
Supplementary Methods 
 
 

Association of sorted proportions with clinical outcome 

In order to standardize the estimation of cell proportions across patients, automated gating was 

performed with R package openCyto v1.22.2 using the singletGate, flowClust.2D, and 

rectangleGate functions. Fluorescence intensities for cell surface proteins were log-transformed, 

and batch correction of the CD95 fluorophore was performed by mean-centering. Proportions of 

naive, stem cell memory, central memory, effector memory, and effector T-cells were calculated 

by dividing the number of gated cells for each T-cell type by the total number of gated cells.  

 

In order to associate the proportions of each T-cell subset with clinical outcome, we 

dichotomized the 41 patients from clinical trial NCT02906371, for whom BCA data were 

uniformly available, into patients with a high or low proportion of each T-cell type, using the 

median proportion as a cutoff. We performed Cox Proportional Hazards with event-free survival 

using R package survcomp. Statistical significance was assessed using the log-rank test.  

 
 
Bulk RNA-Seq Alignment, Quantification, and Quality Control 
 
Paired-end RNA-Seq reads were aligned with STAR v2.5.3a to the hg38 genome assembly using 

the Gencode v29 genome annotation. RNA quality control was performed using RSeQC v2.0.0 

with custom scripts to evaluate mapping rate, 3’ bias, and percent of reads mapping to exonic 

regions. BAM files were merged and indexed with SAMtools v1.9. Generation of read count 

matrices was performed with the Rsubread package v1.34.6. Transcript quantification was 



performed with Cufflinks v2.2.1, and conversion to transcripts-per-million (TPM) was 

performed with a custom R script.  

 
Gene expression deconvolution using bulk and single-cell references 
 
In order to assess CD8+ and CD4+ T-cell composition, we performed deconvolution with 

CIBERSORTx1 using bulk and single cell references. We ran CIBERSORTx with default 

parameters and with B-mode batch correction for the LM222 and 10X genomics reference 

peripheral blood mononuclear cell (PBMC) datasets3, observing strong correlation in CD4+ and 

CD8+ T-cell proportion estimates. We validated the deconvolution estimates by assessing the 

proportions of estimated naive, memory, and activated memory T-cells in the LM22 reference 

compared to the sorted T-cell subsets (Supplemental Figure 3). In order to derive a robust 

estimate of CD4+ and CD8+ proportions, we computed the mean of the four computational runs 

as the final consensus estimate.  

 
Batch effect correction and dimensionality reduction 
 
TPM values with a pseudocount of 1 were log-transformed, and batch correction for three 

experimental batches was performed with Limma. Principal component analysis was performed 

to reduce the dimensionality of the data. Since the first principal component was associated with 

RNA quality metrics, its effect was linearly regressed from log-transformed expression values. 

To visualize the low-dimensional data, t-distributed stochastic neighbor embedding (t-SNE) was 

performed on the first 50 principal components of the RNA-seq expression matrix, with 

approximately 70% of variance explained.  

 
Identification of differentially expressed genes  
 



Read counts were filtered to include only protein-coding genes with a read count of at least 5 in 

greater than 50% of samples. Patients were dichotomized into those who failed to achieve 6 

months of CAR T-cell persistence and those who achieved at least 6 months of CAR T-cell 

persistence based on the event-free survival criteria. Patients who were observed to have B-cell 

aplasia that was censored before 6 months were considered to have uncertain categorization and 

were excluded from differential expression analysis requiring patient dichotomization. 

Differential expression analysis was performed using a mixed-effects interaction model with 

Limma-Voom4,5. Experimental batch was regressed as a covariate in this model. From this 

model, treatment contrasts representing the comparison of clinical outcomes for each T-cell type 

were extracted. 

 

Formally, the design matrix in Limma-voom specified the following model for expected log-

counts per million ygi for gene g and RNA-Seq sample i: 
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where αjk represent model coefficients, Tij are the indicator variables for T-cell subsets (Tij=1 if 

the ith sample is of T-cell type j for the five T-cell subpopulations TN, TSCM, TCM, TEM, TEFF; 0 

otherwise) and Pik are indicator variables for clinical CAR T-cell persistence (Pi1=1 if the ith 

sample derived from a patient with at least 6 months of CAR T-cell persistence, 0 otherwise; 

Pi2=1 if the ith sample derived from a patient with less than 6 months of CAR T-cell persistence, 

0 otherwise). β2 and β3 represent the model coefficients assigned to the dummy-encoded batch 

indicator variables, β4 represents the model coefficient assigned to the technical effect observed 

in the first principal component, and β5 represents the model coefficient associated with the 



estimated CD8/CD4 ratio from CIBSERSORTx. Since five T-cell subsets were sorted for each 

patient, we addressed within-patient correlations by treating patient ID as a random effect, which 

constrains the covariance matrix: 
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where Rgi is the block diagonal matrix returned from the duplicateCorrelation function6. 
 
From this model, contrasts associated with the coefficients αjk were designed to assess for 

differentially expressed genes. Three major classes of contrasts were performed: comparisons 

between T-cell subsets (e.g. TEFF vs non-TEFF), comparisons of clinical outcome within 

individual T-cell subsets (e.g. CAR T-cell persistence vs non-persistence in TEFF), and 

comparisons of clinical outcome across individual T-cell subsets (e.g. CAR T-cell persistence vs 

non-persistence in TEM and TEFF). Adjusted P-values were computed via Benjamini-Hochberg 

correction.  

 
Pathway enrichment analysis 
 
Pathway enrichment analysis for differentially expressed genes was performed using Metascape, 

which uses the hypergeometric test with Benjamini-Hochberg p-value correction and clustering 

of similar enriched terms7. We used the core gene sets in the Metascape database, which includes 

Gene Ontology processes, KEGG pathways, Reactome gene sets, canonical pathways, and 

CORUM complexes. Global comparison of T-cell subtypes was performed through an ANOVA 

F-test in Limma, in which the top 500 genes with FDR < 0.05 were submitted to Metascape. 

Comparison of clinical T-cell persistence with T-cell subtypes was performed through the 

mixed-effects Limma model, and genes with FDR < 0.25 were submitted to Metascape.  

 



Top-ranking gene sets were visualized through the single-sample extension of Gene Set 

Enrichment Analysis (ssGSEA) described by Barbie et al.8 and implemented in R package 

GSVA v1.32.09 with Gene Ontology gene sets from MSigDB10. Pairwise comparisons between 

ssGSEA enrichment scores between T-cell subtypes were performed with Welch’s t-test.  

 
Generation of T-cell specific transcriptional regulatory networks 
 
Annotation of transcription factors from six databases were downloaded from Lambert et al.11. 

We used our previously described method for identification of key transcription factors 

combining gene regulatory inference with differential expression analysis12,13. Briefly, base 

transcriptional regulatory networks were generated using top-performing methods in the 

DREAM5 Network Inference Challenge: CLR, GENIE3, TIGRESS, and Inferelator14–17. 

Protein-coding genes with TPM greater than 1 in at least 20% of samples were included. A 

consensus transcriptional regulatory network was generated under the Borda Count principle, in 

which edge weights for each base network were ranked and averaged. The consensus 

transcriptional regulatory network G is the directed graph produced by the 1,000,000 top-ranking 

edges.  

 

This process was repeated for six conditions: GT-cell from the expression profiles of all five T-cell 

subpopulations; Gearly generated from the expression profiles of the early-lineage T-cell subtypes 

(TN, TSCM, and TCM); Glate from the expression profiles of the effector T-cell lineages (TEM and 

TEFF); GTEFF from the expression profiles for TEFF; and Gregressed from GT-cell with the T-cell 

subtype effect regressed using Limma. We generated a public immune T-cell network, Gpublic, 

using expression data compiled by Becht et al.18 from 708 immune cells from 43 microarray 

datasets.  



 

We defined T-cell specific transcriptional regulatory networks S by removing edges that were 

present in both the T-cell networks and public immune networks: 

ST-cell = GT-cell - Gpublic 
Searly = Gearly - Gpublic 
Slate = Glate - Gpublic 
Sregressed = Gregressed - Gpublic 
STEFF = GTEFF - Gpublic 
 
In order to validate the network construction, we assessed the connectivity of known key 

transcription factors involved in T-cell differentiation from Chang et al 2014 in ST-cell. We 

compared the out-degree of transcription factors of ST-cell of known T-cell transcription factors 

compared to the null distribution, and repeated this process with Gpublic as a negative control.  

 
Identification of putative key regulating transcription factors from bulk RNA-Seq data 
 
Identification of key transcription factors was performed as previously described12,13 under the 

rationale that key regulating transcription factors propagate their regulatory effect to larger 

fraction of differentially expressed target genes via direct or indirect connections through a 

network. The weighted distance between two genes i and j in the T-cell specific transcriptional 

regulatory network was defined as 
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where pi and pj are the differential expression p-values for genes i and j respectively, and pmin is 

the smallest differential expression p-value among all genes in the network.  

 

For this weighted transcriptional regulatory network, we used Dijkstra’s algorithm to calculate 

the median shortest path between each TF and differentially expressed target genes (FDR < 0.25) 



in the network. Normalized regulatory potential was defined as the median shortest path 

normalized to zero mean and unit variance. Statistical significance was assessed using topology-

preserving randomization, in which the median shortest path from each TF to each differentially 

expressed gene was compared to the empirical null distribution generated by shuffling edge 

weights in the network. For each network, we generated 1000 shuffled networks in order to 

compute empirical p-values.  

 
Analysis of CITE-Seq data 
 
Demultiplexing and alignment of RNA and antibody-derived tag sequences was performed with 

cellranger v3.1.0. Low-quality cells were computationally filtered by retaining only those cells 

with between 300 and 2500 genes in the scRNA-Seq data, greater than 1500 RNA counts, and 

less than 10% mitochondrial RNA.  

 

CITE-Seq antibody-derived tag counts were normalized with centered log-ratio (CLR) 

normalization. Single-cell RNA-Seq count matrices for each patient were log-normalized, and 

the top 2000 variable genes were identified with the variance-stabilizing transformation. Data 

integration between the six samples was performed on single-cell RNA-Seq matrices using 

Seurat v3.2.0 using the default anchor-based canonical correlation analysis (CCA) with 30 

dimensions, 2000 anchor features, and k.filter = 100. Initial clustering was performed on the 

integrated single-cell RNA expression matrix with the default Louvain algorithm in Seurat with 

the top 20 principal components in order to identify CD4+ and CD8+ T-cells, as well as to 

remove small clusters of CD19-expressing B-cells and low-count cellular debris.  

 



We sought to identify a final set of T-cell clusters by combining unbiased, transcriptome-wide 

clustering with prior knowledge of cell surface protein and RNA-based T-cell markers. To this 

end, CD4+ and CD8+ T-cells were separately clustered using the Lovain algorithm with 20 

principal components and a relatively high resolution parameter of 0.8, leading to the 

identification of 21 T-cell clusters. As many of these clusters shared identical T-cell marker 

profiles, we visualized the mean expression of CITE-Seq antibody and RNA markers, and 

merged clusters that had similar marker expression and via a between-cluster dendrogram.  

 

Dimensionality reduction was performed using Uniform Manifold Approximation and Projection 

(UMAP) of the top 20 principal components of the integrated scRNA-Seq data with 30 neighbors 

and 2 components. Single-cell pathway enrichment scores for the gene signatures defined from 

our bulk RNA-Seq analysis was performed with AUCell v1.6.119. For visualization of CITE-Seq 

antibody gene expression or AUCell enrichment scores, minimum and maximum values of color 

gradients were defined using the 5th and 95th percentile values in order to reduce the impact of 

outlier values. 

 
Integrative analysis of scATAC-Seq data with CITE-Seq data as a reference 
 
Demultiplexing of scATAC-Seq reads was performed with cellranger-atac v1.1.0, and alignment 

and peak calling were performed with BWA and MACS2 using the scATAC-pro pipeline20 

under default parameters. Peaks were merged with the scATAC-pro mergePeaks module, and 

peak-by-cell matrices with merged peaks were reconstructed with the scATAC-pro reConstMtx 

module.  

 



Gene-activity matrices for single-cell ATAC-Seq were constructed by summing counts within 

the gene body and 2kb upstream, as previously described21. Integration of scATAC-Seq samples 

was performed using  gene-activity matrices and  Seurat v3.2.0 using the default anchor-based 

CCA method using 30 dimensions, 2000 anchor features, and k.filter=100. In order to integrate 

CITE-Seq and scATAC-Seq data, transfer anchors were computed using CCA with scRNA-Seq 

as the reference, and feature imputation was performed using the TransferData function.  

 

The scATAC-Seq data were projected onto scRNA-Seq principal component space using the 

loadings associated with the top 20 principal components of the scRNA-Seq data. Each 

scATAC-Seq cell was associated with its 30 nearest scRNA-Seq neighbors in this principal 

component space using the cosine distance, and T-cell cluster labels were assigned via k-nearest 

neighbors with k = 30. For visualization, scATAC-Seq data were projected onto the scRNA-Seq 

UMAP coordinates using the uwot::umap_transform function. 

 

For TF motif enrichment analysis, we first generated a peak-by-motif matrix using Signac 

v1.0.021 with the JASPAR 2020 database of human transcription factor binding motifs22, then 

computed motif activity scores using chromVAR v1.6.0. For UMAP visualizations, the color 

scales were defined by the 5th and 95th percentile values and centered at zero.  

 

In order to identify high-confidence enhancer-promoter interactions, we used two approaches: 

chromatin co-accessibility, and a regression-based meta-cell approach integrating the scRNA-

Seq and scATAC-Seq data. To assess for chromatin co-accessibility, we ran Cicero v1.3.4.1023, 

which outputs a list of connections between chromatin peaks with an associated co-accessibility 



score. Putative enhancer-promoter pairs were restricted to those for which one peak overlapped 

with a gene promoter, and the other did not overlap with a promoter or exonic region. As a 

second line of evidence supporting enhancer-promoter interactions, we used a regression-based 

meta-cell based approach developed to integrate information from scRNA-Seq and scATAC-Seq 

data while addressing sparsity in the count matrices24. For each cell in the scRNA-Seq dataset, a 

scRNA-Seq and scATAC-Seq “meta-cell” was defined by pooling counts for each gene or peak 

from the 30 nearest neighbors in the principal component space by cosine distance. Meta-cell 

counts were log-normalized and scaled to zero mean and unit variance. For a gene of interest, we 

ran a linear regression model using meta-cell gene expression as the dependent variable, and 

putative enhancer peaks within 200kb of the transcription start site as regressors. Bonferroni 

adjusted p-values less than 0.05 with a positive coefficient were considered significant. Both 

Cicero and meta-cell based approaches were run on the entire single-cell T-cell dataset, as well 

as on a restricted set of CD8+ TEFF in order to characterize the upstream regulation of TCF7 

across T-cell lineages and within the CD8+ TEFF subset. 

 

In order to assess the gene regulation of TCF7 downstream targets across T-cells and within the 

CD8+ TEFF subset, we assessed the Cicero chromatin co-accessibility scores for TCF7 peak-to-

promoter pairs and null peak-to-promoter pairs. TCF7 peak-to-promoter pairs were defined as 

those Cicero putative enhancer-promoter pairs for which one peak contained the TCF7 motif, 

and the other contained the promoter region of a gene within the TCF7 regulon gene signature 

defined from the bulk RNA-Seq analysis. Null peak-to-promoter pairs were defined as those 

Cicero putative enhancer-promoter pairs for which the putative enhancer did not contain the 

TCF7 motif, and the promoter peak was not among the TCF7 regulon genes. Statistical 



significance between the Cicero co-accessibility scores of the TCF7 peak-to-promoter pairs and 

null peak-to-promoter pairs was assessed with the Wilcoxon rank-sum test. This process was 

performed using Cicero output run on the entire scATAC-Seq dataset, and on strictly the CD8+ 

TEFF subset. 

 

3C-qPCR 

3C was performed as described before with minor modifications25. Briefly, 0.5~1 million sorted 

T subpopulations were cross-linked with 2% formaldehyde for 10 min at RT and then quenched 

by adding 0.125 M glycine. Cell pellets were lysed with 0.5 mL of lysis buffer (10 mM Tris-

HCl, 10 mM NaCl, 0.5% NP-40, and 1x protease inhibitor) for 10 min on ice. Nuclei were 

resuspended with 450 μL of H2O. 60 μL of 10x DpnII buffer and 15 μL of 10% SDS were added 

and mixed before incubation at 37 °C with shaking at 1,400 rpm for 1 hour. 75 μL of 20% Triton 

X-100 was added and mixed before incubating at 37 °C with shaking at 1,400 rpm for 1 hour. 

Three aliquots (250U, 500U, 250U) of DpnII (NEB, Cat #: R0543M) were added to each 

reaction mix several hours apart with incubation at 37 °C with shaking at 1,400 rpm. DpnII was 

then heat-inactivated by incubating at 65 °C for 20 min. Samples were subjected to ligation by 

adding 30 μL of H2O, 70 μL of 10x T4 DNA ligase buffer, and 50 U of T4 DNA ligase (Roche, 

Cat #: 10799009001). Ligation was done at 16 °C for 8 hours with slow rotation. Samples were 

reverse cross-linked by incubating with proteinase K (NEB, Cat #: P8107S) at 65 °C overnight 

and RNase A (Thermo Scientific, EN0531) at 65 °C for 30 min. DNA was purified by phenol-

chloroform extraction and ethanol precipitation. 3C controls were amplified from gDNA for 

TCF7 locus (See Supplementary Table X for primer information). Amplified 3C control DNA 

was digested with DpnII (NEB, Cat #: R0543M) for 1 hour at 37 °C. DNA was purified using 



MinElute PCR Purification Kit (Qiagen, Cat #: 28004). Digested DNA was then ligated with T4 

DNA ligase (Roche, Cat #: 10799009001) 1 hour at 25 °C. Ligated DNA was purified using 

MinElute PCR Purification Kit (Qiagen, Cat #: 28004). To quantify specific chromatin 

interactions, relative interaction frequency was calculated using the following formula: 

2!∆∆#$ = 2[$𝐶𝑡%&'()$*# − 𝐶𝑡+,&-./(*# ( −	(𝐶𝑡%&'()$0,/$',1 − 𝐶𝑡+,&-./(0,/$',1 )] 

where 𝐶𝑡%&'()$*#  and 𝐶𝑡%&'()$0,/$',1 quantify PCR products at the test locus in the 3C and gDNA 

template, respectively, and 𝐶𝑡+,&-./(*#  and 𝐶𝑡+,&-./(0,/$',1  PCR product at internal loading control 

locus in the 3C and gDNA template, respectively. 

  

RT-qPCR 

Total RNA was isolated using the RNeasy micro kit (Qiagen, Cat #: 74004) with on-column 

genomic DNA removal. cDNA was synthesized from total RNA using the iScript cDNA 

Synthesis Kit (Bio-Rad, Cat #: 1708891) according to the vendor’s instruction. qPCR reactions 

were performed on an Applied Biosystems ViiA 7 real-time PCR system with iTAQ Universal 

SYBR® Green Supermix (Bio-Rad, Cat #: 1725124). Relative gene expression was calculated 

using the 2-ΔΔCt method using ACTB gene as the reference. 

  

Flow Analysis 

Sample processing and surface marker antibody staining followed the same protocol as the 

primary cohort. Surface marker-stained cells were then fixed and permeabilized using True-

Nuclear Transcription Factor Kit (Biolegend, Cat # 424401) according to the vendor’s 

instruction. TF (TCF7 and IRF7) antibody cocktail was added to the fixed samples before 



incubation at RT for 2 hours. Cells were then washed twice and analyzed on Cytek Aurora flow 

cytometry. 
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