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Characteristic Number of Patients Percent of Patients

Primary malignancy

B-cell Acute Lymphoblastic Leukemia 70 98.6% [91.3-99.9]
Hodgkin Lymphoma 1 1.4% [0.1-8.7]
Age

0-1 1 1.4% [0.1-8.7]
2-10 31 43.7% [32.1-55.9]
11-17 23 32.4% [22.0-44.7]
> 18 16 22.5% [13.8-34.3]
Sex

Female 34 47.9% [36.0-60.0]
Male 37 52.1% [40.0-64.0]
Duration of B-cell Aplasia

< 6 months 27 38.0% [27.0-50.4]
> 6 months 33 46.5% [34.7-58.6]
Censored before 6 months 11 15.5% [8.4-26.5]

Supplementary Table S1. Clinical characteristics of 71 children and young adults enrolled
to receive anti-CD19 CAR T-cell therapy. T-cells from 71 patients were acquired by apheresis
with the intent to manufacture and deliver anti-CD19 CAR T-cell therapy. Mean values and 95%
confidence intervals are shown.

Supplementary Table S2. Differentially expressed genes between T-cell subtypes and
clinical CAR T-cell persistence groups. Differential expression analysis was performed on
RNA-Seq data with Limma. The first sheet contains genes ranked by p-value from the ANOVA
model with the null hypothesis of equal expression across the five T-cell subsets. Subsequent
sheets show the output of a mixed effects model including T-cell subtype and clinical CAR T-
cell persistence group. Sheets 2-10 consist of comparisons between T-cell subsets, and sheets 11-
19 consist of comparisons between patients with long (> 6 month) vs short (< 6 month) CAR T-
cell persistence.

Supplementary Table S3. Gene sets for the TCF7 regulon and interferon response. For each
gene set, three annotations are provided: the Ensembl gene id, the Entrez gene id, and HGNC

symbol based on annotation from Ensembl version 94.

Supplementary Table S4. Primers for 3C-qPCR and RT-qPCR.
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Supplemental Figure S1. T-cell subtypes associate with clinical response.

(A) Representative flow cytometry plot for sorting T-cell subpopulations. (B) Association of
relative T-cell proportion with clinical CAR T-cell persistence, as assessed by duration of B-cell
aplasia (BCA). Patients were median-dichotomized based on proportions of each T-cell subset,
or summed proportions of T-cell subsets. (C) Association between proportion of Tn, Tscm, Tem,
Tem and Trerr at time of leukapheresis with long-term CAR T-cell persistence. P-values were
computed using the log-rank test.
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Supplementary Figure S2. Deconvolution of CD4*/CD8" T cell proportions. (A) Assessment
of robustness in CIBERSORTX estimates of CD4 and CDS8 proportion based on a bulk (LM22)
and single-cell (10X) reference, with and without the B-mode parameter. The lower diagonal
contains Pearson correlation coefficients. (B) Association with annotated T-cell subsets in the
LM22 reference set with Tx, Tscm, Tem, Tem, and Terr populations. (C) Relative proportions of
CD8" and CD4" T-cells estimated by CIBERSORTx compared across T-cell subtypes (ANOVA
P <2.2¢-16). (D) Association between the proportion of CD8* T-cells and CAR T-cell
persistence. Patients were dichotomized into those with long-term CAR T-cell persistence (> 6
months, n=33) and those with failed CAR T-cell persistence (< 6 months, n=27). Among Ty and
Tscw, greater proportions of CD8* T-cells associate with longer CAR T-cell persistence;
conversely, greater proportions of CD4" T-cells among Tx and Tscwm associate with shorter CAR
T-cell persistence. P-values were computed using the Wilcoxon rank-sum test, and multiple
testing correction was performed using the Benjamini-Hochberg procedure. (E) Expression of
CDS8 genes in T, Tscm, and Tem populations compared between patients with long-term (> 6
month) vs failed (< 6 month) CAR T-cell persistence.
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Supplemental Figure S3. T-cell subtypes differ in activation and proliferation pathways,
metabolic reprogramming, and apoptotic pathways.

(A) Single-sample Gene Set Enrichment Analysis on representative pathways associated with T-
cell subtype, and differential expression of Ki-67. (B) Single-sample Gene Set Enrichment
Analysis and differential gene expression for key markers of aerobic glycolysis and biosynthetic
pathways. Pairwise statistical significance was assessed through Welch’s t-test. (C) Single-
sample Gene Set Enrichment Analysis on intrinsic and extrinsic apoptotic signaling pathways
associated with T-cell subtype. Pairwise statistical significance was assessed through Welch’s
t-test. (D) Heatmap of z-score normalized single-sample gene set enrichment scores of top
significantly differentially activated pathways between T-cell subsets. Shown are the gene sets
from Fig. 1D that were in the Gene Ontology Biological Pathways database. Asterisks show
FDR-corrected p-values. ***: p <0.001; **: p<0.01; *: 0.05, n.s.: p > 0.05.
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Supplemental Figure S4. Expression of inhibitory receptors, cytotoxic enzymes, and
cytokines across T-cell subtypes and between clinical CAR T-cell persistence groups. (A)
Expression of selected cytokines and genes involved in cytotoxicity. (B) Expression of the
inhibitory receptors LAG-3, TIM-3, PD-1, CTLA-4, and CD160 differed between T-cell subsets
and were highly expressed among Tem and Terr, but did not differ not between patients with
long-term (> 6 month) vs failed (< 6 month) CAR T-cell persistence. Pairwise statistical
significance between T-cell subtypes was assessed through Welch’s t-test. Pairwise statistical
significance between clinical CAR T-cell persistence groups was assessed through the Limma
mixed-effects model. ***: p <0.001; **: p <0.01; *: 0.01, n.s.: p>0.05.
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Supplemental Figure S5. T-cell specific network analysis captures key transcriptional
regulators of T-cell subset. (A) Validation of the T-cell network construction method. Network
construction was performed using a compendium of non-T-cell immune populations in Becht et
al. (green boxes), as well as with our T-cell RNA-Seq data (yellow boxes). The distribution of
TF node degrees was compared between the null population (light-colored boxes) and a set of
benchmark TFs consisting of a set of known T-cell transcriptional regulators in Chang et al.
(dark-colored boxes). Pairwise comparisons were performed with the Wilcoxon rank-sum test.
(B-F) Expression of predicted key regulators of T-cell state: TCF7, LEF1, PRDM1, TBX21, and
ZEB?2. Pairwise statistical significance was assessed with Welch’s t-test.
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Supplementary Figure S6. Interferon response genes are up-regulated in patients with poor
CAR T-cell persistence across T-cell subtypes. (A) Single-sample Gene Set Enrichment
Analysis comparing the enrichment score of the Gene Ontology Type I Interferon response
pathway across T-cell subtypes. P-values were computed using Welch’s t-test. (B) Volcano plots
showing differentially expressed genes in patients with long-term vs short-term CAR T-cell
persistence using gene expression data from specific T-cell subsets.
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Supplementary Figure S7. Interferon response genes are up-regulated among patients with
poor CAR T-cell persistence in naive and early memory T-cells, and IRF7 is the top
predicted transcriptional regulator in these subsets. (A) Volcano plot showing differentially
expressed genes in patients with long-term vs short-term CAR T-cell persistence using gene
expression data from Tn, Tscm, and Tewm subsets. (B) Enriched pathways among differentially
expressed genes between patients with long-term vs short-term CAR T-cell persistence (FDR <
0.25). (C) Top 20 predicted key transcription factors (TFs) associated with the long-term vs
short-term persistence ranked by normalized regulatory potential (FDR < 0.05). (D)
Transcriptional regulatory network of top 10 predicted key TFs from (E) and top 50 target DEGs.
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(E) and top 50 target DEGs.

Supplementary
Figure S8. Network analysis of Terr alone highlights TCF7 as a regulator of long CAR T-
cell persistence. (A) Volcano plot showing differentially expressed genes in patients with long-
term vs short-term CAR T-cell persistence using gene expression data from the Tgrr subset. (B)
Volcano plot showing differentially expressed transcription factors in patients with long-term vs
short-term CAR T-cell persistence using gene expression data from the Terr subset. TCF7 was
the most significantly up-regulated transcription factor among patients with long-term CAR T-
cell persistence (FDR=0.0015). (C) Differential expression of TCF7 between patients with long-
term (> 6 month) vs short-term (< 6 month) CAR T-cell persistence. Statistical significance was
assessed with the FDR-adjusted P-value from the Limma mixed-effects interaction model. (D)
Enriched pathways among differentially expressed genes between patients with long-term vs
short-term CAR T-cell persistence (FDR < 0.25). (E) Top 20 predicted key transcription factors
(TFs) associated with the long-term vs short-term persistence ranked by normalized regulatory
potential (FDR < 0.05). (F) Transcriptional regulatory network of top 10 predicted key TFs from
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Supplementary Figure S9. Internal validation of prognostic gene signatures. (A) Association
of the TCF7 network score with T-cell subset, and with (B) clinical CAR T-cell persistence in
Terr. Pairwise comparisons were assessed for significance with Welch’s t-test. (C) Receiver-
operating characteristic (ROC) curves to validate the TCF7 regulon gene signature using leave-
one-patient out and (D) leave-one-T-cell-type-out cross-validation. Each curve represents the
performance of this gene signature when evaluated on left-out samples. (E) Association of the
interferon response gene signature with T-cell subsets. Pairwise comparisons were assessed for
significance with Welch’s t-test. (F) Receiver-operating characteristic (ROC) curves to validate
of the interferon response gene signature discovery method using leave-one-patient-out cross
validation and (G) leave-one-T-cell-type-out cross validation. Each curve represents the
performance of this gene signature when evaluated on left-out samples. (H) IRF7 expression
assessed by median fluorescent intensity (MFI) from FACS comparing 3 pre-manufacture T-cell



samples and 11 post-manufacture CAR T-cell infusion products from a separate group of
patients from those studied in our bulk RNA-Seq analysis. T-cell subsets were defined based on
CD62L and CD45RO gating. Tn: CD62L*CD45RO™; Tem: CD62L"CD45RO™; Tewm:
CD62L"CD45RO"; Terr: CD62L"CD45RO"™. (I) Assessment of CAR T-cell subset proportion
from FACS analysis comparing five patients with short clinical CAR T-cell persistence and four
with long-term CAR T-cell persistence. Statistical significance was assessed using Welch’s t-test
and Benjamini-Hochberg multiple-testing correction. The equal FDR-adjusted p-values in some
plots were a result of ties in the Benjamini-Hochberg procedure. (J) Assessment of transcription
factor expression by RT-qPCR relative to ACTB control between the five patients with short
clinical CAR T-cell persistence and four with long-term CAR T-cell persistence. Statistical
significance was assessed using Welch’s t-test. Sample size estimates per group are shown for a
significance level of 0.05 and 80% power. FDR-adjusted p-values were 0.572, 0.794, 0.515,
0.515, and 0.794 respectively. (K) Heatmap indicating transcription factor expression by
RT-qPCR with arrows indicating CHP104 (a patient with failed CAR T persistence at 2 months
and high /RF7 and PRDM1 expression); CHP146 (a patient with failed CAR T persistence at 4
months and high 7BX21 expression); and CHP115 (a patient with > 6.5 years of CAR T
persistence and high TCF7/LEF1 expression in the CAR T infusion product). For plotting
purposes, expression values for each gene were z-score normalized across patients.
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Supplementary Figure S10. Analysis of CITE-Seq data. (A) UMAP of CD4" (top panel) and
CD8" (bottom panel) T-cells, colored by T-cell cluster. (B) UMAP of 17,750 cells from CITE-
Seq data, colored by patient. (C) UMAP of CITE-Seq data, colored by cell surface protein
expression of 22 markers based on CITE-Seq antibody-derived tags. (D) Proportions of T-cell
subsets within each patient, determined by relative numbers of cells per cluster. The number
below each patient identifier is the duration of CAR T-cell persistence for each respective



patient, with censored values indicated with a plus symbol, and T-cell types are stratified by
naive and early memory (purple, blue, and green shades) compared to effector memory and
effector T-cells (orange and red shades). (E) Boxplot showing the proportion of naive and early
memory T-cells (CD4" and CD8" T, Tscum, Tewm, and resting Treg) among the three patients with
> 6 months BCA compared to the three patients with < 6 months BCA. Statistical significance
was assessed with Welch’s t-test. (F) Normalized RNA expression of representative type I
interferon response genes. (G) Expression of transcription factors associated with CD4" subsets
in our single-cell data. STAT] and IRF7 were up-regulated among the IFN-responsive
Naive/Memory subset, with low STAT expression among other subsets; STAT4, PRDM1, and
GATA3 were expressed among the CD4* Tewm subset; and PRDM1, GATA3, and FOXP3 were
expressed among the Ty cells.
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Supplementary Figure S11. Analysis of scATAC-Seq data to uncover gene regulatory
interactions. (A) Normalized RNA expression and chromVAR motif accessibility of signaling
transcription factors FOS, JUN, and IRF'7. (B) Top, schematic for primers used in the
chromosome conformation capture (3C) experiments of predicted enhancer-promoter
interactions involving the TCF7 promoter. Predicted enhancers (EL3, EL2, EL1, ER1) are
highlighted in yellow. Adjacent negative control regions (NL3, NL2, NL1, NR1) and the TCF7
promoter (P) are highlighted in grey. Bottom, 3C relative interaction frequencies of the tested
interactions using T-cell samples from two healthy donors. (C) Bar plots for relative interaction
frequencies from 3C experiment comparing each adjacent negative control region (Ctrl) and
predicted enhancer (Target) as well as comparing E-P interactions between two groups of T cell
subtypes (Tn+Tscm+Tem vs Tem+Terr). Each point represents the mean of three technical
replicates performed on one of two healthy donor samples sorted by T-cell subtype. Pairwise
statistical significance was assessed using Welch’s t-test. (D) Schematic indicating how TCF7
and null peak-to-promoter pairs were determined. 7CF7 peak-promoter pairs were defined as
pairs of chromatin peaks from Cicero for which one peak contained the 7CF7 motif and did not
overlap with a promoter or exon, and the other peak overlapped with a promoter from a gene



within the TCF'7 regulon defined by our bulk RNA-Seq analysis. Null peak-promoter pairs were
defined as pairs of chromatin peaks from Cicero for which one peak did not contain the 7CF7
motif and did not overlap with a promoter or exon, and the other peak overlapped with a
promoter not within the 7CF7 regulon. (E) Enrichment of Cicero co-accessibility scores among
TCF7 peak-promoter pairs compared to null, both in the pan-T-cell analysis and when restricted
to the TErr subset. In the pan-T-cell analysis (under the “All” label on the x axis), Cicero was run
on all of the T-cells in the scATAC-Seq data, capturing regulatory interactions with and between
T-cell subsets. In the Terr analysis, Cicero was run strictly on the CD8" Tgrr subset, capturing
only interactions occurring within the Terr cells. Error bars indicate 95% confidence intervals of
the mean estimate, and pairwise statistical significance was assessed using the Wilcoxon rank-
sum test. (F) Normalized RNA expression of 7CF7 target genes compared to non-7CF7 target
genes based on the peak-promoter pairs defined for Terr as described in (B). Genes were
included in this analysis if the RNA count was nonzero in greater than 1% of cells. Error bars
indicate 95% confidence intervals of the mean estimate, and pairwise statistical significance was
assessed using the Wilcoxon rank-sum test.



