80, 62.66, 47.27, 21.20, 20.94, 20.87, 20.86. HRMS (ESI-TOF) *m*/*z* calcd for C₃₂H₃₄NO₉ [(M + H)⁺], 576.2228, found, 576.2226.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(3-(methylthio)phenyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3g)

According to the General Procedure C, the title compound was obtained as a white solide (70.0 mg, 0.154 mmol, 77% yield, axial: equatorial = 2.6:1). $\mathbf{R}_f = 0.30$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3g**-*ax*): $t_R = 13.8 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min.

¹**H** NMR (700 MHz, CDCl₃, 25 °C, δ): 7.32 (s, 1H), 7.28 – 7.25 (m, 1H), 7.20 (d, *J* = 8.0 Hz, 1H), 7.11 (d, *J* = 6.6 Hz, 1H), 6.35 (s, 1H), 5.44 (dd, *J* = 10.0, 6.2 Hz, 1H), 5.32 (dd, *J* = 17.2, 7.4 Hz, 1H), 4.34 (dd, *J* = 12.9, 4.2 Hz, 1H), 4.19 – 4.11 (m, 2H), 3.58 (d, *J* = 6.2 Hz, 1H), 2.48 (s, 3H), 2.18 (s, 3H), 2.17 (s, 3H), 2.02 (s, 3H), 1.93 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.95, 170.56, 169.46, 168.95, 139.24, 135.59, 129.08, 127.87, 126.40, 125.92, 93.69, 70.93, 70.78, 65.24, 62.07, 47.25, 21.22, 21.01, 20.96, 20.82, 16.01. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₁H₂₆O₉SNa [(M + Na)⁺], 477.1190, found, 477.1188.

Data for equatorial product (**3***g*-*eq*): $t_R = 8.9 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.21 (t, *J* = 7.7 Hz, 1H), 7.14 (d, *J* = 7.8 Hz, 1H), 7.11 (s, 1H), 7.00 (d, *J* = 7.7 Hz, 1H), 6.19 (d, *J* = 3.3 Hz, 1H), 5.90 (dd, *J* = 11.8, 9.2 Hz, 1H), 5.25 – 5.16 (m, 1H), 4.37 (dd, *J* = 12.4, 4.0 Hz, 1H), 4.22 – 4.13 (m, 1H), 4.09 (dd, *J* = 12.4, 2.1 Hz, 1H), 3.38 (dd, *J* = 11.8, 3.3 Hz, 1H), 2.46 (s, 3H), 2.11 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H), 1.80 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.87, 170.49, 169.88, 168.55, 139.21, 134.41, 129.14, 126.66, 126.15, 125.33, 93.02, 70.18, 69.75, 69.66, 61.98, 50.43, 20.91, 20.86, 20.82, 20.70, 15.72. HRMS (ESI-TOF) *m/z* calcd for C₂₁H₂₆O₉SNa [(M + Na)⁺], 477.1190, found, 477.1187.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(3-(ethoxycarbonyl)phenyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3h)

According to the General Procedure C, the title compound was obtained as a white solide (45.0 mg, 0.093 mmol, 46% yield, axial: equatorial = 2.4:1). $\mathbf{R}_f = 0.20$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3h**-*ax*): $t_R = 17.7 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 8.01 (d, *J* = 7.8 Hz, 1H), 7.98 (s, 1H), 7.67 (d, *J* = 7.7 Hz, 1H), 7.43 (t, *J* = 7.8 Hz, 1H), 6.39 (s, 1H), 5.49 (dd, *J* = 9.8, 6.1 Hz, 1H), 5.24 (t, *J* = 9.9 Hz, 1H), 4.41 – 4.30 (m, 3H), 4.21 – 4.15 (m, 2H), 3.65 (d, *J* = 6.1 Hz, 1H), 2.18 (s, 3H), 2.14 (s, 3H), 2.02 (s, 3H), 1.95 (s, 3H), 1.39 (t, *J* = 7.1 Hz, 2H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.93, 170.48, 169.45, 168.95, 166.31, 135.28, 133.47, 131.17, 129.19, 128.79, 93.49, 71.04, 70.52, 65.34, 62.13, 61.24, 47.13, 21.21, 20.93, 20.82, 14.49. HRMS (ESI-TOF) *m*/*z* calcd for C₂₃H₂₈O₁₁Na [(M + Na)⁺], 503.1524, found, 503.1522.

Data for equatorial product (**3h**-*eq*): $t_R = 12.8 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.99 – 7.94 (m, 2H), 7.44 (d, *J* = 7.5 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 6.21 (d, *J* = 3.0 Hz, 1H), 5.93 – 5.87 (m, 1H), 5.23 (t, *J* = 9.7 Hz, 1H), 4.41 – 4.34 (m, 3H), 4.21 (d, *J* = 10.5 Hz, 1H), 4.10 (d, *J* = 12.3 Hz, 1H), 3.47 (dd, *J* = 11.7, 2.9 Hz, 1H), 2.12 (s, 3H), 2.06 (s, 6H), 1.77 (s, 3H), 1.40 (t, *J* = 7.0 Hz, 2H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.87, 170.34, 169.88, 168.57, 166.24, 134.14, 133.17, 131.17, 130.23, 129.45, 128.84, 92.76, 70.21, 70.06, 69.58, 61.96, 61.31, 50.41, 20.91, 20.82, 20.60, 14.47. HRMS (ESI-TOF) *m/z* calcd for C₂₃H₂₈O₁₁Na [(M + Na)⁺], 503.1524, found,

503.1523.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(4-methoxy-3,5-dimethylphenyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3i)

According to the General Procedure C, the title compound was obtained as a white solide (63.0 mg, 0.135 mmol, 67% yield, axial: equatorial = 3.9:1). $\mathbf{R}_f = 0.30$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3i**-*ax*): $t_R = 5.7 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 6.99 (s, 2H), 6.31 (s, 1H), 5.39 (dd, *J* = 10.0, 6.1 Hz, 1H), 5.34 (t, *J* = 9.8 Hz, 1H), 4.34 (dd, *J* = 12.5, 3.8 Hz, 1H), 4.15 (dt, *J* = 12.0, 3.7 Hz, 2H), 3.73 (s, 3H), 3.51 (d, *J* = 6.8 Hz, 1H), 2.27 (s, 6H), 2.17 (s, 3H), 2.15 (s, 3H), 2.02 (s, 3H), 1.93 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.84, 170.60, 169.55, 169.04, 156.67, 130.98, 130.13, 130.04, 94.09, 71.02, 70.86, 65.30, 62.18, 59.82, 46.68, 21.24, 21.02, 20.93, 20.84, 16.41. HRMS (ESI-TOF) *m*/*z* calcd for C₂₃H₃₀O₁₀Na [(M + Na)⁺], 489.1731, found, 489.1724.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(naphthalen-2-yl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3j)

According to the General Procedure C, the title compound was obtained as a white solide (53.0 mg, 0.116 mmol, 58% yield, axial: equatorial = 3.7:1). $\mathbf{R}_f = 0.30$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3***j*-*ax*): $t_R = 10.0 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.95 (s, 1H), 7.79-7.86 (m, 3H), 7.48-7.52 (m, 2H), 7.40 (dd, J = 2.1, 8.4 Hz, 1H), 6.47 (s, 1H), 5.53 (dd, J = 6.3, 9.8 Hz, 1H), 5.38 (t, J = 9.8 Hz, 1H), 4.39 (dd, J = 3.5, 11.9 Hz, 1H), 4.19-4.25 (m, 2H), 3.78 (d, J = 5.6, 1H), 2.20 (s, 3H), 2.18 (s, 3H), 2.01 (s, 3H), 1.91 (s, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.85, 170.65, 169.43, 169.05, 133.49, 132.89, 132.50, 128.54, 128.16, 128.11, 127.74, 127.68, 126.52, 126.42, 93.95, 71.03, 65.40, 62.23, 47.40, 21.25, 20.99, 20.97, 20.80. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₄H₂₆O₉Na [(M + Na)⁺], 481.1469, found, 481.1476.

Data for equatorial product (3j-eq): $t_R = 6.7 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0

ml/min. ¹**H** NMR (700 MHz, CDCl₃, 25 °C, δ): 7.77-7.82 (m, 3H), 7.70 (s, 1H), 7.46-7.50 (m, 2H), 7.37 (dd, J = 2.1, 8.4 Hz, 1H), 6.28 (d, J = 3.5 Hz, 1H), 6.05 (dd, J = 9.1, 11.9 Hz, 1H), 5.27 (dd, J = 9.1, 10.5 Hz, 1H), 4.40 (dd, J = 4.2, 12.6 Hz, 1H), 4.24 (ddd, J = 2.1, 3.5, 10.5 Hz, 1H), 4.12 (dd, J = 2.1, 12.6 Hz, 1H), 3.59 (dd, J = 2.8, 11.9 Hz, 1H), 2.13 (s, 3H), 2.07 (s, 3H), 2.00 (s, 3H), 1.73 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.91, 170.54, 169.95, 168.56, 133.39, 133.03, 131.15, 128.51, 128.39, 128.01, 127.76, 126.47, 126.42, 126.09, 93.24, 70.21, 69.91, 69.79, 62.04, 50.64, 20.93, 20.87, 20.85, 20.67. HRMS (ESITOF) *m*/*z* calcd for C₂₄H₂₆O₉Na [(M + Na)⁺], 481.1469, found, 481.1478.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(9-phenyl-9H-carbazol-3-yl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3k)

According to the General Procedure C, the title compound was obtained as a white solide (48.6 mg, 0.084 mmol, 42% yield, axial: equatorial = 5.5:1). $\mathbf{R}_f = 0.20$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3k**-*ax*): $t_R = 18.4 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 8.21 (s, 1H), 8.11-8.14 (m, 1H), 7.60-7.64 (m, 2H), 7.57-7.59 (m, 2H), 7.46-7.49 (m, 1H), 7.40-7.43 (m, 2H), 7.32-7.36 (m, 2H), 7.26-7.30 (m, 1H), 6.51 (d, *J* = 1.4 Hz, 1H), 5.52 (dd, *J* = 6.3, 9.8 Hz, 1H), 5.42 (t, *J* = 9.8 Hz, 1H), 4.43 (dd, *J* = 4.2, 12.6 Hz, 1H), 4.19-4.26 (m, 2H), 3.83 (dd, *J* = 1.4, 6.3 Hz, 1H), 2.21 (s, 3H), 2.15 (s, 3H), 2.02 (s, 3H), 1.92 (s, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.95, 170.71, 169.46, 169.14, 141.36, 140.50, 137.68, 130.07, 127.71, 127.54, 127.24, 126.33, 126.28, 123.71, 123.28, 121.04, 120.27, 120.16, 110.08, 109.81, 94.45, 71.30, 71.09, 65.50, 62.32, 47.24, 21.29, 21.08, 21.03, 20.84. **HRMS** (ESI-TOF) *m*/*z* calcd for C₃₂H₃₁NO₉Na [(M + Na)⁺], 596.1891, found, 596.1901.

Data for equatorial product (**3k**-*eq*): $t_R = 12.5$ min, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 8.11 (*d*, *J* = 7.8 Hz, 1H), 8.01 (*d*, *J* = 2.1 Hz, 1H), 7.58-7.62 (m, 2H), 7.53-7.56 (m, 2H), 7.45-7.48 (m, 1H), 7.39-7.43 (m, 2H), 7.32-7.34 (m, 1H), 7.26-7.31 (m, 2H), 6.29 (d, *J* = 3.5 Hz, 1H), 6.04 (dd, *J* = 9.1, 11.9 Hz, 1H), 5.28 (dd, *J* = 9.1, 9.8 Hz, 1H), 4.41 (dd, *J* = 3.5, 11.9 Hz, 1H), 4.25 (ddd, *J* = 2.1, 3.5, 10.5Hz, 1H), 4.13 (dd, *J* = 2.1, 12.6 Hz, 1H), 3.61 (dd, *J* = 3.5, 11.9 Hz, 1H), 2.13 (s, 4H), 2.08 (s, 3H), 2.03 (s, 4H), 1.75 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.93, 170.63, 169.96, 168.67, 141.27, 140.60, 137.60, 130.04, 130.04, 127.71, 127.15, 127.15, 126.56, 126.38, 125.03, 123.69, 123.15, 120.61, 120.32, 120.26, 110.07, 110.02, 93.57, 70.41, 70.18, 69.92, 62.12, 50.56, 20.95, 20.94, 20.87, 20.74. **HRMS** (ESI-TOF) *m/z* calcd for C₃₂H₃₁NO₉Na [(M + Na)⁺], 596.1891, found, 596.1900.

(2R,3R,4R,5S,6R)-6-(acetoxymethyl)-3-(benzofuran-2-yl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3l)

According to the General Procedure C, the title compound was obtained as a white solide (36.0 mg, 0.080 mmol, 40% yield, axial: equatorial = 4.6:1). $\mathbf{R}_f = 0.25$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3***l*-*ax*): $t_R = 13.6 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.56 (d, *J* = 7.6 Hz, 1H), 7.43 (d, *J* = 8.2 Hz, 1H), 7.34 – 7.21 (m, 2H), 6.87 (s, 1H), 6.44 (d, *J* = 1.3 Hz, 1H), 5.53 – 5.45 (m, 2H), 4.31 (dd, *J* = 12.5, 4.5 Hz, 1H), 4.22 – 4.13 (m, 2H), 3.92 (d, *J* = 3.4 Hz, 1H), 2.21 (s, 3H), 2.13 (s, 3H), 2.05 (s, 3H), 2.00 (s, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.78, 170.58, 169.55, 168.76, 154.88, 152.11, 128.33, 124.54, 123.09, 121.19, 111.17, 106.43, 92.43, 70.85, 69.87, 65.86, 62.30, 42.41, 21.19, 21.00, 20.89, 20.83. **HRMS** (ESI-TOF) *m/z* calcd for C₂₂H₂₄O₁₀Na [(M + Na)⁺], 471.1262, found, 471.1256.

Data for equatorial product(**3**I-*eq*): $t_R = 8.7 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.51 (d, *J* = 7.4 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.29 – 7.24 (m, 1H), 7.22 – 7.18 (m, 1H), 6.55 (s, 1H), 6.47 (d, *J* = 3.5 Hz, 1H), 5.87 (dd, *J* = 11.6, 9.2 Hz, 1H), 5.21 (dd, *J* = 10.2, 9.4 Hz, 1H), 4.37 (dd, *J* = 12.4, 4.1 Hz, 1H), 4.20 (ddd, *J* = 10.3, 3.9, 2.2 Hz, 1H), 4.11 (dd, *J* = 12.4, 2.2 Hz, 1H), 3.67 (dd, *J* = 11.7, 3.4 Hz, 1H), 2.12 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H), 1.90 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.85, 170.48, 169.87, 168.50, 128.05, 124.51, 123.03, 121.15, 111.31, 104.89, 91.09, 69.97, 69.24, 69.16, 61.93, 44.91, 20.91, 20.85, 20.83, 20.82. HRMS (ESI-TOF) *m/z* calcd for C₂₂H₂₄O₁₀Na [(M + Na)⁺], 471.1262, found, 471.1256.

(2R,3R,4R,5R,6R)-6-(acetoxymethyl)-3-phenyltetrahydro-2H-pyran-2,4,5-triyl triacetate (3m)

According to the General Procedure B, the title compound was obtained as a white solide (60.4 mg, 0.148 mmol, 74% yield, axial: equatorial = 1:6.0). $\mathbf{R}_f = 0.25$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3m**-*ax*): $t_R = 11.5 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H** NMR (500 MHz, CDCl₃, 25 °C, δ): 7.43 (d, *J* = 7.1 Hz, 2H), 7.32 – 7.23 (m, 3H), 6.60 (s, 1H), 5.50 (dd, *J* = 6.3, 3.3 Hz, 1H), 5.33 (d, *J* = 2.2 Hz, 1H), 4.47 (td, *J* = 6.6, 1.7 Hz, 1H), 4.29 – 4.14 (m, 2H), 3.29 (d, *J* = 6.3 Hz, 1H), 2.16 (s, 3H), 2.06 (s, 3H), 1.98 (s, 3H), 1.55 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 170.71, 170.23, 170.07, 168.98, 136.11, 130.06, 127.61, 127.22, 94.22, 69.31, 67.70, 66.22, 62.00, 44.53, 29.86, 21.23, 20.93, 20.87, 20.12. **HRMS** (ESI-TOF) *m/z* calcd for C₂₀H₂₄O₉Na [(M + Na)⁺], 431.1313,

found, 431.1306.

Data for equatorial product (**3m**-*eq*): $t_R = 10.8$ min, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.32 – 7.25 (m, 3H), 7.19 (d, *J* = 7.0 Hz, 2H), 6.25 (d, *J* = 3.3 Hz, 1H), 5.83 (dd, *J* = 12.3, 3.1 Hz, 1H), 5.52 (d, *J* = 1.7 Hz, 1H), 4.39 (t, *J* = 6.8 Hz, 1H), 4.15 (qd, *J* = 11.2, 6.8 Hz, 2H), 3.64 (dd, *J* = 12.3, 3.3 Hz, 1H), 2.19 (s, 3H), 2.05 (s, 3H), 1.96 (s, 3H), 1.82 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 170.63, 170.56, 170.42, 168.72, 134.40, 128.77, 128.56, 127.92, 93.80, 68.95, 67.22, 66.67, 61.76, 44.78, 20.90, 20.86, 20.80, 20.70. HRMS (ESI-TOF) *m*/*z* calcd for C₂₀H₂₄O₉Na [(M + Na)⁺], 431.1313, found, 431.1310.

(2S,3S,4S,5R,6S)-6-methyl-3-phenyltetrahydro-2H-pyran-2,4,5-triyl triacetate (3n)

According to the General Procedure B, the title compound was obtained as a white solide (44.8 mg, 0.128 mmol, 64% yield, axial: equatorial = 1:5.0). $\mathbf{R}_f = 0.25$ [Hexanes: EtOAc 3:1 (v/v)].

Data for equatorial product (**3n**-*eq*): $t_R = 11.5 \text{ min}$, Lux[®] 3 μ m i-Cellulose-5 column eluting with 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): δ 7.30-7.28 (m, 1H), 7.26-7.23 (m, 1H), 7.20-7.19 (m, 2H), 6.22 (d, J = 3.4 Hz, 1H), 5.83 (dd, J = 12.4, 3.2 Hz, 1H), 5.37 (dd, J = 3.2, 1.4 Hz, 1H), 4.31 (dq, J = 1.4, 6.3 Hz, 1H), 3.61 (dd, J = 12.4, 3.4 Hz, 1H), 2.21 (s, 3H), 1.94 (s, 3H), 1.82 (s, 3H), 1.21 (d, J = 6.3 Hz, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.82, 170.62, 168.94, 134.75, 128.69, 128.69, 128.59, 128.59, 127.77, 94.07, 69.97, 67.74, 67.40, 44.52, 20.92, 20.86, 20.76, 16.52. HRMS (ESI-TOF) *m/z* calcd for C₁₈H₂₂O₇Na [(M + Na)⁺], 373.1258, found, 373.1249.

(2R,3S,4R,5S,6R)-6-(((tert-butyldiphenylsilyl)oxy)methyl)-3-phenyltetrahydro-2H-pyran-2,4,5-triyl triacetate (30)

According to the General Procedure B, the title compound was obtained as a white solide (96.7 mg, 0.160 mmol, 80% yield, axial: equatorial = 2.7:1). $\mathbf{R}_f = 0.35$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**30**-*ax*): $t_R = 5.9 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.76 – 7.71 (m, 2H), 7.69 – 7.67 (m, 2H), 7.46 – 7.39 (m, 6H), 7.37 (dd, J = 10.4, 4.3 Hz, 2H), 7.31 – 7.24 (m, 3H), 6.41 (s, 1H), 5.59 (t, J = 10.0 Hz, 1H), 5.43 (dd, J = 9.9, 6.2 Hz, 1H), 4.02 – 3.97 (m, 1H), 3.84 (dd, J = 11.6, 1.9 Hz, 1H), 3.70 (dd, J = 11.6, 3.3 Hz, 1H), 3.58 (d, J = 6.2 Hz, 1H), 2.13 (s, 3H), 1.91 (s, 3H), 1.89 (s, 3H), 1.11 (s, 9H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.79, 169.15, 169.05, 136.01, 135.88, 135.38, 133.16, 133.03, 129.90, 129.81, 129.78, 128.69, 127.89, 127.82, 127.80, 94.17, 73.35, 71.61, 65.37, 62.03, 47.78, 26.89, 21.27, 21.05, 20.79, 19.31. **HRMS** (ESI-TOF) *m/z* calcd for C₃₄H₄₀O₈SiNa [(M + Na)⁺], 627.2385, found, 627.2384.

Data for equatorial product (**30**-*eq*): $t_R = 2.9 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.70 – 7.64 (m, 4H), 7.45 – 7.36 (m, 6H), 7.27 (dt, *J* = 11.9, 7.6 Hz, 5H), 6.25 (d, *J* = 3.3 Hz, 1H), 5.89 (dd, *J* = 11.8, 9.2 Hz, 1H), 5.34 (t, *J* = 9.7 Hz, 1H), 4.03 (dt, *J* = 10.2, 3.0 Hz, 1H), 3.79 – 3.71 (m, 2H), 3.39 (dd, *J* = 11.9, 3.3 Hz, 1H), 1.98 (s, 3H), 1.94 (s, 3H), 1.78 (s, 3H), 1.07 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 170.75, 169.75, 168.65, 135.85, 135.84, 134.06, 133.31, 133.30, 129.86, 129.81, 128.82, 128.70, 127.94, 127.87, 127.82, 93.24, 72.87, 70.43, 70.04, 62.55, 50.63, 26.89, 20.85, 20.81, 20.71, 19.38. HRMS (ESI-TOF) *m/z* calcd for C₃₄H₄₀O₈SiNa [(M + Na)⁺], 627.2385, found, 627.2386.

(2R,3R,4R,5R,6R)-6-((benzyloxy)methyl)-3-phenyltetrahydro-2H-pyran-2,4,5-triyl triacetate (3p)

According to the General Procedure B, the title compound was obtained as a white solide (36.5 mg, 0.080 mmol, 40% yield, axial: equatorial = 1:10). $\mathbf{R}_f = 0.25$ [Hexanes: EtOAc 3:1 (v/v)].

Data for equatorial product (**3p**-*eq*): $t_R = 9.2 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.36 – 7.33 (m, 2H), 7.30 – 7.27 (m, 5H), 7.24 (t, *J* = 7.3 Hz, 1H), 7.19 (d, *J* = 7.3 Hz, 2H), 6.24 (d, *J* = 3.3 Hz, 1H), 5.83 (dd, *J* = 12.3, 3.0 Hz, 1H), 5.61 (d, *J* = 1.5 Hz, 1H), 4.57 (d, *J* = 11.9 Hz, 1H), 4.42 (d, *J* = 11.9 Hz, 1H), 4.35 (t, *J* = 6.3 Hz, 1H), 3.62 (dd, *J* = 12.3, 3.3 Hz, 1H), 3.54 (dd, *J* = 9.5, 5.7 Hz, 1H), 3.50 (dd, *J* = 9.3, 7.4 Hz, 1H), 2.08 (s, 3H), 1.94 (s, 3H), 1.81 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.50, 170.34, 168.85, 137.68, 134.62, 128.71, 128.60, 128.58, 128.13, 127.99, 127.82, 93.88, 73.72, 70.24, 67.84, 67.40, 67.24, 44.92, 20.89, 20.84, 20.73. HRMS (ESI-TOF) *m/z* calcd for C₂₅H₂₈O₈Na [(M + Na)⁺], 479.1676, found, 479.1668.

(2R,4aR,6R,7S,8R,8aS)-2-(4-methoxyphenyl)-7-phenylhexahydropyrano[3,2-d][1,3]dioxine-6,8-diyl diacetate (3q)

According to the General Procedure B, the title compound was obtained as a white solide (67.2 mg, 0.152 mmol, 76% yield, axial: equatorial = 1.9:1). $\mathbf{R}_f = 0.25$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3q**-*ax*): $t_R = 8.8 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min.

¹**H NMR** (700 MHz, CDCl₃, 35 °C, δ): 7.39 – 7.31 (m, 7H), 6.87 (d, J = 8.7 Hz, 2H), 6.36 (s, 1H), 5.51 (dd, J = 10.6, 6.5 Hz, 1H), 5.48 (s, 1H), 4.37 (dd, J = 10.5, 4.8 Hz, 1H), 4.16 (td, J = 9.9, 4.8 Hz, 1H), 3.98 (t, J = 10.1 Hz, 1H), 3.89 (t, J = 10.4 Hz, 1H), 3.79 (s, 3H), 3.73 (d, J = 6.5 Hz, 1H), 2.20 (s, 3H), 1.95 (s, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.70, 169.25, 160.31, 135.70, 129.62, 128.63, 127.88, 127.63, 113.78, 102.09, 94.38, 75.52, 69.70, 68.87, 66.43, 55.43, 47.52, 21.28, 21.21. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₄H₂₆O₈Na [(M + Na)⁺], 465.1520, found, 465.1503.

Data for equatorial product (**3q**-*eq*): $t_R = 11.3 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.39 (d, *J* = 8.6 Hz, 2H), 7.32 – 7.26 (m, 5H), 6.89 (d, *J* = 8.6 Hz, 2H), 6.16 (d, *J* = 3.4 Hz, 1H), 6.03 (dd, *J* = 11.2, 9.6 Hz, 1H), 5.54 (s, 1H), 4.31 (dd, *J* = 10.3, 4.9 Hz, 1H), 4.11 (td, *J* = 9.9, 4.9 Hz, 1H), 3.83 – 3.76 (m, 5H), 3.40 (dd, *J* = 11.5, 3.4 Hz, 1H), 2.00 (s, 3H), 1.83 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.16, 169.00, 160.22, 133.89, 129.68, 129.12, 128.69, 128.03, 127.56, 113.74, 101.78, 93.72, 80.98, 68.89, 68.44, 65.57, 55.45, 51.41, 20.86, 20.82. HRMS (ESI-TOF) *m*/*z* calcd for C₂₄H₂₆O₈Na [(M + Na)⁺], 465.1520, found, 465.1503.

(2R,3S,4R,5S,6R)-2-((benzoyloxy)methyl)-5-phenyl-6-(pivaloyloxy)tetrahydro-2H-pyran-3,4-diyl dibenzoate (3r)

According to the General Procedure B, the title compound was obtained as a white solide (48.3 mg, 0.076 mmol, 38% yield, axial only). $\mathbf{R}_f = 0.35$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3r**-*ax*): ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.36 – 7.33 (m, 2H), 7.30 – 7.27 (m, 5H), 7.24 (t, *J* = 7.3 Hz, 1H), 7.19 (d, *J* = 7.3 Hz, 2H), 6.24 (d, *J* = 3.3 Hz, 1H), 5.83 (dd, *J* = 12.3, 3.0 Hz, 1H), 5.61 (d, *J* = 1.5 Hz, 1H), 4.57 (d, *J* = 11.9 Hz, 1H), 4.42 (d, *J* = 11.9 Hz, 1H), 4.35 (t, *J* = 6.3 Hz, 1H), 3.62 (dd, *J* = 12.3, 3.3 Hz, 1H), 3.54 (dd, *J* = 9.5, 5.7 Hz, 1H), 3.50 (dd, *J* = 9.3, 7.4 Hz, 1H), 2.08 (s, 3H), 1.94 (s, 3H), 1.81 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.50, 170.34, 168.85, 137.68, 134.62, 128.71, 128.60, 128.58, 128.13, 127.99, 127.82, 93.88, 73.72, 70.24, 67.84, 67.40, 67.24, 44.92, 20.89, 20.84, 20.73. **HRMS** (ESI-TOF) *m*/*z* calcd for C₃₈H₃₆O₉Na [(M + Na)⁺], 659.2252, found, 659.2244.

(2R,3S,4R,5S,6R)-6-acetoxy-2-((benzoyloxy)methyl)-5-phenyltetrahydro-2H-pyran-3,4-diyl dibenzoate (3s)

According to the General Procedure B, the title compound was obtained as a white solide (97.5 mg, 0.164 mmol, 82% yield, axial: equatorial = 3.2:1). $\mathbf{R}_f = 0.35$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3s**-*ax*): $t_R = 10.7 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 8.15 (d, *J* = 7.2 Hz, 2H), 7.91 (d, *J* = 7.3 Hz, 2H), 7.75 (d, *J* = 7.3 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.52 – 7.42 (m, 6H), 7.34 (t, *J* = 7.8 Hz, 2H), 7.32 – 7.27 (m, 3H), 7.21 (t, *J* = 7.6 Hz, 2H), 6.53 (s, 1H), 6.01 – 5.92 (m, 2H), 4.75 (dd, *J* = 12.2, 2.2 Hz, 1H), 4.54 (d, *J* = 9.2 Hz, 1H), 4.45 (dd, *J* = 12.3, 2.9 Hz, 1H), 3.82 (d, *J* = 4.4 Hz, 1H), 2.27 (s, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 169.04, 166.35, 166.10, 165.25, 134.81, 133.54, 133.44, 133.33, 130.00, 129.94, 129.90, 129.84, 129.19, 129.07, 128.66, 128.63, 128.54, 128.49, 127.97, 94.12, 71.47, 71.28, 65.99, 62.53, 47.77, 21.32. **HRMS** (ESI-TOF) *m/z* calcd for C₃₅H₃₀O₉Na [(M + Na)⁺], 617.1782, found, 617.1779.

Data for equatorial product (**3s**-*eq*): $t_R = 14.8 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 8.03 (d, *J* = 7.3 Hz, 2H), 7.91 (d, *J* = 7.3 Hz, 2H), 7.68 (d, *J* = 7.4 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.43 – 7.32 (m, 6H), 7.28 – 7.18 (m, 6H), 6.42 (dd, *J* = 11.6, 9.5 Hz, 1H), 6.33 (d, *J* = 3.2 Hz, 1H), 5.74 (t, *J* = 9.7 Hz, 1H), 4.62 (dd, *J* = 12.1, 2.8 Hz, 1H), 4.56 – 4.51 (m, 1H), 4.47 (dd, *J* = 12.1, 4.4 Hz, 1H), 3.68 (dd, *J* = 11.8, 3.2 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 168.69, 166.32, 166.08, 165.57, 133.55, 133.49, 133.22, 133.12, 129.97, 129.90, 129.84, 129.64, 129.29, 129.08, 128.91, 128.78, 128.50, 128.28, 128.13, 93.37, 71.12, 70.65, 70.21, 63.17, 51.12, 20.94. HRMS (ESI-TOF) *m/z* calcd for C₃₅H₃₀O₉Na [(M + Na)⁺], 617.1782, found, 617.1774.

(2R,3S,4R,5S,6R)-2-((benzoyloxy)methyl)-6-((4-cyanobenzoyl)oxy)-5-phenyltetrahydro-2H-pyran-3,4-diyl dibenzoate (3t)

According to the General Procedure B, the title compound was obtained as a white solide (98.1 mg, 0.144 mmol, 72% yield, axial: equatorial = 5.2:1). $\mathbf{R}_f = 0.25$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3t**-*ax*): $t_R = 12.1 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 8.30 (d, *J* = 8.3 Hz, 2H), 8.15 – 8.12 (m, 2H), 7.94 – 7.89 (m, 2H), 7.86 (d, *J* = 8.3 Hz, 2H), 7.79 – 7.75 (m, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.52 – 7.46 (m, 5H), 7.33 (ddd, *J* = 15.5, 14.8, 7.7 Hz, 5H), 7.27 – 7.22 (m,3H), 6.79 (s, 1H), 6.12 – 5.99 (m, 2H), 4.77 (dd, *J* = 12.3, 2.4 Hz, 1H), 4.60 (dd, *J* = 6.6, 2.8 Hz, 1H), 4.46 (dd, *J* = 12.4, 3.1 Hz, 1H), 4.01 (d, *J* = 4.1 Hz, 1H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 166.27, 166.19, 165.25, 163.05, 134.42, 133.67, 133.61, 133.41, 133.27, 132.70, 130.68, 130.00, 129.91, 129.84, 129.80, 129.02, 128.94, 128.81, 128.65, 128.59, 128.57, 128.20, 117.98, 117.34, 95.58, 72.04, 71.29, 65.84, 62.38, 47.85. **HRMS** (ESI-TOF) *m/z* calcd for C₄₁H₃₁NO₉Na [(M + Na)⁺], 704.1891, found, 704.1888.

Data for equatorial product (3t-eq): $t_R = 9.1 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0

ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 8.17 (d, *J* = 8.2 Hz, 2H), 8.00 (d, *J* = 7.3 Hz, 2H), 7.92 (d, *J* = 7.4 Hz, 2H), 7.82 (d, *J* = 8.2 Hz, 2H), 7.71 (d, *J* = 7.4 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.43 – 7.38 (m, 4H), 7.35 (t, *J* = 7.8 Hz, 2H), 7.25 – 7.20 (m, 5H), 7.15 (t, *J* = 7.4 Hz, 1H), 6.60 (d, *J* = 3.4 Hz, 1H), 6.56 (dd, *J* = 11.8, 9.4 Hz, 1H), 5.81 (t, *J* = 9.7 Hz, 1H), 4.63 (dd, *J* = 12.2, 2.9 Hz, 1H), 4.60 – 4.53 (m, 1H), 4.48 (dd, *J* = 12.2, 4.5 Hz, 1H), 3.85 (dd, *J* = 11.8, 3.4 Hz, 1H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 166.21, 166.18, 165.57, 162.85, 133.61, 133.30, 133.27, 133.13, 133.02, 132.69, 130.43, 129.97, 129.88, 129.73, 129.68, 129.08, 128.97, 128.93, 128.72, 128.55, 128.50, 128.36, 128.30, 117.93, 117.28, 94.93, 71.13, 71.02, 69.89, 62.95, 51.19. **HRMS** (ESI-TOF) *m*/*z* calcd for C₄₁H₃₁NO₉Na [(M + Na)⁺], 704.1891, found, 704.1888.

(2R,3S,4R,5S,6R)-6-((benzoyloxy)methyl)-3-phenyltetrahydro-2H-pyran-2,4,5-triyl tribenzoate (3u)

According to the General Procedure B, the title compound was obtained as a white solide (111.6 mg, 0.170 mmol, 85% yield, axial: equatorial = 4.2:1). $\mathbf{R}_f = 0.35$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3u**-*ax*): $t_R = 4.8 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H** NMR (500 MHz, CDCl₃, 25 °C, δ): 8.27 – 8.23 (m, 2H), 8.20 – 8.16 (m, 2H), 7.98 – 7.93 (m, 2H), 7.82 – 7.77 (m, 2H), 7.70 (t, *J* = 7.4 Hz, 1H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.59 (t, *J* = 7.7 Hz, 2H), 7.56 – 7.48 (m, 6H), 7.41 – 7.31 (m, 5H), 7.26 (d, *J* = 7.3 Hz, 2H), 6.81 (s, 1H), 6.15 (dd, *J* = 10.2, 5.9 Hz, 1H), 6.09 (t, *J* = 10.0 Hz, 1H), 4.77 (dd, *J* = 12.4, 2.3 Hz, 1H), 4.65 (dt, *J* = 9.9, 2.6 Hz, 1H), 4.50 (dd, *J* = 12.4, 3.0 Hz, 1H), 4.04 (d, *J* = 6.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 166.31, 166.14, 165.28, 164.50, 134.83, 133.94, 133.54, 133.46, 133.30, 130.21, 130.01, 129.97, 129.91, 129.45, 129.20, 129.07, 128.88, 128.71, 128.61, 128.54, 128.52, 128.03, 94.72, 71.72, 71.49, 66.01, 62.52, 47.98. HRMS (ESI-TOF) *m*/*z* calcd for C₄₀H₃₂O₉Na [(M + Na)⁺], 679.1939, found, 679.1936.

Data for equatorial product (**3u**-*eq*): $t_R = 6.3 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 8.12 (d, *J* = 7.2 Hz, 2H), 8.01 (d, *J* = 7.2 Hz, 2H), 7.93 (d, *J* = 7.2 Hz, 2H), 7.71 (d, *J* = 7.2 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.51 (dt, *J* = 20.0, 7.6 Hz, 4H), 7.45 – 7.32 (m, 7H), 7.22 (dd, *J* = 14.4, 7.2 Hz, 4H), 7.14 (t, *J* = 7.4 Hz, 1H), 6.65 – 6.55 (m, 2H), 5.82 (t, *J* = 9.8 Hz, 1H), 4.65 – 4.55 (m, 2H), 4.49 (dd, *J* = 12.4, 4.8 Hz, 1H), 3.82 (dd, *J* = 11.8, 3.3 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 166.26, 166.15, 165.60, 164.33, 133.87, 133.49, 133.44, 133.16, 130.02, 130.00, 129.91, 129.67, 129.28, 129.08, 128.93, 128.90, 128.84, 128.50, 128.46, 128.32, 128.12, 94.09, 71.15, 70.86, 70.37, 63.08, 51.41. HRMS (ESI-TOF) *m/z* calcd for C₄₀H₃₂O₉Na [(M + Na)⁺], 679.1939, found, 679.1929.

(2R,3S,4R,5S,6R)-2-((benzoyloxy)methyl)-6-((4-methoxybenzoyl)oxy)-5-phenyltetrahydro-2H-pyran-3,4-diyl dibenzoate (3v)

According to the General Procedure B, the title compound was obtained as a white solide (96.1 mg, 0.140 mmol, 70% yield, axial: equatorial = 4.7:1). $\mathbf{R}_f = 0.30$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3***v*-*ax*): $t_R = 6.9$ min, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H** NMR (700 MHz, CDCl₃, 25 °C, δ): 8.17 (d, J = 8.8 Hz, 2H), 8.16 – 8.12 (m, 2H), 7.95 – 7.88 (m, 2H), 7.80 – 7.75 (m, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.49 (ddd, J = 13.4, 12.6, 7.4 Hz, 5H), 7.37 – 7.28 (m, 5H), 7.26 – 7.21 (m, 3H), 7.03 (d, J = 8.8 Hz, 2H), 6.75 (s, 1H), 6.12 (dd, J = 10.2, 6.0 Hz, 1H), 6.05 (t, J = 10.1 Hz, 1H), 4.73 (dd, J = 12.3, 2.3 Hz, 1H), 4.63 – 4.57 (m, 1H), 4.46 (dd, J = 12.3, 3.0 Hz, 1H), 3.99 (d, J = 6.1 Hz, 1H), 3.92 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 166.34, 166.16, 165.29, 164.19, 134.92, 133.53, 133.46, 133.29, 132.35, 130.01, 129.98, 129.94, 129.91, 129.22, 129.09, 128.68, 128.61, 128.54, 128.52, 127.99, 121.71, 114.15, 94.38, 71.60, 71.52, 66.04, 62.55, 55.72, 48.01. HRMS (ESI-TOF) *m/z* calcd for C₄₁H₃₄O₁₀Na [(M + Na)⁺], 709.2044, found, 709.2035.

Data for equatorial product (**3v**-*eq*): $t_R = 10.2 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 8.08 (d, *J* = 8.7 Hz, 2H), 8.01 (d, *J* = 7.5 Hz, 2H), 7.92 (d, *J* = 7.7 Hz, 2H), 7.71 (d, *J* = 7.7 Hz, 2H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.44 – 7.38 (m, 4H), 7.35 (t, *J* = 7.7 Hz, 2H), 7.26 – 7.18 (m, 5H), 7.13 (t, *J* = 7.3 Hz, 1H), 7.01 (d, *J* = 8.6 Hz, 2H), 6.61 – 6.52 (m, 2H), 5.81 (t, *J* = 9.8 Hz, 1H), 4.60 (dd, *J* = 16.3, 4.4 Hz, 2H), 4.48 (dd, *J* = 12.4, 4.7 Hz, 1H), 3.91 (s, 3H), 3.80 (dd, *J* = 11.8, 3.2 Hz, 1H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 166.28, 166.16, 165.60, 164.13, 164.02, 133.53, 133.48, 133.15, 132.15, 129.98, 129.91, 129.85, 129.65, 129.28, 129.09, 128.94, 128.79, 128.50, 128.45, 128.31, 128.06, 121.49, 114.17, 93.76, 71.18, 70.73, 70.46, 63.10, 55.70, 51.42. HRMS (ESI-TOF) *m*/*z* calcd for C₄₁H₃₄O₁₀Na [(M + Na)⁺], 709.2044, found, 709.2036.

(2R,3S,4R,5S,6R)-2-((benzoyloxy)methyl)-6-((furan-2-carbonyl)oxy)-5-phenyltetrahydro-2H-pyran-3,4-diyl dibenzoate (3w)

According to the General Procedure B, the title compound was obtained as a white solide (94.4 mg, 0.146 mmol, 73% yield, axial: equatorial = 4.2:1). $\mathbf{R}_f = 0.30$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3w**-*ax*): $t_R = 5.2 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.19 – 8.12 (m, 2H), 7.94 – 7.89 (m, 2H), 7.78 – 7.73 (m, 2H), 7.71 (d, *J* = 0.8 Hz, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.53 – 7.42 (m, 7H), 7.32 (ddd, *J* = 15.6, 14.3, 7.8 Hz, 5H), 7.24 (dd, *J* = 14.2, 6.5 Hz, 2H), 6.75 (s, 1H), 6.62 (dd, *J* = 3.5, 1.7 Hz, 1H), 6.14 – 5.98 (m, 2H), 4.75 (dd, *J* = 12.4, 2.4 Hz, 1H), 4.62 (dt, *J* = 9.6, 2.5 Hz, 1H), 4.47 (dd, *J* = 12.4, 3.0 Hz, 1H), 3.97 (d, *J* = 5.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 166.27, 166.18, 165.25, 163.05, 134.42, 133.65, 133.59, 133.40, 133.27, 132.68, 130.66, 130.42, 129.99, 129.90, 129.84, 129.79, 129.67, 129.03, 128.94, 128.81, 128.72, 128.64, 128.58, 128.56, 128.49, 128.35, 128.19, 117.96, 117.33, 95.58, 72.04, 71.29, 65.86, 62.38, 47.85. **HRMS** (ESI-TOF) *m/z* calcd for C₃₈H₃₀O₁₀Na [(M + Na)⁺], 669.1731, found, 669.1732.

Data for equatorial product (**3w**-*eq*): $t_R = 6.6 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 8.04 – 7.99 (m, 2H), 7.94 – 7.90 (m, 2H), 7.71 – 7.67 (m, 3H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.44 – 7.32 (m, 8H), 7.23 (dd, *J* = 15.6, 8.0 Hz, 4H), 7.15 (t, *J* = 7.4 Hz, 1H), 6.59 (dd, *J* = 3.5, 1.7 Hz, 1H), 6.53 (dd, *J* = 7.2, 2.9 Hz, 2H), 5.79 (t, *J* = 9.6 Hz, 1H), 4.62 (dt, *J* = 13.3, 3.0 Hz, 2H), 4.51 – 4.45 (m, 1H), 3.76 (dd, *J* = 11.8, 3.3 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 166.29, 166.05, 165.59, 156.34, 147.38, 143.69, 133.49, 133.30, 133.18, 133.14, 129.99, 129.92, 129.85, 129.64, 129.30, 129.11, 128.79, 128.50, 128.49, 128.30, 128.17, 119.56, 112.31, 93.95, 71.05, 70.85, 70.44, 63.06, 51.40. HRMS (ESI-TOF) *m*/*z* calcd for C₃₈H₃₀O₁₀Na [(M + Na)⁺], 669.1731, found, 669.1724.

(2R,3S,4R,5S,6R)-2-((benzoyloxy)methyl)-5-phenyl-6-((thiophene-2-carbonyl)oxy)tetrahydro-2H-pyran-3,4-diyl dibenzoate (3x)

According to the General Procedure B, the title compound was obtained as a white solide (94.1 mg, 0.142 mmol, 71% yield, axial: equatorial = 4.3:1). $\mathbf{R}_f = 0.30$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**3x**-*ax*): $t_R = 5.1$ min, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 8.15 (d, J = 7.7 Hz, 2H), 8.02 (d, J = 3.5 Hz, 1H), 7.92 (d, J = 7.8Hz, 2H), 7.77 (d, J = 7.8 Hz, 2H), 7.70 (d, J = 4.9 Hz, 1H), 7.61 (t, J = 7.4 Hz, 1H), 7.52 – 7.46 (m, 6H), 7.35 (t, J = 7.7 Hz, 2H), 7.31 (q, J = 7.7 Hz, 3H), 7.25 (dd, J = 14.4, 6.8 Hz, 2H), 7.22 – 7.20 (m, 1H), 6.73 (s, 1H), 6.10 (dd, J = 10.1, 5.9 Hz, 1H), 6.05 (t, J = 10.0 Hz, 1H), 4.76 (dd, J = 12.3, 2.0 Hz, 1H), 4.63 (d, J = 9.8 Hz, 1H), 4.47 (dd, J = 12.3, 2.9 Hz, 1H), 3.99 (d, J = 5.8 Hz, 1H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 166.30, 166.06, 165.26, 159.98, 134.78, 134.70, 133.80, 133.54, 133.44, 133.30, 132.76, 129.99, 129.92, 129.90, 129.89, 129.87, 129.17, 129.03, 128.70, 128.61, 128.53, 128.49, 128.33, 128.03, 94.74, 71.73, 71.37, 65.92, 62.46, 47.91. HRMS (ESI-TOF) *m*/*z* calcd for C₃₈H₃₀O₉SNa [(M + Na)⁺], 685.1503, found, 685.1498. Data for equatorial product (**3x**-*eq*): $t_R = 7.2$ min, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 8.03 – 7.99 (m, 2H), 7.95 – 7.91 (m, 3H), 7.72 – 7.68 (m, 2H), 7.67 (dd, J = 5.0, 1.1 Hz, 1H), 7.54 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.4 Hz, 1H), 7.45 – 7.37 (m, 5H), 7.35 (t, J = 7.8 Hz, 2H), 7.27 – 7.21 (m, 4H), 7.19 – 7.13 (m, 2H), 6.54 (dd, J = 11.8, 9.3 Hz, 1H), 6.50 (d, J = 3.3 Hz, 1H), 5.80 (t, J = 9.5 Hz, 1H), 4.61 (dd, J = 9.7, 3.2 Hz, 2H), 4.48 (dd, J = 13.0, 5.3 Hz, 1H), 3.78 (dd, J = 11.8, 3.3 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 166.28, 166.04, 165.61, 159.83, 134.64, 134.64, 144.64, 144.64, 144.64, 144.64, 144.64, 144.64, 144.64, 144
133.65, 133.49, 133.32, 133.17, 133.14, 132.48, 130.00, 129.92, 129.85, 129.64, 129.30, 129.07, 128.83, 128.50, 128.48, 128.33, 128.30, 128.16, 94.24, 71.05, 70.90, 70.33, 63.05, 51.38. **HRMS** (ESI-TOF) m/z calcd for C₃₈H₃₀O₉SNa [(M + Na)⁺], 685.1503, found, 685.1495.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(((2R,3S,4R,5S,6R)-3,4,6-triacetoxy-5-phenyltetrahydro-2H-pyran-2-yl)methoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (5a)

According to the General Procedure B, the title compound was obtained as a white solide (72.4 mg, 0.104 mmol, 52% yield, axial: equatorial = 2.0:1). $\mathbf{R}_f = 0.20$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**5a**-*ax*): $t_R = 11.5 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.41 (dd, *J* = 7.3, 1.9 Hz, 2H), 7.35 – 7.30 (m, 3H), 6.33 (d, *J* = 0.9 Hz, 1H), 5.50 – 5.40 (m, 4H), 5.21 (d, *J* = 3.7 Hz, 1H), 5.15 (dd, *J* = 10.7, 3.8 Hz, 1H), 4.34 (t, *J* = 6.5 Hz, 1H), 4.17 – 4.08 (m, 2H), 4.02 (dd, *J* = 11.2, 6.4 Hz, 1H), 3.86 (dd, *J* = 10.7, 3.3 Hz, 1H), 3.59 (dd, *J* = 10.7, 2.4 Hz, 2H), 2.18 (s, 3H), 2.15 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H), 1.91 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 170.80, 170.62, 170.49, 170.37, 169.72, 169.46, 169.10, 135.01, 129.61, 128.82, 128.10, 96.51, 93.88, 71.27, 71.13, 68.58, 68.38, 67.68, 66.98, 66.46, 65.76, 61.83, 47.45, 21.21, 21.01, 20.99, 20.88, 20.83. HRMS (ESI-TOF) *m*/*z* calcd for C₃₂H₄₀O₁₇Na [(M + Na)⁺], 719.2158, found, 719.2153.

Data for equatorial product (**5a**-*eq*): $t_R = 13.2 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.30 (t, *J* = 7.3 Hz, 2H), 7.27 – 7.22 (m, 3H), 6.14 (d, *J* = 3.2 Hz, 1H), 5.90 (dd, *J* = 11.7, 9.2 Hz, 1H), 5.46 (d, *J* = 2.5 Hz, 1H), 5.37 (dd, *J* = 10.9, 3.3 Hz, 1H), 5.25 – 5.17 (m, 2H), 5.10 (dd, *J* = 10.9, 3.6 Hz, 1H), 4.25 (t, *J* = 6.6 Hz, 1H), 4.13 (ddd, *J* = 17.8, 7.6, 4.2 Hz, 2H), 4.06 (dd, *J* = 11.2, 6.7 Hz, 1H), 3.77 (dd, *J* = 11.4, 4.7 Hz, 1H), 3.65 (dd, *J* = 11.3, 2.1 Hz, 1H), 3.35 (dd, *J* = 11.8, 3.2 Hz, 1H), 2.14 (s, 3H), 2.13 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H), 1.99 (s, 3H), 1.77 (s, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.71, 170.57, 170.54, 170.37, 170.03, 169.85, 168.69, 133.72, 128.82, 128.77, 128.10, 95.99, 93.01, 70.85, 70.32, 70.02, 68.37, 68.27, 67.55, 66.41, 66.20, 61.69, 50.55, 20.99, 20.89, 20.84, 20.82, 20.65. **HRMS** (ESI-TOF) *m*/*z* calcd for C₃₂H₄₀O₁₇Na [(M + Na)⁺], 719.2158, found, 719.2160.

(2R,3S,4R,5S,6R)-6-(((((4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-acetoxy-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carbonyl)oxy)methyl)-3-phenyltetrahydro-2H-pyran-2,4,5-triyl triacetate (5b)

According to the General Procedure B, the title compound was obtained as a white solide (130.4 mg, 0.154 mmol, 77% yield, axial: equatorial = 2.5:1). $\mathbf{R}_f = 0.60$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**5b**-*ax*): $t_R = 7.5 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.45 – 7.36 (m, 2H), 7.36 – 7.28 (m, 3H), 6.38 (s, 1H), 5.44 (dd, *J* = 9.9, 6.3 Hz, 1H), 5.34 (t, *J* = 9.9 Hz, 1H), 5.31 (s, 1H), 4.57 – 4.39 (m, 1H), 4.28 – 4.05 (m, 3H), 3.60 (d, *J* = 6.2 Hz, 1H), 2.87 (dd, *J* = 13.7, 3.7 Hz, 1H), 2.17 (s, 3H), 2.13 – 2.07 (m, 1H), 2.04 (s, 3H), 2.00 (s, 3H), 1.91 (s, 3H), 1.89 – 1.77 (m, 2H), 1.73 – 1.59 (m, 6H), 1.52 – 1.27 (m, 5H), 1.20 (dd, *J* = 14.4, 9.1 Hz, 2H), 1.16 (s, 3H), 1.08 – 1.01 (m, 1H), 0.92 (s, 6H), 0.91 (s, 3H), 0.85 (s, 3H), 0.85 (s, 3H), 0.74 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 177.42, 171.20, 170.64, 169.16, 168.94, 143.62, 135.11, 129.58, 128.66, 128.00, 122.69, 93.91, 81.09, 71.16, 70.94, 65.23, 61.85, 55.46, 47.70, 47.49, 47.00, 45.89, 41.83, 41.60, 39.45, 38.25, 37.83, 37.07, 33.93, 33.28, 32.80, 32.05, 30.82, 28.17, 27.94, 26.07, 23.80, 23.67, 23.54, 23.03, 21.48, 21.24, 21.01, 20.80, 18.36, 17.05, 16.81, 15.52. **HRMS** (ESI-TOF) *m*/*z* calcd for C₅₀H₇₀O₁₁Na [(M + Na)⁺], 869.4810, found, 869.4807.

Data for equatorial product (**5b**-*eq*): $t_R = 9.5 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.30 (t, J = 7.3 Hz, 2H), 7.27 – 7.24 (m, 1H), 7.22 (d, J = 7.4 Hz, 2H), 6.19 (d, J = 3.2 Hz, 1H), 5.90 (dd, J = 11.6, 9.3 Hz, 1H), 5.29 (s, 1H), 5.16 (t, J = 9.7 Hz, 1H), 4.53 – 4.46 (m, 1H), 4.28 (d, J = 12.0 Hz, 1H), 4.17 (dd, J = 10.2, 2.9 Hz, 1H), 4.07 (dd, J = 12.2, 4.5 Hz, 1H), 3.35 (dd, J = 11.8, 3.2 Hz, 1H), 2.86 (dd, J = 13.8, 3.8 Hz, 1H), 2.05 (s, 3H), 2.04 (s, 3H), 1.99 (s, 3H), 1.92 – 1.84 (m, 2H), 1.78 (s, 3H), 1.73 – 1.14 (m, 16H), 1.13 (s, 3H), 1.11 – 0.96 (m, 4H), 0.93 (s, 6H), 0.90 (s, 3H), 0.86 (s, 3H), 0.85 (s, 3H), 0.72 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 177.31, 171.19, 170.59, 169.70, 168.47, 143.57, 133.71, 128.78, 128.09, 122.70, 92.99, 81.08, 70.44, 70.09, 70.01, 61.76, 55.45, 50.68, 47.70, 47.02, 45.99, 41.80, 41.38, 39.44, 38.24, 37.83, 37.07, 34.01, 33.22, 32.84, 32.34, 31.73, 30.83, 28.18, 27.79, 25.96, 23.70, 23.66, 23.53, 23.21, 22.80, 21.48, 20.86, 20.82, 20.68, 18.36, 17.01, 16.82, 15.52, 14.27. HRMS (ESI-TOF) *m*/*z* calcd for C₅₀H₇₀O₁₁Na [(M + Na)⁺], 869.4810, found, 869.4813.

(2R,3S,4R,5S,6R)-6-(((4-(N,N-dipropylsulfamoyl)benzoyl)oxy)methyl)-3-phenyltetrahydro-2H-pyran-2,4,5-triyl triacetate (5c)

According to the General Procedure B, the title compound was obtained as a white solide (88.7 mg, 0.140 mmol, 70% yield, axial: equatorial = 3.3:1). $\mathbf{R}_f = 0.20$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**5***c*-*ax*): $t_R = 5.6 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 8.23 (d, *J* = 7.9 Hz, 2H), 7.92 (d, *J* = 7.9 Hz, 2H), 7.39 (d, *J* = 7.4 Hz, 2H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.27 – 7.23 (m, 2H), 6.39 (s, 1H), 5.56 – 5.45 (m, 2H), 4.63 (d, *J* = 12.2 Hz, 1H), 4.42 (d, *J* = 12.2 Hz, 1H), 4.30 (d, *J* = 6.8 Hz, 1H), 3.64 (s, 1H), 3.17 – 3.06 (m, 4H), 2.19 (s, 3H), 2.03 (s, 3H), 1.94 (s, 3H), 1.57 (dq, *J* = 14.4, 7.2 Hz, 4H), 0.89 (t, *J* = 7.2 Hz, 6H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.54, 169.57, 168.93, 165.04, 144.60, 134.91, 133.25, 130.56, 129.58, 128.69, 128.13, 127.25, 93.85, 70.87, 70.75, 65.30, 62.94, 50.20, 47.32, 22.18, 21.21, 20.99, 20.81, 11.32. **HRMS** (ESITOF) *m/z* calcd for C₃₁H₃₉NO₁₁SNa [(M + Na)⁺], 656.2136, found, 656.2134.

Data for equatorial product (**5***c*-*eq*): $t_R = 6.9 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 8.19 (d, *J* = 8.3 Hz, 2H), 7.90 (d, *J* = 8.3 Hz, 2H), 7.34 – 7.29 (m, 2H), 7.29 – 7.21 (m, 3H), 6.21 (s, 1H), 5.99 – 5.91 (m, 1H), 5.35 – 5.27 (m, 1H), 4.56 – 4.43 (m, 2H), 4.33 (d, *J* = 10.2 Hz, 1H), 3.43 (d, *J* = 11.9 Hz, 1H), 3.15 – 3.06 (m, 4H), 2.07 (s, 3H), 2.03 (s, 3H), 1.79 (s, 3H), 1.60 – 1.52 (m, 4H), 0.88 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.49, 169.95, 168.61, 165.06, 144.61, 133.51, 133.10, 130.57, 128.84, 128.81, 128.20, 127.26, 93.16, 70.13, 69.96, 69.88, 63.08, 50.64, 50.20, 31.10, 22.18, 20.87, 20.86, 20.64, 11.32. HRMS (ESI-TOF) *m*/*z* calcd for C₃₁H₃₉NO₁₁SNa [(M + Na)⁺], 656.2136, found, 656.2134.

(2R,3S,4R,5S,6R)-6-(((2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoyl)oxy)methyl)-3-phenyltetrahydro-2H-pyran-2,4,5-triyl triacetate (5d)

According to the General Procedure B, the title compound was obtained as a white solide (95.7 mg, 0.148 mmol, 74% yield, axial: equatorial = 2.7:1). $\mathbf{R}_f = 0.20$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**5d**-*ax*): $t_R = 7.4 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): $\delta 8.22 - 8.18$ (m, 1H), 7.60 (ddd, J = 9.5, 6.9, 5.6 Hz, 2H), 7.42 (dd, J = 11.3, 3.7 Hz, 2H), 7.36 - 7.28 (m, 6H), 7.19 (d, J = 7.9 Hz, 1H), 6.36 (s, 0.5H), 6.33 (s, 0.5H), 5.43 (dd, J = 9.5, 6.3 Hz, 1H), 5.32 (t, J = 10.0 Hz, 0.5H), 5.28 (t, J = 9.9 Hz, 0.5H), 4.42 - 4.34 (m, 2H), 4.27 (ddd, J = 14.5, 12.3, 3.2 Hz, 1H), 4.20 - 4.10 (m, 2H), 3.85 - 3.77 (m, 1H), 3.60 (d, J = 6.1 Hz, 1H), 2.14 (s, 1.5H), 2.12 (s, 1.5H), 2.01 (s, 1.5H), 1.99 (s, 1.5H), 1.92 (s, 3H), 1.57 (d, J = 5.3 Hz, 1.5H), 1.53 (d, J = 7.2 Hz, 1.5H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 191.51, 191.48, 173.73, 173.62, 170.55, 169.50, 169.38, 168.93, 142.59, 142.27, 140.33, 140.30, 138.15, 138.08, 136.34, 136.32, 134.91, 133.52, 133.48, 132.65, 132.62, 131.69, 131.67, 131.04, 131.02, 129.53, 129.49, 128.88, 128.80, 128.69, 128.06, 128.04, 127.01, 126.97, 126.74, 126.62, 93.78, 93.77, 70.94, 70.90, 65.50, 65.28, 62.86, 62.68, 51.24, 51.17, 47.33, 47.31, 45.41, 45.33, 21.18, 21.15, 20.98, 20.81, 20.78, 18.81, 18.48. **HRMS** (ESI-TOF) *m/z* calcd for C₃₅H₃₄O₁₀SNa [(M + Na)⁺], 669.1765, found, 669.1762.

Data for equatorial product (**5d**-*eq*): $t_R = 11.5$ min, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 8.22 – 8.18 (m, 1H), 7.64 – 7.58 (m, 2H), 7.43 (t, *J* = 11.2 Hz, 2H), 7.35 – 7.28 (m, 4H), 7.23 (t, *J* = 10.4 Hz, 2H), 7.18 (d, *J* = 7.5 Hz, 1H), 6.15 (s, 0.5H), 6.12 (s, 0.5H), 5.86 (dd, *J* = 16.6, 10.4 Hz, 1H), 5.13 (dd, *J* = 23.0, 13.3 Hz, 0.5H), 5.04 (dd, *J* = 24.9, 15.4 Hz, 0.5H), 4.46 – 4.36 (m, 2H), 4.33 (dd, *J* = 12.1, 3.8 Hz, 0.5H), 4.24 (dd, *J* = 12.3, 3.8 Hz, 0.5H), 4.19 (d, *J* = 12.3 Hz, 1H), 4.13 (dd, *J* = 20.4, 14.5 Hz, 2H), 3.83 – 3.74 (m, 1H), 3.28 (d, *J* = 11.7 Hz, 1H), 2.04 (s, 1.5H), 1.99 (s, 1.5H), 1.97 (s, 1.5H), 1.95 (s, 1.5H), 1.77 (s, 1.5H), 1.76 (s, 1.5H), 1.52 (d, *J* = 7.5 Hz, 1.5H), 1.51 (d, *J* = 7.2 Hz, 1.5H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 191.54, 191.49, 173.70, 173.63, 170.52, 169.87, 169.67, 168.55, 142.51, 142.29, 140.30, 138.08, 138.05, 136.34, 136.31, 133.62, 133.46, 133.42, 132.66, 132.62, 131.70, 131.68, 131.61, 131.57, 131.01, 129.10, 128.95, 128.81, 128.77, 128.09, 127.01, 126.98, 126.85, 126.59, 93.05, 70.21, 70.10, 69.84, 69.67, 62.53, 62.26, 51.21, 51.19, 50.46, 45.23, 45.07, 20.83, 20.80, 20.78, 20.74, 20.66, 18.44, 18.26. HRMS (ESI-TOF) *m*/z calcd for C₃₅H₃₄O₁₀SNa [(M + Na)⁺], 669.1765, found, 669.1761.

(2R,3S,4R,5S,6R)-6-(((2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carbonyl)oxy)methyl)-3-phenyltetrahydro-2H-pyran-2,4,5-triyl triacetate (5e)

According to the General Procedure B, the title compound was obtained as a white solide (97.0 mg, 0.146 mmol, 73% yield, axial: equatorial = 2.3:1). $\mathbf{R}_f = 0.20$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**5e**-*ax*): $t_R = 10.1 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (400 MHz, CDCl₃, 25 °C, δ): 8.21 (dd, *J* = 10.4, 2.1 Hz, 1H), 8.13 (dt, *J* = 13.4, 6.7 Hz, 1H), 7.37 (ddd, *J* = 16.8, 10.9, 6.6 Hz, 5H), 7.03 (d, *J* = 8.9 Hz, 1H), 6.41 (s, 1H), 5.55 – 5.41 (m, 2H), 4.52 (dd, *J* = 12.4, 1.8 Hz, 1H), 4.40 (dd, *J* = 12.4, 3.3 Hz, 1H), 4.27 (d, *J* = 9.3 Hz, 1H), 3.91 (t, *J* = 5.8 Hz, 2H), 3.65 (d, *J* = 5.7 Hz, 1H), 2.78 (s, 3H), 2.23 (dd, *J* = 13.3, 6.7 Hz, 1H), 2.19 (s, 3H), 2.03 (s, 3H), 1.95 (s, 3H), 1.10 (d, *J* = 6.7 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, δ): 170.56, 169.48, 168.88, 167.81, 162.71, 162.22, Data for equatorial product (**5e**-*eq*): $t_R = 13.8 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 8.21 (d, *J* = 2.0 Hz, 1H), 8.12 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.31 (t, *J* = 7.3 Hz, 2H), 7.29 – 7.23 (m, 3H), 7.02 (d, *J* = 8.9 Hz, 1H), 6.22 (d, *J* = 3.3 Hz, 1H), 5.95 (dd, *J* = 11.7, 9.3 Hz, 1H), 5.26 (t, *J* = 9.7 Hz, 1H), 4.47 (dd, *J* = 12.2, 4.0 Hz, 1H), 4.43 (dd, *J* = 12.2, 1.9 Hz, 1H), 4.29 (d, *J* = 10.2 Hz, 1H), 3.91 (d, *J* = 6.5 Hz, 2H), 3.42 (dd, *J* = 11.8, 3.2 Hz, 1H), 2.77 (s, 3H), 2.20 (ddd, *J* = 17.9, 12.3, 5.7 Hz, 1H), 2.08 (s, 3H), 2.03 (s, 3H), 1.78 (s, 3H), 1.09 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.51, 169.87, 168.57, 167.90, 162.70, 162.03, 161.68, 133.53, 132.82, 132.37, 128.83, 128.80, 128.17, 126.07, 121.22, 115.56, 112.73, 103.11, 93.11, 75.83, 70.16, 69.97, 69.87, 62.76, 50.64, 28.30, 20.87, 20.84, 20.65, 19.20, 17.71. **HRMS** (ESI-TOF) *m*/*z* calcd for C₃₄H₃₆N₂O₁₀SNa [(M + Na)⁺], 687.1983, found, 687.1977.

(2R,3S,4R,5S,6R)-6-((6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)oxy)-2-((benzoyloxy)methyl)-5-phenyltetrahydro-2H-pyran-3,4-diyl dibenzoate (5f)

According to the General Procedure B, the title compound was obtained as a white solide (106.0 mg, 0.112 mmol, 56% yield, axial: equatorial = 10:1). $\mathbf{R}_f = 0.40$ [Hexanes: EtOAc 3:1 (v/v)].

Data for axial product (**5***f*-*ax*): $t_R = 9.8 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (400 MHz, CDCl₃, 25 °C, δ): 8.80 (s, 1H), 8.26 – 8.21 (m, 1H), 8.20 – 8.08 (m, 4H), 8.04 (d, J = 8.6 Hz, 1H), 7.96 (d, J = 7.3 Hz, 2H), 7.89 (d, J = 8.6 Hz, 1H), 7.81 (d, J = 7.3 Hz, 2H), 7.68 – 7.55 (m, 5H), 7.50 (t, J = 7.4 Hz, 4H), 7.36 (dt, J = 15.5, 7.7 Hz, 7H), 7.05 (d, J = 8.4 Hz, 1H), 6.87 (s, 1H), 6.22 (dd, J = 10.2, 5.9 Hz, 1H), 6.11 (t, J = 10.1 Hz, 1H), 4.79 (d, J = 12.2 Hz, 1H), 4.72 (d, J = 9.9 Hz, 1H), 4.52 (dd, J = 12.3, 2.9 Hz, 1H), 4.11 (d, J = 6.1 Hz, 1H), 3.95 (s, 3H), 2.23 (s, 3H), 2.15 (s, 3H), 1.85 (s, 6H), 1.57 (s, 6H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 166.34, 166.17, 165.32, 164.83, 159.18, 142.03, 139.22, 136.52, 134.93, 133.55, 133.47, 133.30, 132.55, 131.79, 131.37, 130.10, 130.01, 129.94, 129.24, 129.09, 128.79, 128.73, 128.62, 128.56, 128.53, 128.04, 126.89, 126.16, 126.09, 125.96, 125.75, 124.95, 112.28, 94.84, 71.72, 71.57, 66.09, 62.57, 55.34, 48.02, 40.75, 37.38, 37.28, 29.26. **HRMS** (ESI-TOF) *m/z* calcd for C₆₁H₅₄O₁₀Na [(M + Na)⁺], 969.3609, found, 969.3610.

Other Aryl Boronic Acids Tested

Mechanistic Studies

Radical trapping experiment

The procedure is based on General Procedure B: In a glovebox, to an oven-dried 4 mL screw cap vial was added NiBr₂•DME (0.31 mg, 1.00 µmol, 5.00 mol%), dtbbpy (0.54 mg, 2.00 µmol, 10.0 mol%), Cs₂CO₃ (13.0 mg, 0.040 mmol, 2.00 equiv), phenyl boronic acid (4.88 mg, 0.040 mmol, 2.00 equiv), TEMPO (3.12 mg, 0.020 mmol, 1.00 equiv), and benzene (0.200 mL, 0.100 M). The reaction mixture was stirred for 10 minutes. Next, 1-bromo-sugar **1a** (8.22 mg, 0.020 mmol, 1.00 equiv) was added. The vial was capped with a septum cap, taken out of the glovebox, and sealed with parafilm. To this suspension were added *i*-PrOH (1.14 µL, 0.015 mmol, 0.75 equiv) using a microliter syringe. The reaction mixture was stirred at 80 °C for 20 h, then, concentrated *in vacuo*. The yield was determined based on crude ¹H-NMR spectrum with dibromomethane as an internal standard.

Figure S1. Radical trapping experiment.

Implication: The reaction likely proceeds through a radical mechanism.

Studies of stereochemical outcome using 2-iodo sugar

The procedure is based on General Procedure B: In a glovebox, to an oven-dried 4 mL screw cap vial was added NiBr₂•DME (0.31 mg, 1.00 μ mol, 5.00 mol%), dtbbpy (0.54 mg, 2.00 μ mol, 10.0 mol%), Cs₂CO₃ (13.0 mg, 0.040 mmol, 2.00 equiv), phenyl boronic acid (4.88 mg, 0.040 mmol, 2.00 equiv), and benzene (0.200 mL, 0.100 M). The reaction mixture was stirred for 10 minutes. Next, 2-iodo sugar **6a** or **6b** (9.16 mg, 0.020 mmol, 1.00 equiv) was added. The vial was capped with a septum cap, taken out of the glovebox, and sealed with parafilm. To this suspension were added *i*-PrOH (1.14 μ L, 0.015 mmol, 0.75 equiv) using a microliter syringe. The reaction mixture was stirred at 80 °C for 20 h, then, concentrated *in vacuo*. The yield and selectivity were determined based on crude ¹H-NMR spectrum with dibromomethane as an internal standard.

Figure S2. Studies of stereochemical outcome using 2-iodo sugar.

Implication: The reaction involves the formation of a common C-2 radical species.

Cross-over experiment

The procedure is based on General Procedure B where **1a** (0.010 mol), **1u** (0.010 mol), NiBr₂•DME (0.31 mg, 1.00 μ mol, 5.00 mol%), dtbbpy (0.54 mg, 2.00 μ mol, 10.0 mol%), Cs₂CO₃ (13.0 mg, 0.040 mmol, 2.00 equiv), phenyl boronic acid (4.88 mg, 0.040 mmol, 2.00 equiv), and benzene (0.200 mL) were used. At the end of the reaction, **7a** and **3s** were not detected on both LC-MS spectrum and crude ¹H-NMR spectrum. The yield of **3a** and **3u** was determined based on crude ¹H-NMR spectrum with dibromomethane as internal standard.

Figure S3. Cross-over experiment with 1a and 1u as substrates.

Implication: Acyloxyl migration undergoes a concerted mechanism.

DFT calculations

Computational Details

All density functional theory (DFT) calculations were carried out using Gaussian 16.10 Geometries of intermediates and transition states were optimized using the dispersion-corrected B3LYP-D3 functional,¹¹ using Grimme's DFT-D3 dispersion correction,¹² with a mixed basis set of SDD for Ni and 6-31G(d) for other atoms in the gas phase. Vibrational frequency calculations were performed for all the stationary points to confirm if each optimized structure is a local minimum or a transition state structure. Truhlar's quasiharmonic corrections¹³ using 100 cm⁻¹ as the frequency cutoff, and temperature correction to 80 °C were applied to entropy calculations with GoodVibes,¹⁴ Solvation energy corrections were calculated in benzene solvent with the SMD continuum solvation model¹⁵ based on the gas-phase optimized geometries. The M06 functional¹⁶ with a mixed basis set of SDD for Ni and 6-311+G(d,p) for other atoms was used in solvation single-point energy calculations. Conformational sampling of carbohydrate structures was carried out using the iterative metadynamic sampling and genetic crossover (iMTD-GC) method implemented in the CREST program,¹⁷ with GFN2-xtb method¹⁸ including additional geometry optimization of the final conformer ensemble using B3LYP-D3/SDD-6-31G(d) method. NBO analysis of some key intermediates and transition states was performed using NBO version 3 embedded in Gaussian 16.¹⁹ DFT calculations were performed using a simplified model of glucosyl bromide (1y), where the OMe group was used instead of OAc group at C-3, 4, and 6 positions of the sugar backbone.

DFT calculations for the Ni-catalyzed C-2 phenylation of simplified 1-glucosyl bromide (**1y**) were performed (Figure S4). The following key information was obtained:

- (i) [Ni¹]Br favors isopropoxide-mediated transmetallation (TS1) over the corresponding bromine atom abstraction (TS2). Prior to the transmetallation step, a base likely promotes the deprotonation of *i*-PrOH to form isopropoxide anion, which then binds to the phenylboronic acid to form a dihydroxyisopropoxyphenyl borate complex. Although the base-mediated deprotonation is challenging to calculate because the insoluble base (Cs₂CO₃) is involved, our calculations indicate that the binding of the isopropoxide anion to PhB(OH)₂ is highly exergonic by 23.9 kcal/mol. Therefore, we used the dihydroxyisopropoxyphenyl borate complex as the energy zero in the calculations of the transmetallation pathway. The effect of the cesium countercation was not considered in the calculations. It should be noted that the cesium counteraction may affect the reaction energy of the ligand exchange step with [Ni¹]Br and thus may affect the relative energies of the transmetallation and oxidative addition mechanisms (TS1 vs TS2).
- (ii) Oxidative insertion of $[Ni^{I}]$ Ph into the C-Br proceeds through 1-electron bromine atom abstraction (**TS3**) rather than 2-electron S_N2 displacement (**TS4**).
- (iii) 1-Glucosyl radical with a boat B_{2,5}-conformation (IV) is more stable than its chair conformation by 0.6 kcal/mol
- (iv) Concerted acyloxyl migration is energetically feasible (**TS5**)
- (v) Addition of Br[Ni^{II}]Ph to 2-glucosyl radical is the stereoselectivity-determining step and favors the axial addition (**TS6**). These results agree with the experimental observations of the stereoselectivity of the reaction.
- (vi) The equatorial addition of 2-glucosyl radical to the apical position of Br[Ni^{II}]Ph (TS7') is disfavored due to steric repulsions with the *cis* C-1 OAc group (green, Figure S6). TS7, which involves coordination of carbonyl oxygen in the C-1 OAc group to the nickel center, is more stable than TS7' (green). Nonetheless, TS7 is still less favorable than TS6 (purple).

Figure S4. DFT calculations were performed at the M06/6-311+G(d,p)-SDD/SMD(benzene)//B3LYP-D3/6-31G(d)-SDD (80 °C) level of theory using 1-glucosyl bromide (**1y**) as the substrate. All energies are in kcal/mol and are with respect to **I** and the dihydroxyisopropoxyphenyl borate [PhB(OH)₂(*i*-PrO)[–]].

Given that the energy difference between TS7 and TS6 ($\Delta\Delta G^{\pm} = 6.5$ kcal/mol), which is much larger than one would expect from the experimental results (~4:1 ax:eq). To gain a better understanding of the diastereoselectivity of the reaction, we recalculated the selectivity determining transition states **TS6** and **TS7** using the whole sugar structure (i.e., the fully acetylated 2-glucosyl radical derived from substrate **1a**). We obtained a new transition states **TS6a** and **TS7a** (Figure S5). In addition to the **TS7a**, which has a similar conformation to **TS7**, we located a lower energy conformer, **TS7a'**, which is more stable than **TS7a** and is 3.6 kcal/mol less stable than **TS6a**. In **TS7a'**, the substrate is in a chair conformation and approaches Br[Ni^{II}]Ph at the apical position (similar TS cannot be located when using the smaller model substrate). Although the energy difference ($\Delta\Delta G^{\ddagger} = 3.6$ kcal/mol) is still overestimated, the new computational results with the whole sugar are in a better agreement with the experimental selectivity. Distortion/interaction analysis further revealed that the difference is interaction energy controlled. **TS7a'** has a less favorable interaction energy than **TS6**. This can be attributed to the increased Ni-C distance in **TS7a'**, which is induced by the unfavorable steric repulsions between axial acetate and the ligand.

Figure S5. Relative energies of radical rebound transition states using real substrate and distortion/interaction model analysis. DFT calculations were performed at the M06/6-311+G(d,p)-SDD/SMD(benzene)//B3LYP-D3/6-31G(d)-SDD (80 °C) level of theory using the fully acetylated 2-glucosyl radical derived from substrate **1a**. All energies are in kcal/mol and are with respect to **I**. The 3D representation was prepared using CYLview.²⁰

DFT calculations were also performed to compare the energy profiles for C-1 and C-2 phenylation of 1-glucosyl radical (**III**) (Figure S6). The following key information was obtained:

Reductive eliminations of the phenyl group at the C-1 of glucosyl moiety (TS12 & TS13) have higher energy barriers than the radical acyloxy migration (TS5) and the reductive eliminations at the C-2 of glucosyl moiety (TS8 & TS9).

Figure S6. Gibbs free energy profiles for the Ni-catalyzed C-1 vs C-2 phenylation of glucosyl radical (**III**). DFT calculations were performed at the M06/6-311+G(d,p)-SDD/SMD(benzene)//B3LYP-D3/6-31G(d)-SDD (80 °C) level of theory using 1-glucosyl bromide (**1y**) as the substrate. All energies are in kcal/mol and are with respect to **I**.

Natural population analysis (NPA) of some key structures were performed (Figure S7) to understand the origin of relatively high barrier for reductive elimination at the C-1 of glucosyl moiety (**TS12 & TS13**) when compared to the reductive eliminations at the C-2 of glucosyl moiety (**TS8 & TS9**). Following key conclusions was drawn:

(i) In complex VI_{ax} the negative charge is localized at the C-2 center (NPA charge on C-2 = -0.407), which makes this intermediate highly reactive towards reductive elimination. On the other hand, the negative charge in α -III' is delocalized onto the neighboring oxygen (NPA charge on C-1 = 0.030), which makes this complex less susceptible to reductive elimination, leading to a much higher barrier in spite of these two complexes (VI_{ax} & α -III') having similar energies.

Figure S7. 3D structures and NPA charge analysis of Ni(III) intermediates (VI_{ax} & α -III') and reductive elimination transition states (TS8 & TS13).

Figure S8. An alternative reaction mechanism involving first bromine atom abstraction, then transmetallation, and recombination followed by reductive elimination.

Spectroscopic Data

¹H NMR (500 MHz, CDCl₃, 25 °C) of (1a)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (1m)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (10)

¹H NMR (400 MHz, CDCl₃, 25 °C) of (1q)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (1r)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (1s)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (1t)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (1u)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (1v)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (1w)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (1x)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4a)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4b)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4d)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (4e)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (4f)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3a-ax)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3a-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3b-ax)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3c-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3c-eq)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3d-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3d-eq)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3e-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3e-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3f-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3g-ax)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3g-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3h-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3j-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3j-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3k-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3k-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (31-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (31-eq)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3m-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3n-eq)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (30-*eq*)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3p-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3q-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3r-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3s-ax)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3s-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3t-eq)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3u-ax)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3u-eq)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3w-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3w-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3x-ax)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3x-eq)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (5a-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (5a-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (5b-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (5d-ax)

¹H NMR (400 MHz, CDCl₃, 25 °C) of (5e-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (5e-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (5f-ax)

Cartesian Coordinates (Å) and Energies of the Optimized Structures

I				
B3LY	YP-D3 SCF energy	: -3552.	40746220 a.u.	
B3LY	YP-D3 enthalpy:	-3551.	995020 a.u.	
B3LY	YP-D3 free energ	у:	-3552.08333 a.u.	
M06	SCF energy in s	olution:	-3554.58711	716 a.u.
M06	enthalpy in sol	ution:	-3554.174675 a.u.	
M06	free energy in	solution:	-3554.26298	5 a.u.
Cart	cesian coordinat	es		
ATON	X IV	Y	Z	
Ni	2.354583	0.003537	-0.000004	
Ν	0.838030	1.293049	0.00036	
С	-0.401950	0.739354	0.00002	
С	0.935751	2.629403	0.000055	
С	-1.550196	1.528364	-0.000024	
С	-0.172303	3.471677	0.000037	
Н	1.948426	3.020483	0.000088	
С	-1.464219	2.928326	-0.000015	
Н	-2.522805	1.050486	-0.000048	
Н	-0.006926	4.541712	0.000057	
С	-0.399633	-0.740265	-0.000013	
С	-1.545351	-1.532939	0.000010	
Ν	0.842111	-1.289962	-0.000048	
С	-1.454886	-2.932605	-0.00007	
Н	-2.519489	-1.058167	0.000046	
С	0.944130	-2.626054	-0.000064	
С	-0.161221	-3.471836	-0.000046	
Н	1.958055	-3.013865	-0.000094	
Н	0.007565	-4.541342	-0.000062	
Br	4.629078	0.006758	0.00005	
С	-2.740732	3.779181	-0.000014	
С	-3.569980	3.449520	-1.263885	
С	-3.570202	3.449129	1.263609	
С	-2.432877	5.287794	0.000241	
Н	-3.001582	3.670619	-2.174118	
Н	-3.862691	2.394702	-1.297730	
Н	-4.486911	4.050083	-1.278671	
Η	-3.001967	3.669955	2.174010	
Η	-4.487143	4.049675	1.278415	
Η	-3.862897	2.394293	1.297073	
Η	-3.370406	5.853992	0.000212	
Η	-1.866228	5.586820	0.889272	
Н	-1.866015	5.587073	-0.888570	
С	-2.728710	-3.787532	0.000018	
С	-3.559058	-3.460296	1.263787	
С	-3.559104	-3.460300	-1.263724	
С	-2.416001	-5.295130	0.00014	
Η	-2.990023	-3.679514	2.174078	
Η	-3.855045	-2.406392	1.297484	

Н	-4.474115	-4.063712	1.278589
Н	-2.990097	-3.679507	-2.174034
Н	-4.474155	-4.063726	-1.278497
Н	-3.855105	-2.406399	-1.297406
Н	-3.351689	-5.864362	0.000031
Н	-1.848281	-5.592422	-0.888914
Н	-1.848251	-5.592420	0.888923

B(Ph)(OH)₂(O*i*-Pr)⁻ B3LYP-D3 SCF energy: -602.09051749 a.u. B3LYP-D3 enthalpy: -601.854245 a.u. B3LYP-D3 free energy: -601.917718 a.u. M06 SCF energy in solution: -601.90955383 a.u. M06 enthalpy in solution: -601.673281 a.u. M06 free energy in solution: -601.736754 a.u.

Cartesian coordinates ATOM Х Υ Ζ -0.754981 В -0.4113070.171805 Ο -0.693444 -1.112848 1.573847 Η -1.244585 -1.906457 1.509949 -1.298867 0.339176 -0.355215 Ο Ο -0.616361 -1.995875 -0.627465 Η -0.664093 -1.701604 -1.547846 С 1.116071 -0.171071 0.040475 С 1.423474 1.192186 0.190314 С 2.198602 -1.032271 -0.207389 С 2.733922 0.111341 1.673060 Η 0.600328 1.883231 0.359551 С 3.515581 -0.570873 -0.291339 Η 1.982877 -2.090191 -0.349042 С 3.791404 0.790299 -0.128887 Η 2.935034 2.738313 0.232777 4.330572 -1.269275 -0.486541 Η 4.815187 1.158503 -0.193627 Η С 0.181238 -2.675706 -0.165978 С -3.398974 0.756680 -1.390394С -3.125326 0.872127 1.131485 Η -2.937091 -0.890968 -0.091765 Η -3.083958 0.225483 -2.296501 0.683599 Η -4.492583 -1.300326 Η -3.129586 1.813963 -1.512764 Η -2.561874 0.436791 1.960437 Η -2.893030 1.944478 1.077840 Η -4.205579 0.757159 1.311727

-1582.345118 a.u. B3LYP-D3 enthalpy: B3LYP-D3 free energy: -1582.462758 a.u. -1582.32746897 a.u. M06 SCF energy in solution: M06 enthalpy in solution: -1581.679957 a.u. M06 free energy in solution: -1581.797597 a.u. Imaginary frequency: -187.2840 cm-1 Cartesian coordinates Υ ATOM Х Ζ 1.220011 Ν 0.016912 0.053213 С -1.287506 0.051375 0.848281 С 0.305822 2.523579 0.150635 С -2.312743 1.787547 0.152300 С -0.671882 3.510452 0.255857 Η 1.362231 2.769465 0.140702 С -2.027087 3.156457 0.259603 Η -3.343672 1.453189 0.148879 Η -0.354698 4.543139 0.331891 С -1.505578 -0.612498 -0.072599 С -2.757798 -1.220621 -0.145247-0.363745 -1.341723 Ν -0.126775С -2.877203 -2.611206 -0.284013 Η -3.650552 -0.607932 -0.098917 С -0.458836 -2.670969 -0.268045С -1.678944 -3.335796 -0.348409 Η 0.492466 -3.190399 -0.314870 Η -1.673209 -4.412679 -0.462818 С -3.1690974.175137 0.371052 С -4.065769 4.072073 -0.885365 С 3.861477 1.632032 -4.008498 С -2.649735 5.620495 0.480133 Η -3.491884 4.285770 -1.793992Η -4.505954 3.075018 -0.992627 Η -4.888022 4.794526 -0.821784 -3.393833 Η 3.925247 2.536910 1.725607 Η -4.831063 4.580307 Η -4.445790 2.858185 1.592749 Η -3.496609 6.310959 0.557877 Η -2.024856 5.761254 1.369278 -2.066354 5.909817 -0.401209 Η С -4.265185 -3.260674 -0.363199 С -5.052671 -2.936148 0.928183 С -5.022741 -2.693051 -1.586811 С -4.182868 -4.791170 -0.510028 Η -4.534126 -3.326501 1.811063 Η -5.185474 -1.857800 1.065822 Η -6.048941 -3.392048 0.886914 -4.481396 -2.906472 -2.515220 Η Η -6.017913 -3.147667 -1.658266 Η -5.156331 -1.608257 -1.517515 Η -5.210984 -5.193428 -0.559767 -5.083591 Η -3.657582 -1.426183

Н	-3.673608	-5.253932	0.342885
Ni	1.351166	-0.330642	-0.081300
С	3.079727	0.746770	-0.407057
С	3.170000	1.478679	-1.612078
С	3.620102	1.385870	0.735191
С	3.723009	2.761738	-1.679211
Н	2.774737	1.023733	-2.519508
С	4.174146	2.669313	0.690565
Н	3.593259	0.864194	1.691191
С	4.224618	3.365671	-0.522168
Н	3.763422	3.292679	-2.628946
Н	4.567829	3.128179	1.596022
Н	4.657469	4.362578	-0.565381
В	3.458265	-1.355644	-0.709389
0	2.604579	-2.066182	0.210474
0	3.039278	-1.587550	-2.035801
Н	3.711514	-1.246110	-2.639988
0	4.831402	-1.322109	-0.376032
С	3.084836	-2.360504	1.535728
С	3.861090	-3.674441	1.496640
С	1.886490	-2.413111	2.478659
Н	3.760989	-1.556107	1.848148
H	4.709322	-3.582746	0.813869
Н	4.236302	-3.934630	2.494093
Н	3.210475	-4.484847	1.146236
Н	1.355132	-1.454594	2.478171
H	1.181737	-3.191154	2.162841
Н	2.212901	-2.635546	3.501059
Н	5.213110	-0.459417	-0.578404

B3LYP-D3 SCF energy:-7005.77504346 a.u.B3LYP-D3 enthalpy:-7005.033924 a.u.B3LYP-D3 free energy:-7005.172401 a.u. M06 SCF energy in solution: -7010.24523250 a.u. M06 enthalpy in solution: -7009.504113 a.u. M06 free energy in solution: -7009.642590 a.u. Imaginary frequency: -173.9569 cm-1

Cartesian coordinates ATOM Х Y

ATOM	Х	Y	Z
Ni	1.753298	-2.230920	0.478345
N	1.219517	-0.642406	1.636383
С	-0.109354	-0.437921	1.772782
С	2.071756	0.227854	2.180640
С	-0.601043	0.652684	2.485328
С	1.644057	1.345985	2.894142
Н	3.123078	0.006494	2.025895
С	0.273788	1.583685	3.063188
Н	-1.668629	0.795707	2.570042

Н	2.389969	2.015449	3.303633
С	-0.962083	-1.444914	1.094978
С	-2.356235	-1.361685	1.034668
Ν	-0.290197	-2.458579	0.506352
С	-3.103104	-2.346474	0.379973
с н	-2 846547	-0 506089	1 473724
C	_0 088348	-3 400588	_0 1/1130
C	-0.900340	-3.400300	-0.141130
C	-2.3/5051	-3.389424	-0.216/96
H 	-0.398/10	-4.181106	-0.611302
H	-2.8/5245	-4.194433	-0.743020
С	-0.286729	2.778354	3.843357
С	-1.373508	3.485895	2.998575
С	-0.915394	2.251676	5.155611
С	0.808014	3.801692	4.198126
Н	-1.012123	3.719469	1.993263
Н	-2.266100	2.862862	2.887146
Н	-1.683433	4.412471	3.495093
Н	-0.163972	1.762175	5.785505
н	-1 350505	3 082403	5 723597
и П	_1 711843	1 526554	1 951715
п	-1.711043	1.520554	4.954745
H	0.300280	4.646210	4./32449
H 	1.5/48/1	3.3/2324	4.852537
Н	1.298164	4.195691	3.301547
С	-4.637391	-2.338424	0.346851
С	-5.133378	-3.488161	1.257934
С	-5.223946	-1.009980	0.862513
С	-5.153724	-2.572914	-1.091785
Н	-4.770824	-4.460676	0.907852
Н	-4.787696	-3.349956	2.288573
Н	-6.229218	-3.517272	1.264616
н	-4.871672	-0.153081	0.276959
н	-6 315916	-1 038515	0 786590
н	-4 975524	-0 834465	1 915348
11 11	-6 240276	-2 594244	_1 001064
п 11	-0.249570	1 770677	1 760076
п	-4.024002	-1.//90//	-1.709070
H _	-4.81/443	-3.530359	-1.5015/1
Br	1.66/048	-0.930537	-1.648/53
С	0.689314	1.073417	-2.964340
С	0.989996	2.242442	-2.049533
Н	1.276499	0.985955	-3.869270
0	-0.618539	0.772459	-3.179852
С	0.069877	2.306055	-0.816761
Н	0.887727	3.180458	-2.617126
0	2.334226	2.168054	-1.531135
С	-1.419799	0.641068	-1.993734
C	-1 368770	1 937224	-1 179986
С Ц	0 450297	1 581672	-0 084483
0	0 002670	3 607/30	_0 2/2100
C	2 250011	J.UU/4J0 2 21/022	-2 120123
	3.338844	Z.ZI4U3Z	-2.4204/3
н	-0.996436	-U.1//334	-1.39/8/0
C	-2.835/14	0.254219	-2.399556
H	-1.791521	2.748985	-1.783827

0	-2.136614	1.748298	0.006141
С	1.209520	4.107420	0.310695
0	3.218594	2.497785	-3.589677
С	4.645688	1.824424	-1.741827
Н	-3.341296	-0.099920	-1.499300
Н	-2.777952	-0.576147	-3.120846
0	-3.637273	1.310239	-2.897961
С	-3.252452	2.623951	0.118765
Н	1.920527	4.423465	-0.461693
Н	0.931355	4.973444	0.918606
Н	1.700020	3.356735	0.944457
Н	4.758682	2.349853	-0.788720
Н	4.594802	0.750464	-1.525267
Н	5.490425	2.033459	-2.399110
С	-3.322361	1.723611	-4.221717
Н	-2.926034	3.666415	0.227709
Н	-3.795012	2.325612	1.021203
Н	-3.915622	2.532475	-0.750385
Н	-4.097690	2.435355	-4.517945
Н	-2.339046	2.204909	-4.282321
Н	-3.330461	0.870423	-4.916853
Br	3.802009	-3.246802	0.753061

B(OH)₂(O*i*-Pr) B3LYP-D3 SCF energy: -370.42828380 a.u. B3LYP-D3 enthalpy: -370.284761 a.u. B3LYP-D3 free energy: -370.334307 a.u. M06 SCF energy in solution: -370.33389291 a.u. M06 enthalpy in solution: -370.190370 a.u. M06 free energy in solution: -370.239916 a.u.

ATOM	Х	Y	Z
В	-1.294496	-0.093041	-0.036968
0	-1.466313	1.101516	-0.692976
Н	-2.407364	1.313019	-0.768235
0	-0.048343	-0.609743	0.173186
0	-2.397863	-0.780228	0.413740
Н	-2.128638	-1.599318	0.853070
С	1.136056	0.085661	-0.260662
С	2.235196	-0.960193	-0.402673
С	1.483921	1.179620	0.746248
Н	0.934603	0.545988	-1.236537
Н	1.937836	-1.735004	-1.116639
Н	3.164468	-0.498431	-0.754022
Н	2.428259	-1.439455	0.563837
Н	0.669495	1.907324	0.811427
Н	1.646546	0.741252	1.737658
Н	2.396388	1.706953	0.445203

TS3 B3LYP-D3 SCF energy: -4665.93535717 a.u. B3LYP-D3 enthalpy: -4665.102222 a.u. B3LYP-D3 free energy: -4665.248289 a.u. M06 SCF energy in solution: -4667.66616603 a.u. M06 enthalpy in solution: -4666.833031 a.u. M06 free energy in solution: -4666.979098 a.u. Imaginary frequency: -245.9255 cm-1 Cartesian coordinates ATOM Υ Х Ζ Ni -1.004547 0.449371 -1.636116 Ν -0.016228 1.904741 -0.697574 С 1.319968 1.711408 -0.545625 С -0.566852 2.992532 -0.139470С 2.110923 2.620229 0.156621 С 0.166424 3.921996 0.590940 Η -1.634246 3.098829 -0.295622 С 1.548762 3.754260 0.755941 Η 3.175897 2.439342 0.241884 Η -0.358486 4.766720 1.019282 С 1.827409 0.481536 -1.177167 С 3.156874 0.048224 -1.100267Ν 0.887220 -0.225205 -1.849991 С 3.565972 -1.122233 -1.739993 Η 3.862336 0.628398 -0.521620С 1.270202 -1.352453 -2.477921 С 2.573537 -1.821419 -2.455433 Η 0.475823 -1.893982 -2.978478 Η 2.806948 -2.736174 -2.989200 С 2.433008 4.734222 1.537923 С 3.111356 3.984437 2.708612 С 3.516798 5.305383 0.593477 С 1.624604 5.908966 2.118506 Η 2.362653 3.569200 3.392457 Η 3.740455 3.160053 2.355722 Η 3.750255 4.670470 3.276999 -0.2479263.060496 5.838585 Η Η 4.157907 6.008938 1.137522 Η 4.158390 4.517748 0.184357 6.580118 2.668073 Η 2.293438 Η 1.139962 6.496624 1.330837 Η 0.853468 5.564982 2.817060 С 5.007899 -1.642804 -1.699373 С 5.576950 -1.637529 -3.138259С 5.916690 -0.776166 -0.808608 С -1.146041 5.023563 -3.087384 Η -2.275315 4.990723 -3.807911 Η 5.578745 -0.623901 -3.554603 -3.137453 Η 6.608220 -2.009679

Н	5.560341	-0.749430	0.227924
Н	6.929521	-1.192901	-0.800341
Н	5.987941	0.253365	-1.177755
Н	6.049191	-3.474234	-1.138645
н	4 639938	-3 119490	-0 120862
ч	4 417042	-3 766757	-1 753249
C C		1 200450	1 010556
C	-2.001437	1 010400	-1.010330
	-3./54316	1.212488	-0.916135
C	-2.812410	2.418566	-2.762769
C	-4.891814	2.025897	-0.95/4/8
H	-3.694099	0.419168	-0.177711
С	-3.953043	3.229101	-2.822871
H	-2.003479	2.599823	-3.470005
С	-4.997486	3.039023	-1.914763
Н	-5.700724	1.864714	-0.245502
Н	-4.023993	4.011779	-3.576579
Н	-5.882727	3.669834	-1.954707
Br	-1.992389	-1.747518	-1.437870
С	-1.751044	-3.011740	0.736208
C	-2 232630	-1 988465	1 746243
с н	-2 405898	-3 846464	0 518359
0	-0 462843	-3 /01397	0.910000
C	-0.402043 -1.250720	-3.401397 -0.022751	1 000052
	-1.230739	-0.022751	1.090000
H	-2.343282	-2.493083	2.717959
0	-3.498300	-1.40/534	1.394325
С	0.511626	-2.341157	0.928236
С	0.177618	-1.343746	2.043683
H	-1.297549	-0.211602	0.989270
0	-1.571900	-0.047537	3.045182
С	-4.586327	-2.217074	1.364348
Н	0.482938	-1.811328	-0.026097
С	1.882425	-2.964537	1.086967
Н	0.293598	-1.837989	3.016037
0	1.109886	-0.276315	1.905393
С	-2.226014	1.180752	2.750712
0	-4.560530	-3.385461	1.683106
C	-5.786494	-1.451758	0.867303
н	2 629100	-2 176276	0 907418
н	2 013621	-3 743916	0 319339
0	2.010021	-3 502535	2 386677
C	1 560227	-3.302333	2.300077
	1.309237	1 00000	2 1 0 1 1 1
H	-3.142279	1.026830	2.169414
H 	-2.4//338	1.63/44/	3./12448
H	-1.565294	1.858992	2.191660
H	-5.936036	-0.548469	1.467506
H	-5.603391	-1.129697	-0.163722
Н	-6.670894	-2.088029	0.913240
С	3.293821	-4.072223	2.601036
Н	0.738830	0.657179	3.733048
Н	2.244466	1.090158	2.869959
Н	2.121001	-0.480147	3.717520
Н	3.310113	-4.456915	3.624281

Н	3.493274	-4.902727	1.903923
Н	4.099646	-3.326415	2.486596

 B3LYP-D3 SCF energy:
 -4665.90314124 a.u.

 B3LYP-D3 enthalpy:
 -4665.069952 a.u.

 B3LYP-D3 free energy:
 -4665.216685 a.u.

 M06 SCF energy in solution:
 -4667.63655847 a.u.

 M06 enthalpy in solution:
 -4666.803369 a.u.

 M06 free energy in solution:
 -4666.950102 a.u.

 Imaginary frequency:
 -209.6924 cm-1

ATOM	X	Y	Z
Ni	-1.252542	-0.506358	-1.908070
Ν	0.230799	-1.895935	-1.604267
С	1.474355	-1.381047	-1.486451
С	0.000274	-3.138881	-1.177225
С	2.504871	-2.107722	-0.898965
С	0.988244	-3.921759	-0.583602
Н	-1.023405	-3.483189	-1.286999
С	2.272428	-3.398610	-0.397809
Н	3.478343	-1.651455	-0.770008
Н	0.723282	-4.911946	-0.235363
С	1.580775	0.052981	-1.869019
С	2.748762	0.800859	-1.753019
Ν	0.401741	0.642376	-2.192640
С	2.729367	2.194804	-1.906529
H	3.668388	0.307412	-1.466265
С	0.387714	1.956165	-2.439678
С	1.512363	2.764684	-2.300840
H	-0.579687	2.372940	-2.703007
Н	1.408236	3.830388	-2.459610
С	3.380325	-4.129401	0.368403
С	4.605492	-4.321310	-0.555105
С	3.778149	-3.267648	1.593077
С	2.922328	-5.509773	0.872974
Н	4.348550	-4.931928	-1.428094
H	5.000738	-3.365509	-0.915811
H	5.409466	-4.827662	-0.009021
H	2.920570	-3.083335	2.248449
Н	4.550381	-3.783754	2.174845
Н	4.180573	-2.293539	1.296399
H	3.743272	-5.992724	1.413171
H	2.076534	-5.427671	1.564771
Н	2.634833	-6.171705	0.048025
С	3.978002	3.015056	-1.570725
С	4.422984	2.645467	-0.131631
С	5.104063	2.675655	-2.573395
С	3.701393	4.528625	-1.622768

Н	3.585658	2.710677	0.570980
 Ц	1 812788	1 6236/3	-0 076138
11	F 0012700	2 220075	0.070100
П	5.221592	3.320073	0.196422
Н	4.819011	2.950544	-3.595240
H	6.015415	3.225849	-2.312892
Н	5.345007	1.607034	-2.565482
Н	4.610828	5.076439	-1.355438
н	3 403601	4 857616	-2 624917
ц ц	2 017725	1 81 90 63	_0 013455
	2.917725	4.019003	-0.913433
C	-2.9//156	-1.383017	-1.992318
С	-3.119347	-2.519330	-2.818750
С	-4.132236	-0.956873	-1.302772
С	-4.336653	-3.195465	-2.953675
Н	-2.256106	-2.889246	-3.374816
C	-5 353418	-1 625150	-1 428992
	1 07(007	1.023130	
п	-4.076927	-0.090830	-0.646767
С	-5.459/08	-2./4/929	-2.254292
H	-4.408407	-4.069201	-3.599204
H	-6.221886	-1.272933	-0.876354
Н	-6.408104	-3.272193	-2.347763
С	-1.422436	0.076314	0.397483
С	-0.025620	0.058646	0 995558
C	0 287811	1 267000	1 895855
	0.207011	0 164162	0 106070
п	0.704400	0.104103	0.190079
C	-1.//2399	2.398427	0.8858/9
С	-0.279673	2.518367	1.204760
H	-0.161903	1.147399	2.882529
H	-2.348291	2.238553	1.804190
Н	0.270380	2.650020	0.261471
Н	-2.048443	-0.802049	0.444586
Br	-2 653397	-0.280810	2 949391
0	-2 005881	1 234610	0 053960
0	2.000001	2 (52050	0.033300
0	-0.003120	5.655050	2.042705
0	1./05//4	1.414459	1.950141
0	0.150110	-1.284624	1.464766
С	2.212595	1.811197	3.222678
Н	1.986276	1.055710	3.979214
Н	3.297650	1.896149	3.104129
н	1.805138	2.781356	3.531015
C	0 834593	4 603169	1 535388
с ц	0.004000	5 020055	0 570698
п	0.301471	5.020055	0.070090
H	0.886611	5.414186	2.266867
Н	1.836325	4.170688	1.405838
С	-2.294539	3.596631	0.119072
Н	-2.056675	4.503085	0.698514
Н	-1.771427	3.668167	-0.853719
0	-3.681310	3.454956	-0.066562
С	-4.252041	4.532022	-0.776097
- H	-5 322268	4 328860	-0 860958
11 TJ	_1 100010	T.JZ0000	
	-4.IU0010	J.491232	-0.200448
н	-3.825339	4.625819	-1./89498
C	0.422608	-1.645364	2.749013

0	1.022405	-0.970909	3.550400
С	-0.109381	-3.032364	3.001184
Н	-1.189862	-2.921506	3.152949
Н	0.051427	-3.681272	2.135560
Н	0.352251	-3.451142	3.896919

III B3LYP-D3 SCF energy: -881.88808107 a.u. B3LYP-D3 enthalpy: -881.565041 a.u. B3LYP-D3 free energy: -881.644027 a.u. M06 SCF energy in solution: -881.57790451 a.u. M06 enthalpy in solution: -881.254864 a.u. M06 free energy in solution: -881.333850 a.u.

ATOM	Х	Y	Z
С	-0.363205	0.914458	-0.227792
С	-1.196496	-0.325188	0.083204
С	-0.676214	-1.555158	-0.605210
С	1.484908	-0.614522	-1.000509
С	1.122905	0.578523	-0.106588
Н	-1.224596	-0.460068	1.174620
Н	-0.570497	1.226420	-1.261600
Н	1.292456	-0.337722	-2.048691
Н	1.337817	0.315131	0.936203
0	0.674268	-1.760772	-0.678047
0	1.898128	1.697861	-0.515467
0	-0.719816	1.937064	0.688613
С	2.953588	-1.014710	-0.874962
Н	3.549974	-0.248039	-1.376926
Н	3.102470	-1.975758	-1.391949
0	3.441852	-1.070482	0.453669
С	3.031792	-2.210596	1.198048
Н	3.606877	-2.196564	2.127939
Н	1.960172	-2.192512	1.429649
Н	3.250183	-3.141561	0.653146
С	2.747907	2.218120	0.502704
Н	2.160428	2.602306	1.348193
Н	3.306381	3.042164	0.050081
Н	3.447641	1.453325	0.862970
С	-0.826339	3.229554	0.110700
Н	-1.633415	3.266578	-0.637225
Н	-1.069888	3.916258	0.926343
Н	0.113231	3.540977	-0.361569
0	-2.548098	-0.040977	-0.358801
С	-3.540680	-0.751223	0.228274
0	-3.355503	-1.632525	1.038702
С	-4.887396	-0.283745	-0.270835
H	-5.037376	0.766734	-0.000253
Н	-4.926793	-0.349699	-1.362798

Н	-5.672210	-0.897924	0.171710
Н	-1.224112	-2.484469	-0.491401
Br[Ni ^{II}	lPh		
B3LYP-D	SCF energy	-3784.04	464526 a.u.
B3LYP-D3	8 enthalpv:	-3783.5	35514 a.u.
B3LYP-D3	free energy	v: -3	783.634264 a.u.
M06 SCF	energy in so	olution:	-3786.08968312 a.u.
M06 enth	alov in solu	1 ± 10 - 3	785.580552 a.u.
M06 free	energy in Sort	solution.	-3785 679302 a 11
1100 1100	chergy in t	Joracron.	3703.073302 a.u.
Cartesia	an coordinate	29	
	v v	v	7
Ni	1 /192/8	-0 959848	-0 000046
N	0 677408	0.959040	-0.000012
N C	-0 681013	0.000000	
C	1 201/17	0.933014	0.000004
C	1 207024	2.004314	-0.000027
C	-1.32/234	2.100202	-0.000003
	0.700703	3.203000	-0.000029
H C	2.450074	1.00000/	-0.000036
	-0.603699	3.388848	-0.000016
H	-2.409917	2.215309	-0.000005
H	1.438114	4.130017	-0.000041
C	-1.388598	-0.341333	-0.000007
C	-2.//4849	-0.4/95/4	0.000040
N	-0.56/288	-1.41//52	-0.000063
С	-3.369666	-1./50050	0.000025
H	-3.400057	0.404913	0.000097
C	-1.11//20	-2.636702	-0.000076
С	-2.495942	-2.842462	-0.000034
H	-0.405264	-3.455636	-0.000123
Н	-2.861200	-3.861738	-0.000053
С	-1.337656	4.734745	-0.000020
С	-2.225044	4.826828	-1.264033
С	-2.224994	4.826864	1.264026
С	-0.362373	5.926069	-0.000055
Н	-1.619130	4.758651	-2.174335
Η	-2.974483	4.028894	-1.297544
H	-2.757743	5.784650	-1.278672
Η	-1.619045	4.758702	2.174306
Н	-2.757685	5.784690	1.278664
Н	-2.974439	4.028938	1.297584
Н	-0.928304	6.863697	-0.000039
Н	0.278521	5.926584	0.888775
Н	0.278461	5.926580	-0.888928
С	-4.897518	-1.884726	0.000090
С	-5.465830	-1.196980	1.264038
С	-5.465932	-1.197222	-1.263945
С	-5.350248	-3.356295	0.000246
Н	-5.072786	-1.663315	2.174249

Н	-5.217230	-0.130839	1.297405
Н	-6.558336	-1.284592	1.279196
Н	-5.072895	-1.663677	-2.174097
Н	-6.558433	-1.284916	-1.279040
Н	-5.217415	-0.131068	-1.297498
Н	-6.444451	-3.403614	0.000149
Н	-4.995974	-3.890517	-0.888438
Н	-4.996149	-3.890279	0.889142
С	3.205655	-0.363318	0.000046
С	3.865836	-0.073298	-1.204031
С	3.865642	-0.073202	1.204207
С	5.135135	0.515525	-1.206264
Н	3.384668	-0.311715	-2.150247
С	5.134943	0.515617	1.206599
Н	3.384318	-0.311534	2.150367
С	5.772523	0.817179	0.000207
Н	5.628521	0.733657	-2.151584
Н	5.628177	0.733821	2.151982
Н	6.759762	1.273011	0.000269
Br	2.192115	-3.136854	-0.000159

IV

 B3LYP-D3 SCF energy:
 -881.88688079 a.u.

 B3LYP-D3 enthalpy:
 -881.564289 a.u.

 B3LYP-D3 free energy:
 -881.643606 a.u.

 M06 SCF energy in solution:
 -881.57814403 a.u.

 M06 enthalpy in solution:
 -881.255552 a.u.

 M06 free energy in solution:
 -881.334869 a.u.

ATOM	Х	Y	Z
С	0.406904	1.150506	0.035132
С	1.388571	0.136910	-0.603897
С	0.710272	-0.976252	-1.293722
0	-0.355926	-1.601710	-0.722229
С	-0.970597	-0.923075	0.387117
С	-2.354504	-1.514098	0.585961
H	-2.741079	-1.173661	1.558158
0	-3.198174	-1.089391	-0.466664
С	-4.506693	-1.609279	-0.359256
H	-4.511949	-2.710728	-0.397743
H	-4.996533	-1.293137	0.576592
Н	-5.077112	-1.222275	-1.207748
Н	-2.273368	-2.613205	0.606247
С	-1.011060	0.584956	0.108436
H	-1.494741	0.722080	-0.865639
0	-1.746123	1.215702	1.143887
С	-2.671399	2.189010	0.676711
Н	-3.153418	2.612829	1.562351
Н	-3.434748	1.726585	0.034782

Н	-2.162948	2.986689	0.120456
Н	-0.372504	-1.116943	1.290433
Н	1.211479	-1.587331	-2.033031
Н	2.063160	0.635003	-1.301904
0	2.226280	-0.354181	0.537874
С	3.405961	-0.919292	0.200721
0	3.816498	-1.011063	-0.937011
С	4.129236	-1.419597	1.431205
Н	4.229473	-0.615616	2.167034
Н	5.112475	-1.796411	1.147052
Н	3.546378	-2.220672	1.898628
Н	0.740866	1.351655	1.063082
0	0.333071	2.359834	-0.706486
С	1.411909	3.246150	-0.465316
Н	2.383513	2.808429	-0.741224
Н	1.239347	4.130427	-1.084054
Н	1.455101	3.547119	0.593000

 B3LYP-D3 SCF energy:
 -881.87087668 a.u.

 B3LYP-D3 enthalpy:
 -881.550156 a.u.

 B3LYP-D3 free energy:
 -881.629456 a.u.

 M06 SCF energy in solution:
 -881.56115471 a.u.

 M06 enthalpy in solution:
 -881.240434 a.u.

 M06 free energy in solution:
 -881.319734 a.u.

 Imaginary frequency:
 -123.0539 cm-1

ATOM	Х	Y	Z
С	0.383649	1.310667	-0.165154
С	1.200893	0.502803	-1.140034
С	0.869193	-0.814179	-1.449837
С	-0.776255	-0.876804	0.233567
С	-0.967103	0.638466	0.087528
H	1.290814	-1.327054	-2.304851
H	1.957259	0.998247	-1.731817
H	0.914623	1.367937	0.795646
Н	-0.059471	-1.092739	1.036672
H	-1.621704	0.813704	-0.774548
0	-0.223691	-1.419686	-0.987816
0	-1.554557	1.110118	1.286134
0	0.131783	2.622411	-0.662681
0	2.324824	-1.889084	-0.244787
С	-2.073625	-1.608564	0.515584
H	-2.387562	-1.363924	1.541161
H	-1.893074	-2.693772	0.453213
0	-3.049588	-1.201031	-0.422762
С	3.074630	-1.063293	0.358101
0	3.031355	0.189064	0.299845
С	4.148043	-1.698095	1.258535

Н	4.794165	-2.335633	0.647288
Н	4.740704	-0.927657	1.753717
Н	3.661010	-2.336286	2.002088
С	-4.294306	-1.840172	-0.226777
Н	-4.212488	-2.933528	-0.337041
Н	-4.711914	-1.622375	0.769887
Н	-4.976039	-1.456444	-0.990233
С	-2.547063	2.109443	1.086302
Н	-2.132010	2.984726	0.572725
Н	-2.900831	2.399980	2.079393
Н	-3.391443	1.712067	0.503942
С	1.191262	3.532793	-0.410320
Н	2.137395	3.208176	-0.867189
Н	0.894931	4.489582	-0.848045
Н	1.358721	3.662271	0.669555

V

B3LYP-D3 SCF energy:	-881.88674003 a.u.
B3LYP-D3 enthalpy:	-881.564595 a.u.
B3LYP-D3 free energy:	-881.643643 a.u.
M06 SCF energy in solutio	on: -881.58113589 a.u.
M06 enthalpy in solution:	-881.258991 a.u.
M06 free energy in solut	ion: -881.338039 a.u.

ATOM	Х	Y	Z
С	-0.567504	-1.684858	-0.255561
С	0.635723	-1.659651	0.631278
С	1.444235	-0.420028	0.768867
0	0.680399	0.745525	0.709900
С	-0.218015	0.808742	-0.405732
С	-0.850306	2.190324	-0.409966
Н	-1.397644	2.319476	-1.355849
0	-1.723945	2.309093	0.695880
С	-2.356912	3.568988	0.756173
Н	-3.010852	3.559756	1.632403
Н	-1.627167	4.387958	0.864662
Н	-2.964948	3.764993	-0.142823
Н	-0.049565	2.945921	-0.359875
С	-1.266246	-0.309740	-0.300451
Н	-1.830674	-0.136765	0.623912
0	-2.104183	-0.191479	-1.437484
С	-3.426067	-0.675986	-1.250994
Н	-3.970970	-0.459935	-2.174265
Н	-3.922946	-0.158009	-0.415909
Н	-3.437509	-1.756538	-1.065875
Н	0.345345	0.689583	-1.342542
Н	2.004477	-0.372332	1.703823
0	2.418923	-0.419618	-0.332041
С	3.639368	0.130571	-0.078193

0	3.999433	0.526518	1.005993
С	4.468014	0.159271	-1.341151
Н	5.466301	0.534835	-1.113904
Н	4.529117	-0.844164	-1.774103
Н	3.986477	0.806178	-2.082276
Н	1.053612	-2.601723	0.972729
0	-1.443915	-2.774017	0.043039
С	-2.008108	-2.771389	1.346822
Н	-2.456349	-3.758116	1.489843
Н	-1.249264	-2.605946	2.124705
Н	-2.793130	-2.009984	1.459094
Н	-0.253089	-1.890831	-1.292582

150	
B3LYP-D3 SCF energy:	-4665.95266953 a.u.
B3LYP-D3 enthalpy:	-4665.119499 a.u.
B3LYP-D3 free energy:	-4665.264905 a.u.
M06 SCF energy in soluti	ion: -4667.69072381 a.u.
M06 enthalpy in solutior	n: -4666.857553 a.u.
M06 free energy in solut	tion: -4667.002959 a.u.
Imaginary frequency:	-30.3253 cm-1

ATOM	Х	Y	Z
Ni	1.470671	0.015036	-1.366341
Br	2.066931	-1.927576	-2.501168
С	3.308585	0.475964	-1.267789
С	4.238829	-0.146536	-0.422344
С	3.751874	1.539460	-2.072563
С	5.557067	0.316300	-0.346041
H	3.953722	-1.016982	0.159977
С	5.073026	1.995837	-2.006865
Н	3.055641	2.026632	-2.753603
С	5.979221	1.390526	-1.133225
H	6.258476	-0.179613	0.321828
Н	5.392237	2.821497	-2.640248
H	7.006379	1.743272	-1.076947
Ν	0.837025	1.727304	-0.582126
С	1.601071	2.637424	0.043109
С	-0.497284	1.950919	-0.635425
С	1.087008	3.800849	0.596959
Н	2.657301	2.408469	0.082589
С	-1.072048	3.108098	-0.105186
С	-0.286443	4.074062	0.527030
H	1.772827	4.486222	1.083007
H	-2.141566	3.243368	-0.182949
С	-1.287233	0.854466	-1.232255
С	-2.681433	0.866037	-1.342436
Ν	-0.556177	-0.220021	-1.597961
С	-3.365557	-0.256367	-1.818366

Н	-3.228458	1.746119	-1.035258
С	-1.193070	-1.298819	-2.072871
С	-2.575693	-1.354137	-2.193927
Н	-0.547411	-2.125645	-2.346738
н	-3 025445	-2 266957	-2 568803
C	-/ 89/555	-0 328109	-1 905945
C	4.0J4JJJ	0.520105	1 447200
C	-5.569052	0.977720	-1.44/200
C	-5.308303	-0.60/944	-3.369491
C	-5.39043/	-1.4/8152	-0.996/33
Н	-5.267624	1.831130	-2.065518
Н	-6.656445	0.878201	-1.529933
Η	-5.339009	1.208455	-0.400139
Н	-4.965722	0.193469	-4.033571
Н	-4.892311	-1.551085	-3.737709
Н	-6.399941	-0.672010	-3.445084
Н	-4.982334	-2.446487	-1.303018
Н	-5.099065	-1.309154	0.046230
Н	-6.483547	-1.546213	-1.040260
C	-0 863715	5 362560	1 124624
C	-0 572887	5 392016	2 6/3365
C	-0.572007	J.JJZUIU 6 577011	2.043303
C	-0.109013	0.J//OII E 471200	0.444940
C	-2.386133	5.4/1308	0.921053
H	0.500119	5.338922	2.854577
Н	-0.954129	6.321770	3.081316
Н	-1.060319	4.551904	3.150520
H	0.894105	6.581822	0.599175
Н	-0.376191	6.575995	-0.634779
Н	-0.589915	7.510060	0.859944
Н	-2.921545	4.648147	1.408853
Н	-2.749914	6.405984	1.360769
Н	-2.655231	5.479585	-0.141462
С	1.231815	-0.978170	1.309046
C	0 227545	-0 392590	2 244672
C	1 059306	-2 423347	0 987724
	2,221700	-0 566462	1 206196
п С	2.231700 1 107717	-0.500405	1 060016
C	-1.10//1/	-0.845566	1.000210
H 	0.414/48	-0.///68/	3.265994
H	1.655227	-2.732241	0.130359
С	-1.218358	-2.375017	1.714881
Н	-1.451046	-0.400012	0.904874
H	-0.979193	-2.847221	2.676607
0	-0.265000	-2.775917	0.722087
0	1.460120	-3.252650	2.155545
0	-2.121075	-0.443395	2.868773
0	0.314373	1.032274	2.266836
С	0.320050	1.597930	3.565382
Н	0.411238	2.678916	3,432593
н	-0.604098	1.372725	4.114530
н	1,177349	1,242555	4,157653
 C	-2 923702	1.212000 0 657000	2 483104
С ц	-3 572700	0.057552	1 600005
	-3.3/3/00	0.405/64	1.0200UD
н	-3.333040	0.910121	3.341526

Н	-2.312009	1.528712	2.209190
С	-2.578782	-2.863553	1.254911
Н	-3.357259	-2.361534	1.852595
Н	-2.716737	-2.579209	0.200146
0	-2.649635	-4.264439	1.413877
С	-3.845556	-4.802681	0.900295
Н	-3.821584	-5.880626	1.081596
Н	-4.736202	-4.376542	1.394232
Н	-3.940682	-4.627195	-0.185322
С	2.781386	-3.401005	2.370711
0	3.647350	-2.843413	1.728771
С	3.032692	-4.361514	3.512316
Н	2.463333	-4.057672	4.396497
Н	2.689977	-5.363041	3.230804
Н	4.099474	-4.386564	3.738294

 B3LYP-D3 SCF energy:
 -4665.95162331 a.u.

 B3LYP-D3 enthalpy:
 -4665.119763 a.u.

 B3LYP-D3 free energy:
 -4665.266673 a.u.

 M06 SCF energy in solution:
 -4667.67753969 a.u.

 M06 enthalpy in solution:
 -4666.845679 a.u.

 M06 free energy in solution:
 -4666.992589 a.u.

 Imaginary frequency:
 -16.1055 cm-1

ATOM	Х	Y	Z
С	3.831300	1.013846	-0.217199
С	2.956329	-0.009328	0.411061
С	3.326981	-1.430658	0.246147
С	5.576928	-0.813233	-0.231841
С	5.294519	0.660780	0.107058
Н	2.742005	-2.097909	0.878928
Н	2.115799	0.270330	1.029079
Н	3.710115	0.987779	-1.313269
Н	5.444887	-0.957568	-1.313326
Н	5.448782	0.806298	1.181122
0	4.676151	-1.686431	0.473713
0	6.182518	1.471390	-0.653355
0	3.517796	2.306902	0.281372
0	3.107200	-1.873149	-1.180898
С	6.994168	-1.230887	0.120411
Н	7.684205	-0.739063	-0.582916
Н	7.085369	-2.321737	-0.006411
0	7.289541	-0.854314	1.452373
С	1.877533	-2.138574	-1.582278
0	0.891721	-2.090923	-0.844117
С	1.795176	-2.476845	-3.045200
Н	0.993223	-3.200119	-3.210405
Н	1.533454	-1.544207	-3.559162
Н	2.745426	-2.850965	-3.431165
--------	-----------	----------------------	-----------
С	8.575650	-1.264648	1.860965
Н	8.682480	-2.361530	1.831969
Н	9.366336	-0.824786	1.229821
н	8 711937	-0 922496	2 890490
C	6 986517	2 333773	0 1369/6
	7 (2(700	2.333773	0.130940
H T	7.636789	2.880115	-0.552872
H	7.603214	1./63223	0.845//4
H	6.370111	3.051534	0.696099
С	3.490928	3.315230	-0.720940
Н	4.458479	3.397951	-1.234263
Н	2.702587	3.113852	-1.458751
Н	3.275437	4.257269	-0.206878
Ni	-0.341962	-0.160396	-0.453414
N	-2.068135	-1.318343	-0.582134
С	-2.094664	-2.653176	-0.683408
С	-3.213163	-0.664771	-0.293334
С	-3.254439	-3.394648	-0.503062
н	-1 138596	-3 111972	-0.906380
C	_1 112000	_1 355101	-0 002522
C	4.412990	-1.555191	-0.092322
	-4.401203	-2./40001	-0.191251
H	-3.204688	-4.4/3838	-0.599102
H	-5.306837	-0./9/560	0.149814
Ν	-1.846785	1.287382	-0.378430
С	-1.637024	2.606955	-0.335871
С	-3.091970	0.811753	-0.200318
С	-2.659394	3.513278	-0.088222
H	-0.613214	2.915713	-0.521226
С	-4.168919	1.671679	0.043927
С	-3.971333	3.053919	0.115077
Н	-2.425240	4.571768	-0.058888
Н	-5.158693	1.257595	0.177204
Br	0.828580	0.984318	-2.296121
C	-0 188967	-0 364731	1 528250
C	0.10910	-1 627042	2 118844
C	-0.260082	1.027042 0.722770	2.110044
	-0.200002	1 700076	2.403/10
	0.141364	-1./889/6	3.501960
H	0.0/9/14	-2.504134	1.4//906
С	-0.126039	0.588618	3./91/82
H	-0.411229	1.733526	2.001722
С	0.075460	-0.677032	4.346048
Н	0.299657	-2.781107	3.922265
Н	-0.175725	1.463896	4.437528
H	0.181903	-0.795927	5.421975
С	-5.744038	-3.559970	0.028938
С	-6.952988	-2.666577	0.362307
С	-6.064298	-4.356658	-1.257829
С	-5.521777	-4.540813	1.204626
Н	-7.840743	-3.290830	0.509463
н	-6 794960	-2 095772	1 284562
н Н	-7 175510	-1 96313/	-0 1/0/6/
11	-5 256760	-5 0/7100	-1 501050
п	-0.200/09	-5.04/123	-1.021909

Н	-6.976138	-4.948288	-1.115686
Н	-6.222924	-3.682664	-2.107226
Н	-5.285381	-3.999108	2.127177
Н	-6.428803	-5.132056	1.376468
Н	-4.701700	-5.237954	1.004778
С	-5.106094	4.047448	0.395258
С	-6.464143	3.347868	0.588296
С	-4.774857	4.835592	1.684720
С	-5.225791	5.027533	-0.795598
Н	-6.767137	2.792521	-0.306958
Н	-6.448270	2.655886	1.438250
Н	-7.237511	4.097221	0.787973
Н	-5.573934	5.554291	1.900949
Н	-4.679366	4.160690	2.542641
Н	-3.838709	5.395361	1.591466
Н	-6.030108	5.748568	-0.608660
Н	-4.301581	5.592398	-0.954043
Н	-5.455625	4.491157	-1.723102

 VI_{ax}

 B3LYP-D3 SCF energy:
 -4665.96615636 a.u.

 B3LYP-D3 enthalpy:
 -4665.130737 a.u.

 B3LYP-D3 free energy:
 -4665.276909 a.u.

 M06 SCF energy in solution:
 -4667.69545879 a.u.

 M06 enthalpy in solution:
 -4666.860039 a.u.

 M06 free energy in solution:
 -4667.006211 a.u.

ATOM	Х	Y	Z
Ni	1.347734	0.171593	-1.026747
Br	2.162317	-1.189207	-2.863568
С	3.014525	1.148591	-1.174605
С	4.249564	0.818368	-0.615597
С	2.928562	2.232260	-2.057395
С	5.372394	1.609033	-0.883506
Н	4.364472	-0.069228	-0.003429
С	4.052472	3.025332	-2.317068
Н	1.995083	2.454742	-2.567843
С	5.277259	2.721712	-1.721425
Н	6.328137	1.338018	-0.440620
H	3.966748	3.867836	-3.000124
H	6.152808	3.332848	-1.925707
N	0.030526	1.864718	-0.771636
С	0.392294	3.081183	-0.345133
С	-1.272654	1.533356	-0.710934
С	-0.513473	4.010544	0.145608
Н	1.453149	3.295382	-0.390883
С	-2.237292	2.410453	-0.203464
С	-1.872425	3.679454	0.251563
Н	-0.142791	4.974908	0.475716

Н	-3.262887	2.076720	-0.128705
С	-1.593009	0.149914	-1.131098
С	-2.897165	-0.293587	-1.376045
N	-0.534204	-0.681040	-1.214421
C	-3 144398	-1 632465	-1 692391
U U	-3 710233	0 117160	_1 307170
П	-3.710233	1 004200	1 527172
C	-0.750890	-1.964206	-1.535624
C	-2.021808	-2.4/0825	-1./69631
Н	0.131532	-2.584414	-1.600569
Н	-2.121414	-3.524295	-2.005994
С	-4.551607	-2.191840	-1.928698
С	-5.640644	-1.110846	-1.802888
С	-4.626090	-2.802122	-3.347775
С	-4.828405	-3.290993	-0.874860
Н	-5.507208	-0.311229	-2.540599
Н	-6.624610	-1.558931	-1.977010
Н	-5.655362	-0.662144	-0.802650
Н	-4.428562	-2.042067	-4.111797
н	-3 901040	-3 610848	-3 482849
и	-5 625552	-3 215531	-3 525959
и П	-4 114100	_/ 117082	-0 950733
	-4.114100	-4.11/002	-0.950755
п 11	-4.703047	-2.000043	0.141556
H	-5.833837	-3./036/8	-1.01/34/
С	-2.86/99/	4.659964	0.881521
С	-2.431887	4.932712	2.341298
С	-2.861209	5.982421	0.080430
С	-4.304429	4.105883	0.899482
Н	-1.433329	5.378873	2.390630
Н	-3.132856	5.625639	2.821029
Н	-2.414090	4.004307	2.923557
Н	-1.870395	6.447682	0.068426
Н	-3.166692	5.812976	-0.958207
Н	-3.559975	6.697365	0.529968
Н	-4.378522	3.186280	1.491707
Н	-4.976905	4.842628	1.351484
н	-4 673079	3 898251	-0 111719
C	1 732955	-0 256763	0 945508
C	0 789309	0.167753	2 073164
C	1 002/02	_1 770000	0 006716
	1.093403	-1.770900	1 140464
H	2.700258	0.19/391	1.149464
C	-0.50/592	-0.636902	2.094/46
H	1.296554	-0.048977	3.028387
Н	2.463518	-2.151676	0.138881
С	-0.195951	-2.141551	2.093770
Н	-1.096648	-0.397065	1.207160
Н	0.277794	-2.408310	3.046772
0	0.682640	-2.473004	1.010229
0	2.599317	-2.168310	2.223806
0	-1.267466	-0.336548	3.269029
0	0.500968	1.567378	2.026394
С	0.671124	2.246825	3.255517
Н	0.406747	3.293210	3.072801

Н	0.021219	1.841139	4.042376
Н	1.715366	2.202315	3.601925
С	-2.362100	0.527895	3.028157
Н	-3.097382	0.069753	2.344923
Н	-2.845762	0.707637	3.993038
Н	-2.037495	1.483159	2.595469
С	-1.459964	-2.965187	1.933388
Н	-2.203148	-2.600644	2.661260
Н	-1.867037	-2.813184	0.921199
0	-1.164442	-4.328373	2.155128
С	-2.282672	-5.160118	1.953374
Н	-1.966441	-6.186514	2.158758
Н	-3.117584	-4.901807	2.627854
Н	-2.654105	-5.103313	0.915423
С	3.942175	-2.249752	2.193406
0	4.628051	-1.969455	1.232011
С	4.474721	-2.736119	3.523332
Н	4.151266	-2.062442	4.323902
Н	4.068436	-3.728106	3.746439
Н	5.563984	-2.777374	3.486168

 $\mathtt{VI}_{\mathtt{eq}}$

B3LYP-D3 SCF energy:	-4665.99168766 a.u.
B3LYP-D3 enthalpy:	-4665.155612 a.u.
B3LYP-D3 free energy:	-4665.301038 a.u.
M06 SCF energy in soluti	lon: -4667.71494946 a.u.
M06 enthalpy in solutior	n: -4666.878874 a.u.
M06 free energy in solut	-4667.024300 a.u.

ATOM	Х	Y	Z
С	2.890211	0.498988	-0.892757
С	2.137505	-0.207371	0.240914
С	2.874081	-1.489403	0.613016
С	4.995059	-0.669888	-0.079700
С	4.360419	0.667826	-0.472613
H	2.410180	-1.988713	1.462879
H	2.202878	0.432911	1.125908
H	2.835752	-0.084255	-1.816578
H	5.035953	-1.314103	-0.969161
H	4.384312	1.331527	0.398673
0	4.217851	-1.312741	0.939562
0	5.126006	1.217880	-1.544226
0	2.356896	1.806221	-1.107472
0	2.884639	-2.443135	-0.520842
С	6.413941	-0.520218	0.442143
H	7.068378	-0.250013	-0.401564
H	6.747248	-1.490245	0.844935
0	6.459055	0.479255	1.444448
С	1.779719	-3.132484	-0.760566

0	0.756729	-3.010311	-0.091663
С	1.888610	-4.030204	-1.958913
Н	1.255211	-4.908889	-1.819692
Н	1.500535	-3.449599	-2.804577
Н	2.922351	-4.318926	-2.159149
С	7.740175	0.616494	2.017601
Н	8.068780	-0.313368	2.510288
Н	8.498588	0.894187	1.265937
н	7 676134	1 410515	2 766779
C	5 683117	2 489137	-1 253321
U U	6 276457	2 782891	-2 12/701
и П	6 332471	2 116127	-0 367303
и П	1 999165	3 240107	-1 083443
п С	2 207026	2 215700	-1.003443 0 471027
	2.297020	2.213/90	-2.4/123/
H	3.298248	2.230223	-2.916995
H	1.653317	1.544055	-3.048930
H	1.864506	3.221//1	-2.4/1560
Nl	0.166254	-0.622453	-0.014121
Ν	-1.804460	-1.229728	-0.062363
С	-2.183231	-2.512281	-0.127942
С	-2.748890	-0.271306	-0.050975
С	-3.516453	-2.894854	-0.165202
Н	-1.373780	-3.229968	-0.163251
С	-4.110625	-0.593568	-0.088252
С	-4.529836	-1.924444	-0.141122
Н	-3.752330	-3.952186	-0.217814
Н	-4.839922	0.203969	-0.085727
Ν	-0.903761	1.243256	-0.089885
С	-0.369460	2.470413	-0.095754
С	-2.241484	1.120575	-0.024290
С	-1.143461	3.622545	-0.027702
Н	0.711708	2.496312	-0.178490
С	-3.077702	2.240991	0.052299
С	-2.540989	3.530757	0.054912
Н	-0.644133	4.585593	-0.037462
Н	-4.147418	2.099709	0.115999
Br	0.176127	-0.773472	-2.492415
С	0.093608	-0.675194	1.945766
С	-0.118977	-1.898553	2.593635
С	0.150772	0.486970	2.724567
C	-0.279309	-1.955710	3,983006
н	-0.151198	-2 815686	2 016625
C	-0.013020	0 433910	4 112643
ч	0.331314	1 449267	2 254700
C C	-0 230232	_0 789697	2.234700 1 718670
U U	-0.230232	-0.709097 -2.010102	4.740070
	-0.441473	-Z.910192 1 251704	4.404273
л U	-0 353/20 -0 353/20	1.JJ1/U4 _0 82/35/	5 0001 C
п С	-0.333429	-0.034334	-0 100040
C	-0.000119 -6.055404	-2.33/004	-0.142044
C	-6.272022	-I.IZJYJU -2 107021	-U.142044
C	- v. 2/3U33	-J.LZ/031	-1.403/29
C	-0.309//I	-2.7222TO	I.041//3

тт	7 004160	1 470504	0 1 (0 2 0 0
н	-7.994162	-1.4/2584	-0.108399
H	-6.826634	-0.536771	0.772527
Н	-6.807288	-0.465612	-1.005083
Н	-5.658292	-4.031552	-1.545417
H	-7.324585	-3.434794	-1.527943
Н	-6.057486	-2.513842	-2.365249
Н	-6.123438	-2.697844	1.978380
H	-7.361136	-3.545699	1.028018
H	-5.694421	-4.140743	1.045512
С	-3.402505	4.796794	0.141216
С	-4.906720	4.478732	0.225376
С	-2.999955	5.594229	1.404155
С	-3.154968	5.660537	-1.117979
Н	-5.257319	3.933878	-0.658786
H	-5.148509	3.887573	1.116255
Н	-5.476652	5.412192	0.284637
Н	-3.602379	6.507040	1.480418
Н	-3.162317	5.000083	2.310527
Н	-1.946293	5.890433	1.380302
Н	-3.759359	6.574086	-1.071886
Н	-2.105398	5.958475	-1.207806
Н	-3.428587	5.114189	-2.027553

 B3LYP-D3 SCF energy:
 -4665.95865950 a.u.

 B3LYP-D3 enthalpy:
 -4665.124232 a.u.

 B3LYP-D3 free energy:
 -4665.269538 a.u.

 M06 SCF energy in solution:
 -4667.69220043 a.u.

 M06 enthalpy in solution:
 -4666.857773 a.u.

 M06 free energy in solution:
 -4667.003079 a.u.

 Imaginary frequency:
 -255.4017 cm-1

ATOM	Х	Y	Z
Ni	0.318348	0.300925	-1.580525
Br	0.602616	-0.578533	-3.846312
С	1.962312	1.194484	-1.029382
С	2.932525	1.357531	-2.037586
С	1.948825	2.114671	0.037099
С	3.833579	2.422246	-1.987401
Н	2.952761	0.665971	-2.867963
С	2.852001	3.179567	0.081515
H	1.242289	1.990304	0.847817
С	3.806092	3.333541	-0.927462
H	4.563129	2.537278	-2.785408
Н	2.814173	3.879098	0.913841
H	4.518407	4.153763	-0.889614
N	-1.102328	1.609271	-0.687043
С	-0.977309	2.943895	-0.649173
С	-2.279486	1.067652	-0.306618

С	-1.989694	3.786716	-0.211898
н	-0.016237	3,330570	-0.969922
C	-3 336663	1 859348	0 154249
C	-3 213471	3 250077	0 218930
U U	_1 81355/	1 856829	_0 210275
	4 262912	1 270006	-0.210275
н	-4.202012	1.3/9900	0.439439
C	-2.3/9625	-0.404222	-0.459858
С	-3.397543	-1.1/4443	0.108797
Ν	-1.402224	-0.953862	-1.201125
С	-3.425498	-2.557612	-0.081395
Н	-4.135292	-0.695445	0.736929
С	-1.435791	-2.271357	-1.429197
С	-2.414837	-3.099175	-0.893221
Н	-0.646714	-2.643678	-2.076863
Н	-2.375229	-4.162642	-1.103374
С	-4.458121	-3.466866	0.593826
C	-5 532372	-2 667234	1 354245
C	-5 161440	-4 344278	-0 466205
C	-2 707490	_1 261007	1 609015
	-3.707409	-4.301007	1.000913
н	-6.082322	-1.991269	0.000///
H	-6.25/443	-3.358101	1./9/5/6
Н	-5.098698	-2.078530	2.170213
H	-5.693498	-3.726236	-1.198352
Н	-4.455298	-4.978739	-1.011201
Н	-5.890810	-5.003183	0.018892
Н	-2.978054	-5.008679	1.109122
Н	-3.169796	-3.743001	2.334138
Н	-4.416385	-5.005056	2.143593
С	-4.335647	4.168735	0.716190
С	-3.822123	4.969787	1.936267
C	-4.728350	5.145243	-0.417623
C	-5 590214	3 383852	1 141364
с u	-2 953800	5 586686	1 683224
п u	-2.955000	5 626004	2 204402
п	-4.010043	1 200552	2.304402
н	-3.532938	4.298552	2.752665
H	-3.884420	5./68221	-0./30966
Н	-5.089889	4.600324	-1.296798
H	-5.527741	5.812999	-0.076142
H	-5.376319	2.686991	1.959936
Н	-6.356810	4.081803	1.494280
Н	-6.019379	2.818339	0.306253
С	1.635143	-0.761607	-0.315316
С	3.113352	-1.193697	-0.147752
С	0.970832	-0.756519	1.062055
Н	1.171527	-1.545655	-0.920262
С	3.853469	-0.387443	0.920833
н	3.067370	-2.227353	0.241205
H	-0.033664	-0.341262	1.059174
с.	3 043000	-0 301202	2 23144
С Ц	1 013359	0 638377	0 571/75
ц 11	4.UIJJJO 2 1100E/	-1 20606F	0.5/14/5
п	3.110934 1. cco251	-1.390003	2.000340
0	1.060351	-0.053990	2.039/35

0	0.865720	-2.167536	1.454024
0	5.095883	-0.999031	1.246402
0	3.885543	-1.197549	-1.325711
С	3.583776	-2.251486	-2.232218
Н	4.353604	-2.220313	-3.007575
Н	3.625592	-3.229479	-1.725705
Н	2.605226	-2.114441	-2.707032
С	6.207208	-0.492954	0.520508
Н	6.338266	0.587493	0.693412
Н	7.088929	-1.020602	0.896230
Н	6.098845	-0.667772	-0.554446
С	3.603553	0.610853	3.222224
Н	4.698649	0.498100	3.246651
Н	3.366309	1.629599	2.871481
0	3.041205	0.367412	4.495734
С	3.492428	1.281662	5.468300
Н	3.014581	1.011502	6.414275
Н	4.587649	1.239345	5.597166
Н	3.218054	2.319910	5.214787
С	-0.255864	-2.582425	2.086572
0	-1.227505	-1.889125	2.303728
С	-0.141169	-4.048968	2.434346
Н	-0.330066	-4.641702	1.531804
Н	0.865881	-4.286321	2.786192
Н	-0.883701	-4.308108	3.189868

B3LYP-D3 SCF energy:-4665.96204995 a.u.B3LYP-D3 enthalpy:-4665.126893 a.u.B3LYP-D3 free energy:-4665.271607 a.u.M06 SCF energy in solution:-4667.69464459 a.u.M06 enthalpy in solution:-4666.859488 a.u.M06 free energy in solution:-4667.004202 a.u.Imaginary frequency:-289.3533 cm-1

ATOM	Х	Y	Z
С	2.842864	0.749706	-0.489845
С	2.346076	-0.150070	0.662675
С	3.030918	-1.516008	0.569113
С	5.019060	-0.531507	-0.306963
С	4.369241	0.863246	-0.319586
Н	2.724366	-2.182826	1.372773
Н	2.781874	0.283401	1.561235
Н	2.614094	0.299272	-1.459488
Н	4.882176	-0.979402	-1.300749
Н	4.571440	1.359197	0.636473
0	4.421459	-1.379676	0.684269
0	4.954043	1.595327	-1.394801
0	2.237015	2.041704	-0.398280

0	2.780174	-2.158469	-0.704880
С	6.511049	-0.478572	-0.026196
Н	7.016884	-0.041611	-0.901468
н	6 880822	-1 507103	0 111930
\cap	6 756841	0 301520	1 130225
C	1 036035	-3 203525	_0 770405
	1.950055	-3.203525	-0.770495
0	1.296/12	-3.619599	0.180983
C	1.86/846	-3.754692	-2.16/025
H	1.364587	-4.722706	-2.155481
H	1.297664	-3.037387	-2.769051
Н	2.868746	-3.841538	-2.598821
С	8.120744	0.325269	1.490431
Н	8.497467	-0.683225	1.726875
Н	8.749263	0.748727	0.688798
Н	8.209187	0.954372	2.380401
С	5.638286	2.768660	-0.982928
Н	6 088991	3 203197	-1 880082
н	6 426228	2 534697	-0 253694
11 11	1 017760	2.554057	_0 520127
п	4.947760	3.500162	-0.556127
	2.083562	2.082118	-1.672506
Н	3.039029	2./39986	-2.200066
H	1.355236	2.138072	-2.285694
H	1.719495	3.694456	-1.470143
Ni	0.178959	-0.174924	-0.064284
Ν	-1.626814	-1.232582	0.089055
С	-1.746949	-2.565650	0.106472
С	-2.743653	-0.483411	0.035275
С	-2.979142	-3.206227	0.079818
Н	-0.818423	-3.124795	0.134407
С	-4.015941	-1.066132	0.005926
С	-4.163323	-2.455258	0.028141
н	-3 001886	-4 290595	0 094615
и П	-1 888661	-0 /29999	-0 0/1276
П N	1 224107	-0.429999	-0.041270
IN C	-1.224107	1.301/40	-0.005001
	-0.939390	2.008599	-0.025781
C	-2.516057	0.981961	0.000//3
С	-1.917013	3.652980	-0.054204
H	0.116426	2.906301	-0.012068
С	-3.551978	1.924068	-0.020599
С	-3.273842	3.292508	-0.053963
Н	-1.611811	4.693656	-0.074878
Н	-4.576794	1.580670	-0.009359
Br	0.215042	-0.484143	-2.508042
С	0.739282	-0.154108	1.798598
С	0.492624	-1.361064	2 480330
C	0 609816	1 058468	2 511609
C	0 031163	-1 344078	3 799611
ч	0.600110	-2 206071	1 966/97
С	0.022019	1 061252	2 000402
	U.140931	1 007665	J.0234U0
п	0.00150000	1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2.021541
C	-0.152208	-0.138113	4.4//468
H	-0.183195	-2.287450	4.297186

Н	0.036536	2.011672	4.346510	
Н	-0.501256	-0.131462	5.506474	
С	-5.528328	-3.153979	-0.007179	
С	-6.698194	-2.154084	-0.058104	
С	-5.599787	-4.054563	-1.262902	
С	-5.683034	-4.022724	1.263330	
Н	-7.647363	-2.700286	-0.079434	
Н	-6.713365	-1.500365	0.821778	
Н	-6.658509	-1.527010	-0.956254	
Н	-4.817129	-4.819917	-1.260076	
Н	-6.568539	-4.566359	-1.303869	
Н	-5.486110	-3.461185	-2.176965	
Н	-5.631980	-3.406291	2.167983	
Н	-6.652039	-4.535471	1.252539	
Н	-4.901891	-4.786592	1.332418	
С	-4.365444	4.369395	-0.085612	
С	-5.782991	3.768301	-0.078898	
С	-4.213844	5.278197	1.157036	
С	-4.199195	5.215523	-1.369999	
Н	-5.958661	3.131203	-0.953308	
Н	-5.970249	3.177173	0.825032	
Н	-6.523664	4.574763	-0.104389	
Н	-4.984335	6.058018	1.148529	
Н	-4.322778	4.699460	2.081206	
Н	-3.237957	5.773792	1.183313	
Н	-4.969658	5.994486	-1.409046	
Н	-3.222871	5.709321	-1.409426	
Н	-4.296835	4.591490	-2.265303	
3 _{ax}				
B3LYP-D3	SCF energy	: -1113.	61648933 a.u.	
B3LYP-D3	enthalpy:	-1113.	193637 a.u.	
B3LYP-D3	free energy	y: -	1113.291828 a.u.	
M06 SCF	energy in so	olution:	-1113.1705530	6 a.u.
M06 enth	alpy in solu	ution: -	1112.747701 a.u.	
M06 free	e energy in a	solution:	-1112.845892 a	a.u.
Cartesia	an coordinate	es		
ATOM	Х	Y	Z	
С	0.034550	0.025124	-1.574373	
С	-0.115657	-1.198878	-0.624984	
С	1.039235	-1.163314	0.388965	
0	1.104238	0.037377	1.097192	
С	1.245763	1.219265	0.301278	
С	1.208736	2.395109	1.262245	
H	1.482374	3.308394	0.712981	
0	-0.096278	2.507833	1.803802	
С	-0.211879	3.548806	2.750727	
H	-1.249555	3.557283	3.094784	
Н	0.450755	3.387431	3.616112	

Н	0.027362	4.529965	2.308787	
Н	1.947458	2.226514	2.061431	
С	0.177351	1.346557	-0.805794	
H	-0.772673	1.644509	-0.348267	
0	0.669651	2.391815	-1.636949	
C	-0 304949	3 083678	-2 401050	
с ц	0.195252	3 961354	-2 821138	
11 U	-1 1/2/7/	3 122685	-1 771010	
п u	-1.142474	2 464422	-2.214045	
п 11	-0.697459	2.404433	-3.214045	
H 	2.226081	1.210046	-0.195224	
H	0.948318	-1.945825	1.142153	
0	2.260107	-1.372102	-0.361584	
С	3.308740	-1.944465	0.298809	
0	3.253714	-2.358689	1.431748	
С	4.521962	-1.985350	-0.598901	
H	5.338824	-2.492883	-0.084931	
H	4.281504	-2.503692	-1.532603	
Н	4.822024	-0.964995	-0.860553	
Н	0.037892	-2.085558	-1.249399	
0	-0.909204	0.074647	-2.639029	
С	-2.285204	0.310392	-2.353478	
Н	-2.705034	0.784823	-3.246428	
H	-2.823733	-0.621697	-2.155947	
н	-2 439263	0 978651	-1 498757	
ц	0 984371	-0.113581	-2 101063	
II C		-1 366503	0 001202	
C	-2.276624	-1.300393 -2.420751	-0.274100	
C	-2.2/0034	-2.430751	-0.2/4199	
C	-1.884490	-0.508593	1.114609	
C	-3.514925	-2.638949	0.335296	
H	-1.950257	-3.11/529	-1.059125	
С	-3.124516	-0.709493	1.724689	
H	-1.255855	0.306848	1.453183	
С	-3.947186	-1.767737	1.336741	
H	-4.138668	-3.474879	0.029402	
H	-3.444338	-0.032594	2.512826	
H	-4.911560	-1.917601	1.814935	
_				
3 _{eq}	-			
B3LYP-	D3 SCF energy	7: -1113.6	51937161 a.u.	
B3LYP-	D3 enthalpy:	-1113.1	L96793 a.u.	
B3LYP-	D3 free energ	ду: -	1113.294850 a.u	•
M06 SC	F energy in s	solution:	-1113.17707	265 a.u.
M06 en	thalpy in sol	ution: -	1112.754494 a.u	•
M06 fr	ee energy in	solution:	-1112.85255	51 a.u.
Cartes	ian coordinat	- A S		

ATOM	Х	Y	Z
С	0.300040	-1.040044	0.603581
С	-0.522721	-0.426181	-0.547090
С	-0.227387	1.082235	-0.632897

0	1.131530	1.347723	-0.785626
С	1.968873	0.826148	0.254515
С	3.401362	1.197682	-0.087694
Н	4.035325	0.975145	0.784067
0	3.822739	0.456813	-1.217607
С	5.152398	0.745504	-1.591727
Н	5.385833	0.123559	-2.460271
Н	5.278332	1.805165	-1.868041
Н	5.865287	0.513115	-0.782854
Н	3.448946	2.279822	-0.290305
С	1.786969	-0.692357	0.430409
Н	2.197074	-1.189890	-0.458469
0	2.539664	-1.028657	1.587252
C	3,072977	-2.343822	1,597390
н	3 710555	-2 413951	2 483553
н	3 688345	-2 530706	0 703146
н Ц	2 282627	-3 100140	1 657494
и П	1 712160	1 3095/9	1 207812
и П	_0 727017	1 5/2/53	_1 /0/530
	-0.727917	1 607026	-1.404550
C	-U.727JIJ 1 462501	1.007920	0.300033
	-1.462501	2.031912	0.4/15//
C	-1.090070	2 240020	-0.570001
	-1.962331	3.249020	1.0320/3
H	-2.433659	4.229974	1./64835
H	-2.693/08	2.511908	2.182917
H	-1.140153	3.26/526	2.554262
0	0.0/5493	-2.436348	0./861/8
С	0.166050	-3.255958	-0.368258
H	0.120359	-4.287941	-0.010632
Η	-0.672345	-3.087903	-1.057882
Η	1.110379	-3.118685	-0.914939
H	-0.013148	-0.600187	1.554999
H	-0.136689	-0.825875	-1.493292
С	-2.012589	-0.701739	-0.481798
С	-2.715125	-0.974629	-1.662364
С	-2.727688	-0.644799	0.722331
С	-4.095260	-1.182721	-1.647674
Н	-2.174109	-1.020940	-2.605506
С	-4.106276	-0.854745	0.741753
Н	-2.204978	-0.438773	1.650107
С	-4.796001	-1.122998	-0.442817
Н	-4.619917	-1.391630	-2.576193
Н	-4.643163	-0.811877	1.685916
Н	-5.870110	-1.286776	-0.425420

TS6' B3LYP-D3 SCF energy: -4665.94574998 a.u. B3LYP-D3 enthalpy: -4665.112399 a.u. B3LYP-D3 free energy: -4665.257771 a.u. M06 SCF energy in solution: -4667.68188280 a.u.

M06 en	thalpy in sol	ution: -	-4666.848532 a.u.	
M06 fr	ee energy in	solution:	-4666.993904	a.u.
Imagin	ary frequency	-8.	9738 cm-1	
Cartes	ian coordinat	es		
ATOM	Х	Y	Z	
С	-2.567136	0.997059	0.137382	
С	-1.089713	0.898392	0.240785	
С	-0.476563	1.652354	1.370073	
С	-1.883746	3.409156	0.640000	
С	-2.911841	2.505659	-0.086386	
Н	-0.305516	1.068944	2.277250	
Н	-0.519945	0.771587	-0.668343	
Н	-2.917220	0.395584	-0.708626	
Н	-1.116183	3.673315	-0.100715	
Н	-3.918825	2.695395	0.310442	
0	-1.258062	2.749051	1.751020	
0	-2.834918	2.895782	-1.448257	
0	-3.158144	0.537694	1.357214	
0	0.827119	2.130818	0.888390	
С	-2.495062	4.699903	1.151406	
Н	-2.832808	5.285545	0.278810	
Н	-1.723084	5.282811	1.680321	
0	-3.578046	4.408064	2.009765	
С	1.863003	2.163987	1.747837	
0	1.857802	1.701710	2.870592	
С	3.047066	2.859630	1.113064	
Н	3.959819	2.610694	1.657926	
Н	3.133530	2.582221	0.059735	
Н	2.890453	3.943411	1.160762	
С	-4.206212	5.566692	2.510432	
Н	-3.513495	6.182454	3.107900	
Н	-4.614229	6.195412	1.700636	
Н	-5.028073	5.236643	3.151593	
С	-3.854063	2.365058	-2.283028	
Н	-4.852697	2.515803	-1.842909	
Н	-3.705794	1.296605	-2.488247	
Н	-3.797736	2.912872	-3.227845	
С	-4.523428	0.178633	1.222472	
Н	-5.150774	1.028173	0.914386	
Н	-4.651408	-0.640513	0.499859	
Н	-4.855373	-0.158213	2.208238	
Ni	-0.530892	-1.874051	-1.170208	
Br	-2.005409	-1.294219	-2.879886	
C	-1.831552	-3.051062	-0.478899	
C	-2.640970	-2.692259	0.610605	
C	-1.958421	-4.345526	-1.003886	
C	-3.544143	-3.606173	1.166053	
н	-2.552295	-1.698934	1.041459	
 C	-2.853958	-5.263743	-0.444518	
н	-1.363141	-4.636080	-1.866549	
C	-3.652109	-4.896795	0.642181	
-			· · · · · · ·	

Н	-4.163044	-3.306206	2.009951
Н	-2.933395	-6.264676	-0.864293
Н	-4.353224	-5.607960	1.072551
Ν	0.696822	-2.067821	0.360174
С	0.445916	-2.735821	1.500199
С	1.808745	-1.288285	0.322009
С	1.233402	-2.612723	2.636341
Н	-0.437235	-3.359635	1.489271
С	2.629719	-1.117955	1.436841
С	2.346768	-1.760881	2.644922
Н	0.947071	-3.170007	3.521326
Н	3.471769	-0.444268	1.368117
С	2.049157	-0.616885	-0.969669
С	3.216503	0.086862	-1.279613
Ν	1.035674	-0.738390	-1.852336
С	3.357965	0.716230	-2.519731
Н	4.012730	0.131913	-0.549663
С	1.155000	-0.142378	-3.048173
С	2.279674	0.587064	-3.409864
Н	0.298611	-0.261685	-3.703589
Н	2.304567	1.048511	-4.390955
С	4.603788	1.519168	-2.913039
С	5.689031	1.492276	-1.820660
С	5.203326	0.926450	-4.209920
С	4.188442	2.989454	-3.158565
Н	6.030634	0.471890	-1.612073
Н	6.557911	2.069744	-2.153464
Н	5.338925	1.939134	-0.883235
Н	5.497416	-0.118910	-4.063701
Н	4.494801	0.963918	-5.043332
Н	6.093574	1.494206	-4.503967
Н	3.443699	3.073923	-3.956420
Н	3.761361	3.434303	-2.252458
Н	5.062751	3.582724	-3.450344
С	3.165182	-1.549189	3.921492
С	2.227359	-0.974362	5.011454
С	3.742846	-2.906705	4.384378
С	4.325464	-0.558426	3.712832
Н	1.408639	-1.662688	5.247077
Н	2.794221	-0.803075	5.934173
Н	1.798609	-0.023141	4.683156
Н	2.955085	-3.640006	4.586662
Н	4.412106	-3.330121	3.626374
Н	4.316424	-2.771116	5.308485
Н	3.950225	0.430319	3.430263
Н	4.882901	-0.449464	4.649374
Н	5.031871	-0.910900	2.951017

TS7' B3LYP-D3 SCF energy: -4665.93929367 a.u. B3LYP-D3 enthalpy: -4665.105439 a.u. B3LYP-D3 free energy: -4665.250259 a.u. M06 SCF energy in solution: -4667.66982194 a.u. M06 enthalpy in solution: -4666.835967 a.u. M06 free energy in solution: -4666.980787 a.u. Imaginary frequency: -84.0036 cm-1 Cartesian coordinates ATOM Х Y Ζ -1.122602 С 2.439816 1.453676 С 0.401108 1.656643 -0.381283 С 0.995704 1.011414 0.832658 С 3.247615 1.836924 1.291937 С 3.638752 -0.209770 1.845289 Η 2.085513 -0.284200 -0.590858 Ο 1.838118 1.518589 1.927596 Ni -0.200876 -1.405210 -1.342774Br 1.378097 -1.793306 -3.083781 С -0.035069 -3.126395 -0.545013 С -0.062256 -3.235517 0.856286 С -0.009571 -4.309829 -1.298736 С -0.059529 -4.484000 1.484903 Η -0.095384 -2.335574 1.462786 С -0.021745 -5.561086 -0.671921 Η 0.033299 -4.252693 -2.381317 С -0.041405 -5.653108 0.721640 Η -0.060923 -4.539542 2.571552 Η -0.008107-6.465019 -1.277658Η -0.037935 -6.625946 1.207635 Ν -2.003975 -1.047782 -0.517574 С -2.834583 -1.963795 0.007408 С -4.090351 -1.640253 0.505037 Η -2.454349 -2.976371 0.033990 С -3.685341 0.620972 -0.104652 С -4.550623 -0.314962 0.468886 Η -4.700067 -2.435162 0.920133 Η -3.976058 1.658641 -0.191138 С -1.472483 1.174907 -1.194052С -1.535492 2.556151 -1.0097400.584017 Ν -0.450014-1.847278С -0.504124 3.376344 -1.474104 Η -2.323817 2.967570 -0.398180 С 1.370020 -2.408716 0.481214 С -2.243922 0.489245 2.749680 Η 1.254714 0.839799 -2.954214 Η 1.310400 3.317387 -2.667675 С -0.365118 4.839934 -1.049000С -1.593004 5.336632 -0.263120 С -0.155604 5.746395 -2.280705 С 0.870631 4.911734 -0.113288 Η 5.267152 -0.859244 -2.511259 Η -1.452238 6.389310 0.004526

Н	-1.727155	4.772073	0.665443
Н	-1.020512	5.704416	-2.952746
Н	0.732968	5.465277	-2.855494
Н	-0.024271	6.785901	-1.959623
Н	1.790267	4.639399	-0.643604
н	0 750139	4 230687	0 736468
н	0 991829	5 932433	0 268279
II C	-5 025010	0 052829	1 035803
C	-5.925919	0.032029	1.03095
C	-3.970879	-0.330079	2.052200
C	-7.015046	-0.727198	0.262446
С	-6.221820	1.559136	0.918161
Н	-5.809277	-1.411482	2.679921
H	-6.950327	-0.087632	2.954860
H	-5.205139	0.199416	3.101807
Н	-6.880392	-1.810207	0.349286
Н	-7.000535	-0.469394	-0.802417
Н	-8.005887	-0.480359	0.660680
Н	-5.486823	2.161956	1.464181
Н	-7.207055	1.773442	1.345282
Н	-6.236821	1.891479	-0.126164
С	3.820672	2.057646	0.640697
Н	3.475840	1.611237	-0.308331
Н	3.454909	3.097130	0.671368
0	5 229266	2 003549	0 736181
0	4 074479	-0 621759	3 129209
0	2 877/33	-2 /3//03	1 195573
0	_0 125696	0 271024	1 772710
0	-0.123000	1 547625	1.773710
H	0.648566	1.54/635	0.202303
H	3.651135	1./44384	2.746719
H	4.442962	-0.359300	1.111642
H	1.825336	-1.20346/	2.35/422
С	5.882566	2.612190	-0.358141
H	5.627865	3.681601	-0.440805
Н	6.957995	2.515368	-0.187532
Н	5.625010	2.119302	-1.309837
С	5.459267	-0.419634	3.342080
Н	5.668118	-0.710482	4.375372
Н	6.063123	-1.043479	2.664213
Н	5.755598	0.630283	3.193996
С	3.435846	-2.689207	-0.084867
Н	4.269332	-2.007471	-0.320721
Н	3.824690	-3.709637	-0.043281
Н	2.685749	-2.624467	-0.876935
C	-1.023381	1.289898	2,191172
0	-1 005065	2 465191	1 887410
C	-2 058/82	2.700101 0 635120	3 075103
С Ц	-2 156321	-0 262460	2 502255
11 TI	-2.4JUJZ4 _1 507061	-0.202400	Z.JJJJJJ
п	-1.00/U01	U.JZJ0Z0 1 JA2E00	4.UI4Z/I 2.204024
н	-2.001599	1.343523	3.284034
C	-2.432750	0.233/14	-0.586001

VI_{ax}' B3LYP-D3 SCF energy: -4665.97123855 a.u. B3LYP-D3 enthalpy: -4665.135425 a.u. B3LYP-D3 free energy: -4665.281277 a.u. M06 SCF energy in solution: -4667.69280440 a.u. M06 enthalpy in solution: -4666.856991 a.u. M06 free energy in solution: -4667.002843 a.u. Cartesian coordinates ATOM Υ Ζ Х С 2.905350 0.384575 -0.821338 С 1.436290 -0.437057 0.316142 С 1.018610 0.456876 1.469816 С 2.368742 -0.902443 2.882084 С 3.144103 -1.570186 1.722421 Η 0.901015 1.507573 1.216695 Η 0.904987 -1.387988 0.423503 Η 3.104521 -1.505625 -0.444707 Η 1.494151 -1.533239 3.092585 -1.550400 Η 4.222079 1.933090 Ο 1.907498 0.418452 2.549794 0 2.673209 -2.915813 1.671511 Ο 3.805839 0.277544 0.334404 Ο -0.291634 -0.036608 1.915980 С 3.192357 -0.798126 4.167532 Η 3.279405 -1.805183 4.590488 Η 2.637870 -0.1637254.879348 Ο 4.519295 -0.342750 4.011733 С -1.160599 0.843498 2.456906 0 -1.009548 2.046664 2.487494 С -2.359688 0.108299 3.015632 Η -3.149743 0.821006 3.257038 Η -2.717327 -0.637077 2.299092 Η -2.062695 -0.426113 3.924994 С 4.642715 1.013705 3.592070 Η 4.360401 1.138454 2.541794 Η 1.679748 4.210739 4.021663 Η 5.695891 1.279373 3.725120 С 3.540282 -3.808694 0.995622 Η 4.544338 -3.813309 1.448444 Η 3.640006 -3.570704 -0.073378 -4.806191 Η 3.102080 1.091386 С 4.720864 0.220496 -0.751103 Η 5.418150 -0.625266 -0.640873 Η 4.195749 0.133193 -1.7098371.155309 Η 5.287293 -0.732715 Ni 0.688701 0.061370 -1.456229 Br 1.865306 -1.430353 -3.056719 С 1.810100 1.601729 -1.733772 С 2.371133 2.501027 -0.821594 С 1.716068 1.980100 -3.083271

С	2.807813	3.762356	-1.243874
Н	2,504290	2,227945	0.215218
C	2.140029	3.248095	-3.499710
н	1 317473	1 290926	-3 821376
C	2 685927	1 1/5/97	-2 580776
U U	2.0000027	4.143457	-0 516644
н	3.242362	4.44401/	-0.516644
H	2.051977	3.521661	-4.548/42
Н	3.023118	5.126917	-2.904770
N	-1.023082	1.344521	-1.044420
С	-1.004336	2.682173	-0.959113
С	-2.125157	0.692169	-0.622141
С	-2.049889	3.417241	-0.418182
Н	-0.104824	3.165177	-1.319789
С	-3.212105	1.373565	-0.065944
C	-3.185165	2 763477	0.078597
с н	-1 949898	4 494900	-0 356116
п п	-4 062006	0 810794	0.202527
	-4.002000	0.010/94	0.292527
C	-2.0/0984	-0.783950	-0./48158
С	-3.144232	-1.618910	-0.416532
Ν	-0.901753	-1.285760	-1.192379
С	-3.026810	-3.008223	-0.514112
Н	-4.072202	-1.176409	-0.083136
С	-0.775843	-2.615548	-1.308477
С	-1.796393	-3.496785	-0.979110
Н	0.183603	-2.950783	-1.688484
н	-1.619335	-4.560904	-1.089615
C	-4.157771	-3.971552	-0.136264
C	-5 /18100	-3 233831	0 351785
C	1 522570	1 020211	1 272762
	-4.555579	-4.020211	-1.3/3/62
0	-3.663086	-4.899055	0.999198
Н	-5.831/99	-2.5//09/	-0.422251
H	-6.192160	-3.963306	0.612279
H	-5.217632	-2.633239	1.246870
Н	-4.883653	-4.183910	-2.194276
Н	-3.684271	-5.405465	-1.740318
Н	-5.336623	-5.520838	-1.117449
Н	-2.791873	-5.487829	0.695139
Н	-3.384075	-4.318642	1.885886
н	-4.457250	-5.598901	1.283768
C	-4 291339	3 553022	0 784044
C	-3 660346	1 287102	1 003300
C	-3.000340	4.207192	1.995500
C	-4.8966//	4.581398	-0.198819
С	-5.421741	2.643178	1.298613
H	-2.938782	5.044980	1.671634
Н	-4.441815	4.794162	2.571434
Н	-3.127245	3.586116	2.643158
Н	-4.139612	5.274581	-0.579554
Н	-5.359616	4.081672	-1.057589
Н	-5.666965	5.174406	0.307629
Н	-5.054966	1.915314	2.031684
н	-6.184986	3.252218	1.794139
н	-5 913276	2 098782	0 483547
**	0.010210	2.070702	0.10004/

TS8' B3LYP-D3 SCF energy: -4665.96162304 a.u. B3LYP-D3 enthalpy: -4665.125919 a.u. B3LYP-D3 free energy: -4665.269730 a.u. M06 SCF energy in solution: -4667.68907074 a.u. M06 enthalpy in solution: -4666.853367 a.u. M06 free energy in solution: -4666.997178 a.u. -266.9539 cm-1 Imaginary frequency: Cartesian coordinates ATOM Υ Х Ζ С -3.211908 0.123765 0.178331 С -1.727175 -0.136491 0.172750 С -1.295326-0.484652 1.592933 С -2.600085 1.409646 2.266604 С -3.427550 1.466643 0.959936 Η -1.271104 -1.546207 1.814837 -1.256977 Η 0.826241 -0.065809 Η -3.487186 0.374174 -0.917460 Η -1.735072 2.074156 2.134215 Η -4.495996 1.555603 1.200863 Ο -2.126825 0.086106 2.557976 0 -2.979136 2.636876 0.286303 Ο -3.986815 -0.886567 0.660336 Ο 0.049125 0.066316 1.804632 С -3.388382 1.895198 3.484217 Η -3.507274 3.392419 2.980449 Η -2.796411 4.389503 1.680414 Ο -4.699105 1.382274 3.603122 С 1.037707 -0.732142 2.252576 Ο 1.015932 -1.947076 2.241941 С 2.181272 0.098550 2.790904 Η 3.068153 -0.526555 2.903747 Η 2.387915 0.946459 2.133184 Η 1.893173 0.499509 3.769543 С -4.774417 -0.007167 3.910213 Η -4.459737 -0.627138 3.064769 Η -4.150285 -0.255683 4.782743 Η -5.822234 -0.209706 4.151814 С -3.786301 3.048531 -0.810850 3.049949 Η -4.853953 -0.541100 Η -3.624929 2.420100 -1.695192 Η -3.482457 4.071571 -1.051014 С -5.299364 -0.961241 0.137365 Η -5.875067 -0.041424 0.321589 Η -5.285799 -1.162528 -0.943456 Η -5.793541 -1.792287 0.646992 Ni -0.522263 -0.466811 -1.537896 Br -1.746229 0.821132 -3.260400

С	-1 697286	-1 924892	-0 935728
C	-2 770050	-2 160776	_1 004622
C	-2.770950	-2.109770	-1.004033
C	-1.2208/9	-2.993978	-0.155010
С	-3.325526	-3.447479	-1.921501
Η	-3.166064	-1.361000	-2.413099
С	-1.776000	-4.271036	-0.271407
Н	-0.402453	-2.843574	0.540489
C	-2 831634	-1 505426	-1 1533/9
	4 144500	-1.000420	1.100040
H	-4.144520	-3.613253	-2.01/010
Н	-1.380863	-5.080105	0.338888
H	-3.267687	-5.497419	-1.238475
Ν	1.470297	-1.367865	-1.155557
С	1.690125	-2.688331	-1.154132
C	2 433183	-0 557033	-0 669677
C	2.000765	2 260226	0 507090
	2.020703	-3.209320	-0.397080
Н	0.895963	-3.294559	-1.5/5329
С	3.590473	-1.078912	-0.080992
С	3.789520	-2.458849	0.010633
Н	2.908974	-4.349992	-0.597681
Н	4.314113	-0.401199	0.348376
С	2.164995	0.905368	-0.754137
C	3 096433	1 879309	-0 369153
N	0 052012	1 2/1620	-1 210706
	0.952012	1.241020	-1.219790
C	2./6/58/	3.23/681	-0.429/34
Н	4.0/5120	1.5/5436	-0.024/2/
С	0.623089	2.534492	-1.300003
С	1.486788	3.551972	-0.910253
Н	-0.368785	2.730343	-1.696620
Н	1.153779	4.581247	-0.988870
С	3.730591	4.349625	0.005457
C	5 080813	3 797627	0 498599
C	3 001682	5 280858	_1 103059
C	2.070002	J.2090J0	-1.193930
C	3.079882	5.149910	1.138633
Н	5.603683	3.238/06	-0.286088
H	5.729009	4.627646	0.799184
H	4.959553	3.142714	1.369511
Н	4.452166	4.743764	-2.026517
Н	3.072404	5.751289	-1.560916
Н	4.676448	6.095278	-0.896881
н	2 133074	5 607104	0 854164
и П	2 878961	1 502475	2 019885
11	2.070901	F 0F2C41	2.019009
H	3./50/32	5.953641	1.483/33
С	4.950665	-3.084/94	0./88406
С	4.341376	-3.909637	1.950030
С	5.770238	-4.008466	-0.140548
С	5.896109	-2.025381	1.383467
Н	3.754383	-4.755223	1.577204
Н	5.139061	-4.309034	2.587241
Н	3.673636	-3.292131	2.560661
 Н	5 1551 <i>GN</i>	-4 204262	-0 571619
ц	6 2157/0	-2 //1517	-0 065070
	0.210/40	-3.44101/	-0.900972
н	6.58068/	-4.4836/5	0.424054

С

-4.496241

Н	5.378433	-1.372192	2.095751
Н	6.708196	-2.521703	1.925056
Н	6.351042	-1.400364	0.606025

TS10 -4665.96134125 a.u. B3LYP-D3 SCF energy: B3LYP-D3 enthalpy: -4665.126621 a.u. B3LYP-D3 free energy: -4665.271330 a.u. -4667.68621262 a.u. M06 SCF energy in solution: -4666.851492 a.u. M06 enthalpy in solution: -4666.996201 a.u. M06 free energy in solution: Imaginary frequency: -57.4217 cm-1 Cartesian coordinates ATOM Х Υ Ζ Ni 1.153567 0.187145 -1.242018 Br 2.629771 -1.579252 -1.839872 С 2.586828 1.433088 -1.411641 С 3.417702 1.914824 -0.390785С 2.756382 1.957088 -2.705319 С 2.904485 4.374393 -0.653817 Η 3.337428 1.523195 0.616805 С 3.708799 2.946775 -2.968967 Η 2.142320 1.583550 -3.523131 С 4.522393 3.427542 -1.939586 Η 5.007371 3.261700 0.156474 Η 3.819460 3.334984 -3.979673 Η 5.266754 4.194485 -2.140308 -0.273583 Ν 1.632180 -1.164148 С -0.045214 2.943068 -0.968337С -1.5342231.173026 -0.992152 С -1.030868 3.817360 -0.532726 Η 0.974649 3.265872 -1.137225 С -2.564613 2.000918 -0.542659 С -2.327036 3.346970 -0.264158 Η -0.764827 4.856037 -0.368564 Η -3.526905 1.560978 -0.332236 С -1.707848 -0.276555 -1.213965С -2.955547 -0.898357 -1.295347 Ν -0.553168 -0.974201 -1.302882 С -3.048985 -2.283955 -1.457416 Η -3.847546 -0.291070 -1.236568 С -0.627016 -2.304000 -1.450505 С -1.835557 -2.983606 -1.527779 Η 0.328916 -2.810723-1.514860-1.814837 Η -4.061905 -1.641099 С -4.388154 -3.023996 -1.561018 С -5.592605 -2.068034 -1.481652 С -4.444232 -3.774265 -2.912745

-4.040221

-0.400185

Н	-5.587709	-1.338998	-2.300149
Н	-6.522189	-2.642186	-1.557422
Н	-5.617178	-1.523221	-0.530859
н	-4.360686	-3.075271	-3.752438
н	-3 638416	-4 509402	-3 005331
и П	-5 3968/5	-1 308595	-3 005732
11	2 672560	4.300333	0 111070
п	-3.6/3366	-4.762700	-0.4110/0
H 	-4.48412/	-3.527850	0.56/832
H	-5.435122	-4.600569	-0.4/8302
С	-3.384921	4.261061	0.361943
С	-2.847836	4.763296	1.724208
С	-3.646687	5.464139	-0.571839
С	-4.712002	3.521260	0.614667
Н	-1.919479	5.333168	1.614748
Н	-3.587717	5.415775	2.202175
Н	-2.651420	3,919243	2.394886
н	-2.737835	6.048619	-0.749833
н	-4 028776	5 130173	-1 543115
и П	-/ 391088	6 132/51	_0 123738
п 11	4.591000	0.132431	1 205177
п	-4.370746	2.000003	1.2001//
H	-5.428809	4.204665	1.082640
Н	-5.161331	3.162867	-0.319042
С	0.920694	0.496635	1.411398
С	-0.209254	-0.366967	1.869986
Н	0.700879	1.545323	1.243838
С	0.243609	-1.796221	2.238718
Н	-0.992207	-0.409887	1.120690
С	2.623004	-0.965301	2.284232
С	1.672751	-2.048914	1.757147
Н	0.225812	-1.900376	3.334996
н	2 730816	-1.073099	3.370480
н	1 685902	-2 026762	0 661724
0	2 109365	0 366249	2 056260
0	_0 012100	0.300249	2.030200
0	-0.012109	0.236496	3.0/0141
0	-0.581068	-2.787030	1.645067
0	2.160860	-3.288613	2.241329
С	-1.881150	-2.874449	2.201707
Н	-2.361540	-3.739183	1.738253
H	-1.839874	-3.027540	3.291673
Н	-2.484224	-1.979498	1.991664
С	2.091140	-4.345090	1.289538
Н	2.614702	-4.076491	0.360706
Н	2.583362	-5.207840	1.747453
Н	1.050556	-4.598327	1.053660
С	3,992410	-1.049972	1,627094
H	4.384261	-2.070876	1.758975
 H	3 884825	-0 857854	0 551644
0	A 836/1/	-0 093121	2 210263
C C	000414 6 0351 <i>16</i>	0.093424	1 515001
	0.033140	0.100201	1.010201
н	0.624595	U.84142/	2.0630/5
H	6.620250	-0.831301	1.435981
H	5.834645	0.477096	0.500884

С	-2.073672	0.710673	3.009466
С	-2.446460	1.441029	4.279764
Н	-1.890637	2.384370	4.328993
Н	-3.517635	1.647730	4.283402
Н	-2.166746	0.852361	5.158184
0	-2.818742	0.570804	2.054055

 B3LYP-D3 SCF energy:
 -4665.95427677 a.u.

 B3LYP-D3 enthalpy:
 -4665.119584 a.u.

 B3LYP-D3 free energy:
 -4665.263747 a.u.

 M06 SCF energy in solution:
 -4667.68209178 a.u.

 M06 enthalpy in solution:
 -4666.847399 a.u.

 M06 free energy in solution:
 -4666.991562 a.u.

 Imaginary frequency:
 -63.6638 cm-1

Cartesian coordinates ATOM X Y

ATOM	Х	Y	Z
Ni	1.846193	0.482317	-0.799280
Br	3.633840	-0.749032	-1.777654
С	3.137061	1.704686	-0.090684
С	3.934626	1.485190	1.042288
С	3.346979	2.890933	-0.814640
С	4.861208	2.441430	1.469939
Н	3.865619	0.548813	1.589111
С	4.275485	3.850057	-0.394242
Н	2.781263	3.071264	-1.728018
С	5.030815	3.631930	0.759247
Н	5.460963	2.245967	2.356541
Н	4.413365	4.760316	-0.974923
Н	5.754190	4.372816	1.091229
N	0.245540	1.788437	-0.805211
С	0.217579	3.028019	-0.294635
С	-0.892536	1.294415	-1.339248
С	-0.919011	3.825068	-0.316848
Н	1.146798	3.370513	0.143305
С	-2.057280	2.062922	-1.435720
С	-2.101590	3.357196	-0.911126
Н	-0.868339	4.810556	0.132964
Н	-2.930986	1.631670	-1.904409
С	-0.839232	-0.143832	-1.689848
С	-1.982803	-0.917457	-1.904168
Ν	0.388777	-0.697791	-1.629298
С	-1.881437	-2.299386	-2.084695
Н	-2.953646	-0.447125	-1.845888
С	0.515699	-2.002607	-1.911690
С	-0.580233	-2.821516	-2.155957
Н	1.534009	-2.373751	-1.891523
Н	-0.409683	-3.878091	-2.331431
С	-3.103766	-3.222246	-2.112033

С	-4.413241	-2.450283	-1.865773
C	-3 182082	-3 940343	-3 477081
C	-2 945073	-1 260953	-0 973269
	2.545075	1 706402	0.575205
н	-4.606063	-1.706403	-2.040020
H	-5.255813	-3.1499/3	-1.866436
H	-4.393814	-1.945////	-0.892784
Н	-3.312780	-3.221124	-4.293745
Н	-2.276477	-4.521545	-3.681384
Н	-4.033315	-4.630871	-3.490228
Н	-2.087239	-4.920161	-1.140032
н	-2.809043	-3.759833	-0.008972
н	-3 839786	-4 892144	-0 918895
C	-3 364033	1.002111	_0 930910
C	-3.304033	4.220177	-0.930910
C	-3./04242	4.51/9/5	0.529925
С	-3.05//63	5.5554/6	-1.65946/
С	-4.538840	3.535062	-1.646890
Н	-3.002015	5.050647	1.080399
Н	-4.686605	5.140057	0.543849
Н	-4.000855	3.588011	1.067976
Н	-2.257646	6.116904	-1.166695
н	-2 752833	5 372879	-2 695935
н	-3 951315	6 190068	-1 672648
и П	_1 020067	2 603260	-1 147527
п 11	-4.029007	2.005200	-1.14/J2/
н	-5.41189/	4.196069	-1.64141/
Н	-4.301651	3.309556	-2.692963
С	0.989066	-0.103724	1.597154
С	0.852011	-1.587704	1.884844
Н	1.906368	0.344884	1.951138
С	-1.394709	0.213262	1.713005
С	-0.529366	-2.146599	1.536227
Н	1.030166	-1.758523	2.957131
C	-1 614718	-1 245600	2 120414
с ц	-1 564514	0 272213	0 637596
п	-1.504514	0.272213	0.037390
H	-0.644886	-2.10/233	0.44/21/
H	-1.595469	-1.324408	3.213129
0	-0.073258	0.674419	2.004903
0	1.825795	-2.358107	1.150426
0	-0.766937	-3.440091	2.072863
0	-2.893309	-1.615975	1.606750
С	-0.126412	-4.525001	1.416854
Н	-0.150051	-4.405089	0.325552
Н	0.918571	-4.634279	1.727758
н	-0 682161	-5 427159	1 690442
C	-3 700107	-2 336595	2 530359
с и	-2 01/226	-1 729607	2.000000
п	-3.914330	-1.720007	2.421423
п	-4.0303/0	-2.302003	2.010104
н	-3.214282	-3.2/0910	2.833520
C	-2.3/5404	1.16/336	2.372005
Н	-3.370976	1.004063	1.927661
Н	-2.060428	2.198488	2.145325
0	-2.407831	0.939275	3.765176
С	-3.249693	1.844969	4.444954

Н	-3.214906	1.585363	5.506183
Н	-2.911478	2.886583	4.320222
Н	-4.293040	1.775910	4.092842
С	3.093846	-2.365756	1.648460
0	3.430417	-1.703840	2.606480
С	3.979448	-3.284147	0.853102
Н	3.469406	-4.228140	0.638152
Н	4.202759	-2.790665	-0.099262
Н	4.903716	-3.461227	1.404680

α-III'
B3LYP-D3 SCF energy: -4665.96908661 a.u.
B3LYP-D3 enthalpy: -4665.133379 a.u.
B3LYP-D3 free energy: -4665.281230 a.u.
M06 SCF energy in solution: -4667.69627013 a.u.
M06 enthalpy in solution: -4666.860563 a.u.
M06 free energy in solution: -4667.002049 a.u.

Cartesia	an coordinat	tes	
ATOM	Х	Y	Z
Ni	1.343597	0.571118	-0.648774
Br	1.974936	-0.050160	-2.969342
С	2.583942	2.080724	-0.694447
С	3.728351	2.238820	0.096249
С	2.321847	3.055261	-1.671186
С	4.585434	3.332817	-0.079189
Н	3.980310	1.517007	0.867117
С	3.159276	4.162326	-1.831732
Н	1.476581	2.928521	-2.340767
С	4.299142	4.305061	-1.036344
Н	5.473452	3.420539	0.543108
Н	2.929562	4.902548	-2.595521
Н	4.958195	5.159699	-1.167595
Ν	-0.535824	1.534460	-0.849641
С	-0.782753	2.818909	-0.570616
С	-1.578548	0.697344	-0.997362
С	-2.069939	3.325006	-0.444357
Н	0.093030	3.444027	-0.436943
С	-2.901608	1.136896	-0.878289
С	-3.179126	2.477042	-0.593451
Н	-2.195612	4.376238	-0.209399
Н	-3.703000	0.416038	-0.968076
С	-1.216770	-0.725290	-1.193141
С	-2.100659	-1.680904	-1.702409
Ν	0.037262	-1.045686	-0.819655
С	-1.709754	-3.017125	-1.822215
Н	-3.083808	-1.363894	-2.023197
С	0.435037	-2.318676	-0.948634
С	-0.399923	-3.321203	-1.417435
Н	1.461687	-2.511775	-0.666303

Н	-0.013393	-4.332061	-1.484062
С	-2.628330	-4.113754	-2.372205
С	-4.018358	-3.574178	-2.755874
С	-1.976082	-4.730112	-3.632509
C	-2 807709	-5 206468	-1 291728
с н	-3 956725	-2 814556	-3 543515
11	1 627275	2.014000	2.343313
п	-4.63/3/3	-4.393470	-3.130332
H	-4.538/93	-3.140670	-1.893//8
H	-1.82/80/	-3.9/0685	-4.40/96/
H	-1.001840	-5.17/135	-3.410373
H	-2.620521	-5.517564	-4.040374
H	-1.853227	-5.662440	-1.009671
Н	-3.263639	-4.791897	-0.385524
Н	-3.459165	-6.002962	-1.669553
С	-4.602666	3.016120	-0.408316
С	-4.744313	3.567945	1.030504
С	-4.850037	4.153008	-1.427365
C	-5.672075	1.928911	-0.620181
ч	-4 034872	4 377764	1 228625
и П	-5 755/3/	3 962623	1 183722
	- 5.755454	2 7702023	1 771140
п	-4.500955	2.779203	1 205502
H	-4.145429	4.980302	-1.295502
H	-4./51038	3.786444	-2.455230
H	-5.862586	4.553956	-1.303080
H	-5.570922	1.111631	0.103353
H	-6.668526	2.363452	-0.487615
Н	-5.627600	1.506147	-1.630512
С	1.330310	0.761829	1.379443
С	2.041969	-0.510726	1.895436
Н	1.925805	1.637214	1.618373
С	-0.795801	-0.043805	2.229230
С	1.137419	-1.609980	2,486392
H	2.793327	-0.254900	2.646547
C	-0 110676	-1 041627	3 161857
с ц	-1 063692	-0 566450	1 30/016
п u	-1.003092	-0.00400	1 6704910
п 11	0.793340	-2.201915	1.070400
H	0.1/1904	-0.518816	4.083165
0	0.081692	1.0386/0	1.959105
0	2./48652	-1.072567	0./42013
0	1.801593	-2.386279	3.470830
0	-1.035416	-2.086923	3.425287
С	2.788446	-3.283711	2.988229
Н	2.425690	-3.848877	2.114982
Н	3.718323	-2.767293	2.721775
Н	2.997201	-3.985565	3.800617
С	-1.057125	-2.517984	4.778318
Н	-1.351107	-1.695918	5.448137
н	-1.805320	-3.313947	4.840936
H	-0.080649	-2.908263	5,087749
C	-2 07/200	0 531376	2 812705
	2.014203 -2 026006	-0 262500	2.013/03
л IJ	-2.030000	-0.202399	2.03/200
н	-2.426882	1.33/382	∠.⊥49806

0	-1.827042	1.023246	4.115711
С	-2.964615	1.622683	4.692796
Н	-2.681065	1.963360	5.692279
Н	-3.310084	2.490461	4.105637
Н	-3.803292	0.911262	4.781716
С	4.116414	-1.075034	0.718751
0	4.798124	-0.735425	1.659941
С	4.607619	-1.559423	-0.616897
Н	4.294298	-2.598678	-0.769947
Н	4.152038	-0.965137	-1.417825
Н	5.695614	-1.493417	-0.648668

B-TTT'

B-TTT.				
B3LYP-D)3 SCF energy	y: -4665.9	7126077 a.u.	
B3LYP-D	3 enthalpy:	-4665.1	35348 a.u.	
B3LYP-D	3 free energ	gy: -	1665.279165 a.u.	
M06 SCE	r energy in s	solution:	-4667.69207973	a.u.
M06 ent	halpy in sol	lution: -	4666.856167 a.u.	
M06 fre	e energy in	solution:	-4667.006349 a	.u.
Cartesi	.an coordinat	tes		
ATOM	Х	Y	Z	
Ni	1.170271	0.180113	-0.893086	
Br	2.561117	-1.473880	-2.058918	
С	2.493959	1.547269	-1.269009	
С	3.565289	2.015332	-0.510061	
С	2.302883	2.044840	-2.566577	
С	4.429510	2.982689	-1.040158	
Н	3.740190	1.635367	0.489178	
С	3.163105	3.016094	-3.089605	
Н	1.489897	1.671389	-3.186025	
С	4.232016	3.489053	-2.325158	
Н	5.262675	3.335973	-0.436125	
Н	3.001113	3.389469	-4.098546	
Н	4.906342	4.239068	-2.731126	
N	-0.561896	1.485175	-1.192465	
С	-0.520133	2.822987	-1.103003	
С	-1.744686	0.873275	-0.989436	
С	-1.630059	3.591882	-0.780114	
Н	0.452207	3.270021	-1.279801	
С	-2.898787	1.585054	-0.651345	
С	-2.861603	2.972932	-0.511876	
H	-1.514399	4.667739	-0.704171	
Н	-3.799803	1.037618	-0.417054	
С	-1.708532	-0.605994	-1.045648	
С	-2.863726	-1.381586	-1.181664	
N	-0.482971	-1.161482	-0.934291	
С	-2.788589	-2.777334	-1.182918	
Н	-3.815442	-0.882628	-1.301331	
С	-0.397105	-2.498496	-0.955267	

С	-1.504586	-3.326858	-1.066932
н	0.606135	-2.900174	-0.899892
Н	-1.349808	-4.400094	-1.060064
C	-4 019577	-3 683047	-1 300495
C	-5 326205	-2 880903	-1 //13/6
C	-3 865190	-1 592301	-2 5/2176
	-3.803190	-4.592501	-2.342170
C	-4.116036	-4.556197	-0.026769
Н	-5.325586	-2.25/8/3	-2.343130
Н	-6.1/3/60	-3.570337	-1.517491
H	-5.503173	-2.235338	-0.573248
Η	-3.785914	-3.995030	-3.457343
Н	-2.975390	-5.226364	-2.476281
Н	-4.737651	-5.249179	-2.636484
Н	-3.224208	-5.175912	0.111320
Н	-4.235255	-3.931930	0.866205
Н	-4.982305	-5.224580	-0.093609
С	-4.059162	3.792366	-0.021138
С	-3.670234	4,452238	1.324507
C	-4 405287	4 879688	-1 063159
C	-5 303086	2 917178	0 217961
С и	-2 017/12	5 120520	1 212214
п	-2.01/413	J.130JZ9 E 02E4E0	1.213214
H	-4.513140	5.035459	1./13005
н	-3.406684	3.682553	2.056/55
Н	-3.565162	5.558935	-1.241604
H	-4.685310	4.430016	-2.022705
H	-5.250031	5.481868	-0.709242
Η	-5.115507	2.161410	0.988515
Н	-6.132046	3.545318	0.561501
Н	-5.629463	2.413167	-0.699579
С	1.167025	0.775839	1.068922
С	0.018726	0.114105	1.827485
Н	0.982249	1.848853	1.004388
С	0.386625	-1.285724	2.376881
н	-0.879685	0.051764	1.225823
C	2.816636	-0.665564	2.131028
C	1 757161	-1 744896	1 873879
с ц	0 112536	-1 222560	3 474524
и П	3 0/1280	-0 650537	3 204784
	1 600050	1 024027	0 705107
н	1.099000	-1.934937	0.795197
0	2.351883	0.65118/	1.804984
0	-0.290948	0.9840//	2.9/3336
0	-0.557784	-2.278299	2.000127
0	2.185262	-2.913207	2.555688
С	-1.807299	-2.181298	2.662624
Н	-2.410157	-3.023438	2.312326
Н	-1.686127	-2.254877	3.755051
H	-2.331819	-1.244943	2.427491
С	1.933602	-4.123066	1.855573
Н	2.435120	-4.126950	0.875215
Н	2.348145	-4.928866	2.468006
Н	0.859292	-4.287734	1.711082
С	4.099122	-0.955215	1.363485

Н	4.416089	-1.989966	1.571801
Н	3.903816	-0.863555	0.287192
0	5.085951	-0.029429	1.784636
С	6.208679	-0.020794	0.925181
Н	6.918860	0.705244	1.331982
Н	6.696354	-1.008813	0.879818
Н	5.929989	0.280196	-0.096289
С	-1.519944	1.513488	3.073995
С	-1.588109	2.496841	4.219597
Н	-1.198061	3.462582	3.876658
Н	-2.626669	2.626597	4.528888
Н	-0.971021	2.167739	5.059046
0	-2.454638	1.262075	2.331697

 B3LYP-D3 SCF energy:
 -4665.93827986 a.u.

 B3LYP-D3 enthalpy:
 -4665.103855 a.u.

 B3LYP-D3 free energy:
 -4665.250109 a.u.

 M06 SCF energy in solution:
 -4667.66840433 a.u.

 M06 enthalpy in solution:
 -4666.833979 a.u.

 M06 free energy in solution:
 -4666.980233 a.u.

 Imaginary frequency:
 -264.2011 cm-1

ATOM	Х	Y	Z
Ni	-0.950428	-0.550636	-1.053814
Br	-2.615403	0.669245	-2.422014
С	-1.918990	-2.203304	-0.484109
С	-1.222704	-3.417918	-0.319857
С	-3.261962	-2.265077	-0.889723
С	-1.790601	-4.631962	-0.704515
Н	-0.245820	-3.409190	0.155230
С	-3.831015	-3.479737	-1.274848
Н	-3.848989	-1.358036	-0.927623
С	-3.095932	-4.665918	-1.204225
Н	-1.224195	-5.553386	-0.586224
Н	-4.860538	-3.496267	-1.624023
Н	-3.546772	-5.610023	-1.498734
Ν	1.079524	-1.336950	-1.299704
С	1.417922	-2.608261	-1.547939
С	2.049683	-0.503525	-0.868314
С	2.670153	-3.133178	-1.258432
Н	0.631380	-3.229056	-1.960637
С	3.315376	-0.973409	-0.506364
С	3.639963	-2.324025	-0.649828
Η	2.857806	-4.181756	-1.461820
H	4.032032	-0.282693	-0.084134
С	1.683276	0.935281	-0.862129
С	2.621267	1.958930	-0.687412
Ν	0.388728	1.191156	-1.127306

С	2.239640	3.298457	-0.808284
н	3.651340	1.703841	-0.479674
C	0.023641	2.466411	-1.298924
C	0 902135	3 532092	-1 154864
С Ц	-1 016232	2 608188	-1 572980
11 11	0 520027	Z.000100 A 520020	-1 206097
п	0.J20037	4.556956	-1.300087
C	3.209411	4.469436	-0.609974
C	4.606198	4.003263	-0.160238
С	3.351259	5.235111	-1.946566
С	2.642057	5.420227	0.470460
H	5.086378	3.367365	-0.912788
Н	5.252987	4.873498	-0.005517
Н	4.563679	3.449003	0.784911
Н	3.750985	4.582520	-2.730809
Н	2.389096	5.626081	-2.292923
Н	4.035040	6.083487	-1.824884
н	1.664444	5.823458	0.188670
н	2 525258	4 902711	1 429220
и П	3 321051	6 266986	0 620204
п С	1 040006	0.200900	0.020204
C	4.940000	-2.929003	-0.135291
C	4.582881	-3.96/4/6	0.955033
C	5.702343	-3.623/99	-1.291923
С	5.877195	-1.872067	0.489082
H	4.010800	-4.802526	0.537465
Н	5.493452	-4.376000	1.409137
Н	3.969376	-3.505774	1.736110
Н	5.103013	-4.413787	-1.755667
Н	5.973453	-2.903752	-2.072481
Н	6.623953	-4.083603	-0.916549
Н	5.409574	-1.380066	1.349660
н	6.795594	-2.352633	0.842844
н	6 165691	-1 102810	-0 236977
C	-1 607787	-1 059670	1 160800
C	_0 /25965	_0 227204	1 721227
	-0.433603	-0.227294	1 (00717
H	-1.481268	-2.038/12	1.602/1/
C	-0./99440	1.221110	2.099393
H	0.427403	-0.245428	1.077468
С	-3.217177	0.744532	1.678322
С	-2.058547	1.700701	1.379218
Н	-1.019561	1.248194	3.177981
Н	-3.503420	0.883459	2.729423
Н	-1.891504	1.735569	0.298060
0	-2.865653	-0.641428	1.549794
0	-0.006104	-0.854544	2.992077
0	0.258347	2.124953	1.811806
0	-2.457455	2.969155	1.878518
C	1 406810	1 950925	2 618662
ч	2 078068	2 782531	2 200002
ц П	2.070000 1 155274	1 966215	2.590995
п 11	1 020706	1 010441	2 205275
п	1.932/06	1.010441	2.3953/5
C	-2.036994	4.077212	1.098175
Н	-2.430988	4.015509	0.071967

Н	-2.449649	4.967893	1.580765
Н	-0.944434	4.152652	1.059081
С	-4.427951	1.042968	0.808753
Н	-4.659340	2.117679	0.893055
Н	-4.186095	0.824588	-0.239378
0	-5.510311	0.255440	1.269379
С	-6.620970	0.318834	0.402169
Н	-7.400653	-0.319543	0.827947
Н	-7.013156	1.346285	0.309505
Н	-6.371004	-0.044014	-0.608055
С	0.905020	-1.844536	2.905599
С	1.222966	-2.398048	4.274243
Н	1.503089	-1.588895	4.955779
Н	0.330490	-2.879340	4.688643
Н	2.030929	-3.126620	4.196226
0	1.396318	-2.235858	1.863529

TS13 B3LYP-D3 SCF energy: -4665.94397615 a.u. B3LYP-D3 enthalpy: -4665.109509 a.u. B3LYP-D3 free energy: -4665.254836 a.u. M06 SCF energy in solution: -4667.67738643 a.u. M06 enthalpy in solution: -4666.842919 a.u. M06 free energy in solution: -4666.988246 a.u. Imaginary frequency: -263.5454 cm-1

ATOM	Х	Y	Z
Ni	-1.248156	0.013838	-0.900529
Br	-1.753634	1.269425	-2.983735
С	-2.736693	-1.289548	-0.761878
С	-3.917239	-0.853093	-1.404255
С	-2.481760	-2.671906	-0.731840
С	-4.730597	-1.753480	-2.084021
Н	-4.169253	0.199381	-1.417529
С	-3.295833	-3.573874	-1.421943
H	-1.660830	-3.045031	-0.129832
С	-4.420886	-3.119148	-2.109784
H	-5.611313	-1.384956	-2.604106
H	-3.059372	-4.635682	-1.399189
H	-5.062764	-3.817975	-2.639348
N	0.479921	-1.150671	-1.286576
С	0.505713	-2.419433	-1.718804
С	1.657022	-0.568508	-0.964152
С	1.663754	-3.183243	-1.761063
H	-0.452010	-2.823610	-2.024499
С	2.854554	-1.293636	-0.945950
С	2.882783	-2.636829	-1.327021
Н	1.600640	-4.205995	-2.116540
Н	3.758565	-0.800114	-0.616965

С	1.585503	0.882894	-0.682038
C	2 714944	1 711801	-0 656004
N	0 3/1966	1 373643	-0 535551
N C	0.541000	1.575045 2.0004E4	-0.JJJJJI
C	2.579074	3.090434	-0.405172
H	3.693699	1.2/4416	-0./96/93
С	0.192490	2.701723	-0.423651
С	1.264742	3.578829	-0.382673
Н	-0.831281	3.042798	-0.346044
Н	1.067962	4.640061	-0.275159
С	3.771867	4.051179	-0.422771
С	5.120397	3.319954	-0.554152
C	3 657260	5 079290	-1 572693
C	3 745931	4 788232	0 937545
	5 210274	2 002052	_1 516450
п	5.210374	2.002933	-1.510450
H 	5.938930	4.045048	-0.492419
Н	5.265841	2.587937	0.248824
Н	3.664720	4.578765	-2.547211
Η	2.736114	5.666814	-1.504716
Н	4.502229	5.776983	-1.538251
Н	2.825433	5.366173	1.069947
Н	3.820879	4.078201	1.769063
Н	4.589878	5.484709	1.004388
С	4.151606	-3.495680	-1.283180
C	3 914190	-4 677580	-0 312913
C	A AA9933	-4 038948	-2 700238
C	5 378610	-2 703456	_0 705070
	2 0770010	-5 206272	-0 625562
п	3.077000	-5.506272	-0.635565
H	4.808/08	-5.309227	-0.262563
H	3.693605	-4.315353	0.69/8/3
H	3.630198	-4.654581	-3.084044
H	4.614708	-3.218552	-3.407579
Н	5.352535	-4.660640	-2.680701
Н	5.237064	-2.317537	0.220144
Н	6.256042	-3.358688	-0.780451
Н	5.607761	-1.860924	-1.458648
С	-2.418880	-0.666545	1.134588
С	-2.244257	0.721888	1.802680
Н	-3.472633	-0.899733	1.219821
C	-0.367184	-1 421952	2 089079
C	-0 876079	0 999440	2 438922
с ц	-2 994082	0.797199	2.430922
	2.))4002	0.240690	2.550022
	-0.201302	-0.249669	3.004001 1 150700
H 	0.142779	-1.161821	1.152/80
Н	-0.181322	1.333969	1.668821
Н	-0.801888	-0.516755	3.980006
0	-1.744810	-1.670958	1.819696
0	-2.509145	1.786255	0.859791
0	-0.988573	1.985436	3.461519
0	1.116161	-0.019391	3.330875
С	-0.775467	3.318291	3.026588
Н	0.212712	3.433714	2.555277
Н	-1.541565	3.647456	2.312508

Н	-0.821728	3.949810	3.918286
С	1.405199	0.231597	4.698534
Н	1.141623	-0.635853	5.321735
Н	2.483458	0.405399	4.765197
Н	0.868730	1.116098	5.062697
С	0.263687	-2.695045	2.622259
Н	1.357498	-2.564902	2.618289
Н	0.010483	-3.527087	1.944466
0	-0.203432	-2.948367	3.931534
С	0.327586	-4.134379	4.480315
Н	-0.082276	-4.235887	5.488708
Н	0.043653	-5.020281	3.888864
Н	1.428470	-4.098908	4.542672
С	-3.819661	2.036672	0.553565
0	-4.737241	1.411882	1.034022
С	-3.912223	3.137375	-0.465609
Н	-3.369213	4.024100	-0.121346
Н	-3.433671	2.792800	-1.393165
Н	-4.959682	3.382700	-0.644333

α-3'

B3LYP-D3 SCF energy: -1	.113.61228513 a.u.
B3LYP-D3 enthalpy: -1	.113.189715 a.u.
B3LYP-D3 free energy:	-1113.288271 a.u.
M06 SCF energy in solution	n: -1113.16758330 a.u.
M06 enthalpy in solution:	-1112.745013 a.u.
M06 free energy in solutio	on: -1112.843569 a.u.

Cartesian coordinates Y ATOM Х Ζ 0.227956 -1.264154 0.604760 С С 1.615674 -0.656513 0.387489 С 1.513046 0.811557 -0.050513 С 2.864842 1.427204 -0.366744 Η 3.421968 1.553791 0.575497 0 3.579907 0.591260 -1.258464 С 4.815655 1.148517 -1.654142 -2.186927 4.679136 2.103426 Η Η 5.479825 1.325982 -0.791673 Η 5.291704 0.431060 -2.327763 2.422988 -0.809664 Η 2.703092 Η 1.072413 1.394450 0.772949 0 0.693235 0.909632 -1.219112 С -0.665004 0.503919 -1.000810 С -0.638225 -0.992734 -0.620737 Η -0.216939 -1.529157 -1.475425 Ο -1.952943 -1.525958 -0.355953 С -2.732076 -1.805685 -1.429940 Ο -2.394701 -1.617307 -2.577441 С -4.061345 -2.361699 -0.980327

Н	-3.907229	-3.226796	-0.328055
Н	-4.651060	-2.644835	-1.852634
Н	-4.598065	-1.602740	-0.400462
Н	2.108375	-1.220422	-0.411935
0	2.357770	-0.740003	1.601251
С	3.580802	-1.453695	1.479146
Н	3.402396	-2.509049	1.227923
Н	4.077331	-1.395878	2.452094
Н	4.227586	-1.010268	0.710154
Н	-0.225403	-0.800239	1.491154
0	0.335115	-2.670801	0.775388
С	0.238019	-3.101400	2.123124
Н	-0.753336	-2.874820	2.546405
Н	0.377185	-4.186354	2.115983
Н	1.007931	-2.638404	2.752966
Н	-1.127298	0.571170	-1.989975
С	-1.386416	1.478981	-0.066534
С	-1.168573	2.846564	-0.300099
С	-2.249243	1.111102	0.973557
С	-1.788252	3.817779	0.482292
Н	-0.491204	3.137741	-1.097656
С	-2.872388	2.086022	1.758835
Н	-2.448428	0.065600	1.171724
С	-2.645736	3.439983	1.519148
Н	-1.602762	4.870202	0.283352
Н	-3.535824	1.778700	2.563282
Н	-3.130877	4.194796	2.132293

β-3**'**

-1113.61610584 a.u.
-1113.194102 a.u.
-1113.292941 a.u.
on: -1113.17502107 a.u.
n: -1112.753017 a.u.
-1112.851856 a.u.

ATOM	Х	Y	Z
С	-0.935977	1.454844	0.313649
С	-2.066043	0.439317	0.142402
С	-1.771773	-0.837806	0.945917
С	-2.828776	-1.911637	0.749716
Н	-3.759865	-1.583359	1.238490
0	-3.039511	-2.123772	-0.634381
С	-3.954456	-3.168848	-0.891971
Н	-3.594286	-4.131391	-0.494651
Н	-4.945121	-2.962550	-0.453700
Н	-4.055373	-3.247748	-1.977607
Н	-2.485981	-2.837141	1.238991
Н	-1.758507	-0.577536	2.019317

0	-0.511115	-1.382224	0.565643
С	0.583246	-0.508234	0.819549
С	0.400209	0.790326	0.002131
Н	0.464884	0.566371	-1.064979
0	1.452768	1.698118	0.366850
С	2.357916	2.039594	-0.592741
0	2.314255	1.669545	-1.741244
С	3.432914	2.913062	0.006948
Η	2.994647	3.692308	0.636745
Н	4.030141	3.354863	-0.791454
Н	4.077022	2.292589	0.640497
Н	-2.126617	0.171003	-0.917789
0	-3.291171	1.007166	0.596778
С	-4.308833	1.046421	-0.395251
Н	-4.025539	1.703464	-1.229724
Η	-5.204355	1.446855	0.088532
Η	-4.521542	0.043193	-0.788492
Η	-0.923614	1.799920	1.359612
0	-1.107192	2.552188	-0.569659
С	-1.676604	3.704616	0.031076
Η	-1.021428	4.110820	0.817861
Η	-1.778660	4.451256	-0.761564
Н	-2.661761	3.492268	0.464164
Η	0.600299	-0.231096	1.887979
С	1.872718	-1.207008	0.458367
С	3.052583	-0.897170	1.143194
С	1.915471	-2.112106	-0.607541
С	4.263523	-1.478942	0.764744
Η	3.021202	-0.194819	1.972524
С	3.124053	-2.700006	-0.979913
Н	0.996332	-2.354039	-1.131194
С	4.301400	-2.382763	-0.298495
Η	5.174176	-1.231746	1.304287
Η	3.147659	-3.404335	-1.807277
Н	5.242593	-2.839271	-0.593144

References

- (1) Still, W. C.; Kahn, M.; Mitra, A., Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution. J. Org. Chem. **1978**, 43, 2923-2925.
- (2) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I., NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics* 2010, 29, 2176-2179.
- (3) Ayers, B. J.; Hollinshead, J.; Saville, A. W.; Nakagawa, S.; Adachi, I.; Kato, A.; Izumori, K.; Bartholomew, B.; Fleet, G. W. J.; Nash, R. J., Iteamine, the First Alkaloid Isolated from Itea Virginica L. Inflorescence. *Phytochemistry* **2014**, *100*, 126-131.
- (4) Adelhorst, K.; Whitesides, G. M., Large-Scale Synthesis of B-L-Fucopyranosyl Phosphate and the Preparation of Gdp-B-L-Fucose. *Carbohydr. Res.* **1993**, *242*, 69-76.
- (5) Li, L.; Franckowiak, E. A.; Xu, Y.; McClain, E.; Du, W., Efficient Synthesis of β-(1,6)-Linked Oligosaccharides through Microwave-Assisted Glycosylation. J. Polym. Sci. A Polym. Chem. 2013, 51, 3693-3699.
- (6) Gouliaras, C.; Lee, D.; Chan, L.; Taylor, M. S., Regioselective Activation of Glycosyl Acceptors by a Diarylborinic Acid-Derived Catalyst. *J. Am. Chem. Soc.* **2011**, *133*, 13926-13929.
- (7) Fürstner, A.; Radkowski, K.; Grabowski, J.; Wirtz, C.; Mynott, R., Ring-Closing Alkyne Metathesis. Application to the Total Synthesis of Sophorolipid Lactone. *J. Org. Chem.* **2000**, *65*, 8758-8762.
- (8) Lichtenthaler, F. W.; Köhler, B., An Expedient Route to Acylated Glucosyl Halides with a Free 2-Oh Group. *Carbohydr. Res.* **1994**, *258*, 77-85.
- (9) Yuan, X.; Cheng, S.; Shi, Y.; Xue, W., Photocatalytic Synthesis of Glycosyl Bromides. *Synthesis* **2014**, *46*, 331-335.
- (10) Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2016**.
- (11) (a) Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phy. Rev. B* 1988, *37*, 785; (b) Becke, A. D., Density-Functional Thermochemistry. Iii. The Role of Exact Exchange. *J. Chem. Phys.* 1993, *98*, 5648-5652.
- (12) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* **2010**, *132*, 154104.
- (13) Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Use of Solution-Phase Vibrational Frequencies in Continuum Models for the Free Energy of Solvation. *J. Phys. Chem. B* **2011**, *115*, 14556-14562.
- (14) Funes-Ardoiz, I.; Paton, R. S., Goodvibes: Version 2.0.3. **2018**.
- (15) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* **2009**, *113*, 6378-6396.
- (16) Zhao, Y.; Truhlar, D. G., The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. *Theor. Chem. Acc.* 2008, 120, 215-241.
- (17) (a) Grimme, S., Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations. J. Chem. Theory Comput. 2019, 15, 2847-2862; (b) Pracht, P.; Bohle, F.; Grimme, S., Automated Exploration of the Low-Energy Chemical Space with Fast Quantum Chemical Methods. Phys. Chem. Chem. Phys. 2020, 22, 7169-7192.
- (18) (a) Grimme, S.; Bannwarth, C.; Shushkov, P., A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All Spd-Block Elements (Z= 1–86). *J. Chem. Theory Comput.* 2017, *13*, 1989-2009; (b) Bannwarth, C.; Ehlert, S.; Grimme, S., Gfn2-Xtb—an Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. *J. Chem. Theory Comput.* 2019, *15*, 1652-1671.
- (19) Glendening, E.; Reed, A.; Carpenter, J.; Weinhold, F., Nbo, Version 3.1; Tci, University of Wisconsin: Madison, Wi, **1998**.
- (20) Legault, C. Y., CYLview20, Université De Sherbrooke, 2020.