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Supplemental materials and methods 

Viral vectors 

The coding sequence of P1A or the juxtaposed coding sequences of MAGE-A3 and NY-ESO-1 

were inserted into the E1 locus of ChAdOx1 under a CMV immediate early promoter. A 

sequence coding for the 26 amino acid transmembrane domain of the MHC-II invariant 

chain with sequence fragment was linked to the N terminus of the transgene, described 

previously 1. The MVA vectors encoding P1A, MAGE-A3 and NY-ESO-1 were constructed 

with or without the leader sequence of the human tissue plasminogen activator gene (tPA) 

with the F11 promoter driving transgene expression. Viral vectors were isolated and purified 

as described 2 . The purity and identity of the viral vectors were confirmed by PCR. 

Tumor biopsy for gene expression analysis  

Tumor masses were surgically excised and pieces ≤30 mg were immediately frozen in liquid 

nitrogen and stored at minus 80°C. Total cellular RNA was isolated using a RNeasy mini kit 

(Qiagen) with column-based RNase-free DNase I (Qiagen) digestion to remove genomic 

DNA, then used for gene expression analysis. 

Reverse Transcription Quantitative PCR (RT-qPCR) 

Total cellular RNA (0.5 μg) was used to synthesize first single-strand cDNA using the 

SuperScript III First-Strand Synthesis kit (Thermo Fisher). Reactions were performed 

according to the manufacturer’s protocol. For quantification of cDNA by qPCR, the 

QuantiTect SYBR Green PCR kit (Qiagen) was used and reactions set up according to the 

manufacturer’s instructions. Reactions were run on the StepOnePlusTM Real-Time PCR 

System (Applied Biosystems) at the following conditions – 95°C - 15 min, (94°C 15s + 60°C 

30s + 72°C 30s) x 40 cycles. Gene expression at the mRNA level for each target gene assayed 

was quantified relative to an internal housekeeping gene control. The housekeeping genes 
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used were either ActB or Hprt1. To determine relative mRNA expression, the mean ΔCt 

(difference in cycle threshold number) was calculated for each target gene relative to ActB 

or Hprt1. ΔCt for a given target gene in each sample was therefore calculated according to 

the formula ΔCt = Ct Target gene – Ct Housekeeping gene. Relative mRNA expression data 

are shown as 2-ΔCt. The list of primers used is shown in table S1. 

Table S1: qPCR primer sequences  
Primer Sequence (5’-3’) 

Actb for CCTTCAACACCCCAGCCATGTA 

Actb rev GGATGGCGTGAGGGAGAGCAT 

P1A for AGCTGAGGAAATGGGTGCTG 

P1A rev CAGCATTTTCACACCTACACTCCA 

Hprt1 for AGTGTTGGATACAGGCCAGAC 

Hprt1 rev CGTGATTCAAATCCCTGAAGT 

Cxcl9 for GCCATGAAGTCCGCTGTTCT 

Cxcl9 rev GGGTTCCTCGAACTCCACACT 

Cxcl10 for GACGGTCCGCTGCAACTG 

Cxcl10 rev GCTTCCCTATGGCCCTCATT 

Ccl3 for GCCAGGTGTCATTTTCCTGACTA 

Ccl3 rev AGGCATTCAGTTCCAGGTCA 

Ccl5 for GCAAGTGCTCCAATCTTGCA 

Ccl5 rev CTTCTCTGGGTTGGCACACA 

Ifng for CGGCACAGTCATTGAAAGCCTA 

Ifng rev GTTGCTGATGGCCTGATTGTC 

Xcl1 for CTTTCCTGGGAGTCTGCTGC 

Xcl1 Rev CAGCCGCTGGGTTTGTAAGT 

Immunohistochemistry 

Tumor tissue was fixed and embedded in paraffin. Tissue slices of 4 µm were rehydrated in a 

series of histo-clear and graded ethanol. The tissue sections were incubated at 95 °C with 

citrate buffer (pH 6) for antigen retrieval and blocked with 1 µg/mL Rat IgG (Vector Lab) 

diluted into 2.5 % Normal Goat Serum (Vector Labs) before staining with rabbit polyclonal 

anti-CD8a (361003, Synaptic Systems), anti-CCL5 (clone 25H14L17, ThermoFisher) or anti-

CXCL9 (clone 11H1L14, ThermoFisher). Then the slides were washed and were incubated 

with ImmPRESS HRP Reagent peroxidase Anti-Rabbit IgG (Vector Labs). The sections were 

developed using ImmPACT DAB Chromogen (Vector Labs) and stained with haematoxylin, 
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dehydrated in a graded series of ethanol and histo-clear and cover slipped. Immunostaining 

were imaged using NanoZoomer S210 Digital slide scanner. 

Bulk RNA-sequencing data analysis 

Fastq sequencing data files were trimmed of adapter sequences using Skewer 3 and reads 

mapped to mouse genome GRCm38.ERCC using HISAT2 aligner 4. A count matrix reporting 

the numbers of reads mapping to each gene was generated using the featureCounts 

program in the Subread UNIX package 5 and gene expression was calculated as counts per 

million (CPM). Genes expressed at a level <1 CPM were excluded from further analysis. R 

package "edgeR" was used for data normalization and differential expression analysis 6. 

Briefly, count data was normalized using the trimmed mean of M values (TMM) method and 

differential gene expression analysis between indicated samples determined using the 

glmQLFTest method. The Benjamini–Hochberg correction was applied to the list of 

differentially expressed genes to calculate corrected P-values (Padj). Genes with a Padj < 0.05 

and an absolute log2FC > 1 were considered as differentially expressed. T-cell inflamed and 

IFN-g-related mRNA gene expression signatures were defined and associated gene 

expression signature scores calculated as described by M. Ayers and colleagues 7. Heatmaps 

showing logCPM gene expression values from TMM-normalized count data were generated 

using the pheatmap R package. Gene set variation analysis (GSVA) was performed using R 

package GSVA 8. The gene ontology (GO) gene sets used were obtained from the Molecular 

Signatures Database 9. Hierarchical clustering and heatmap visualization of the GSVA matrix 

was performed using R package pheatmap.   

Single-cell RNA-sequencing (scRNA-seq) data analysis 

scRNA-seq data were pre-processed using the 10x Genomics CellRanger at the Oxford 

Genomics Centre and further analyzed with the R package Seurat v3.1.4 10. For spleen 
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samples, cells with less than 200 UMI or detected genes were filtered out. For tumor 

samples, cells with UMI less than 500 or detected genes less than 300 were filtered out. For 

both types of samples, cells with higher than 10 percent of transcripts mapping to 

mitochondrial gene were filtered out. In addition, 100 potential doublets were removed 

using R package scDblFinder v1.3.0 11. Finally, genes expressed in less than 5 cells were 

removed, leading to a total of 5,578 cells and 11,502 genes for analysis. SCTransform was 

used to normalize samples, regress out cell cycle differences and identify highly variable 

genes. Mitochondrial, cell cycle, ribosomal and pseudo genes were excluded from the 

variable genes and the top 2000 most variable genes were used for sample integration using 

Seurat’s integration workflow. Prior to clustering, principal component analysis (PCA) was 

applied to the variable genes of the dataset to reduce dimensionality. The top 25 principal 

components were used for Seurat’s K-nearest neighbor (KNN) graph-based clustering 

analysis and the resulting clusters were visualized using the Uniform Manifold 

Approximation and Projection (UMAP). Differential gene expression analysis was performed 

on the log-normalized data with Seurat v4.0.1 by the non-parametric Wilcoxon rank-sum 

test using the FindMarkers function followed by Bonferroni correction using all genes for 

adjusted p-value calculation. Top DEGs were visualized using ComplexHeatmap ver2.6.2. 

Gene signatures characterizing the four experimental groups were generated by using the 

DEGs, with an adjusted p-value < 0.01 and average log2 fold change > 0.25, between 

combination therapy-treated and vaccine-treated single P1A35-43-specific CD8+ T cells in the 

spleen and tumor, respectively. For single-cell gene signature scoring, log-normalized data 

was used as input with gene signature lists (Table S2), which include the four above-

mentioned gene signatures, as well as stem-like and exhaustion signatures from other 

recent studies. Signature scores for all gene signatures were calculated using the 
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AddModuleScore function in Seurat followed by z-scale normalization for cross-signature 

comparison across cells. Clustered correlation matrix showing the Pearson correlation 

coefficients between various gene signatures from single P1A35-43-specific CD8+ T cells was 

generated using R package Corrplot v0.84 and visualized after hierarchical clustering. 

Seurat’s AverageExpression function was used to calculate the average expression of genes 

for each experimental group. Heatmaps were plotted using R package pheatmap v1.0.12. 
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Figure S1: Blood P1A-specific T-cell responses induced by ChAdOx1/MVA P1A vaccination schemes. (A) 

DBA/2 mice received ChAdOx1-P1A (± Ii) and MVA-P1A vaccinations 4 weeks apart, and were bled after MVA 

vaccination as described in Fig. 1. PBMCs were stimulated ex vivo with 4 μg/ml of P1A peptide pools, or a 

vehicle control (DMSO). The percentage of CD8+ and CD4+ T cells in the blood after prime-boost vaccination 

producing IFN-g, IL-2 and TNF-α was then determined by ICS and flow cytometry. (B) DBA/2 mice were 

vaccinated with different vaccination regimes (as indicated) and bled 3 days before and 14 days after the MVA 

vaccination. PBMCs were stimulated ex vivo with 4 μg/ml of P1A peptide pools, or a vehicle control (DMSO). 

The percentage of IFN-g+ CD8+ T cells after prime (closed circles) and boost (closed squares) in response to 

stimulation with P1A peptides vaccination was then determined by ICS and flow cytometry. Data are shown as 

the mean ± SEM and each symbol represents an individual mouse.  
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Figure S2: ChAdOx1/MVA P1A vaccination confers protection against P1A-expressing tumors. DBA/2 mice 

received a prime vaccination via intramuscular injection with 108 IU of ChAdOx1-P1A, ChAdOx1-Ii-P1A or a 

sham vaccination with PBS, then the ChAdOx1-P1A (± Ii) vaccinated mice received a boost vaccination with 107 

PFU of MVA-P1A 4 weeks later. A fourth group received 1x106 L1210.P1A.B7-1 cells via intraperitoneal 

injection. Two weeks after the MVA boost vaccination, all mice were implanted with either 1.5x106 P815 or 

1x106 15V4T3 cells in the right flank via subcutaneous (s.c.) injection. Tumor size was then measured and mice 

were sacrificed when tumor size reached 10 mm length in any direction. (A) Experimental timeline. (B-E) Mean 

tumor growth (B and D) and survival (C and E) for P815 and 15V4T3 challenged mice are shown. (F) Individual 

growth curves for P185 and 15V4T3 tumors from PBS control mice. Mean tumor growth data in B and D are 

presented as mean tumor volume (mm3) ± SEM. Each group contained 5-10 mice, with data representative of 

2 independent experiments. Statistically significant differences were determined by a two-way ANOVA 

followed by Tukey’s post hoc test and statistical differences in survival data were determined by a log-rank 

test. *, p ≤ 0.05, **, p ≤ 0.01 ****, p ≤ 0.0001. 
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Figure S3: Surface PD-L1 expression level and CD8+ and CD4+ T-cell infiltration of murine tumor models. 

15V4T3 and MC38 cells were cultured in vitro and stimulated with or without 20 ng/ml recombinant mouse 

IFN-g for 24 or 48 hours. Cells were then stained with either PE-anti-PD-L1 or PE-IgG2b isotype control and the 

level of surface PD-L1 expression was assessed by flow cytometry. Representative flow cytometry histograms 

for PD-L1 expression level are shown for (A) 15V4T3 and (B) MC38. The PD-L1 mean fluorescence intensity 

(MFI) was calculated for (C) 15V4T3 and (D) MC38 cells. Each point shows an individual technical replicate (n=3 

per group). Data are shown as mean ± SEM. Statistical differences between each group were calculated by 

ordinary one-way ANOVA followed by Tukey’s post hoc test. ****, p ≤ 0.0001. (E, F) BL/6 mice were implanted 

with either 1x105 MC38 or B16F10 cells and DBA/2 mice with 1x106 15V4T3 cells via s.c. injection. Mice were 

sacrificed and tumors harvested when a size of 400-600 mm3 was reached. Tumors were dissociated and the 

immune infiltrate was analyzed by flow cytometry. (E) Representative flow cytometry plots of CD4+ and CD8+ T 

cells, gated on live CD3+ cells from MC38, B16F10 and 15V4T3 tumors. (F) Total numbers of tumor infiltrating 

CD4+ and CD8+ T cells. Data are shown as mean ± SEM and each symbol represents an individual mouse, with 

n=9/10 mice per group. Statistically significant difference between groups was determined by a Kruskal-Wallis 

test with Dunn’s multiple comparisons test. ** p ≤ 0.01, ***, p ≤ 0.001.  
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Figure S4: MDSC-like cell infiltration into 15V4T3 tumors. Mice bearing 15V4T3 tumors received 

ChAdOx/MVA P1A vaccination and were treated with anti-PD-1 as shown in Fig. 4A. Tumors were excised, 

processed to single cell suspension, and analyzed by flow cytometry. (A) Representative flow cytometry gating-

strategy for mMDSC-like (CD11b+ Ly6C+hi Ly6G-) and gMDSC-like (CD11b+ Ly6C+int Ly6G+) cells. (B) Total 

numbers of tumor-infiltrating mMDSC-like and gMDSC-like cells as quantified by cytometry.  Statistically 

significant differences between groups were compared by a Kruskal-Wallis test with Dunn’s multiple 

comparisons test.  
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Figure S5: Bulk RNA-seq gene expression analysis of 15V4T3 tumors. 15V4T3 tumors were excised from the 

mice shown in Fig. 4 and RNA isolated from a small cutting of tumor tissue to analyze gene-expression at the 

transcriptional level. Tumor mRNA from each of 3 mice per group was sequenced on an Illumina NovaSeq 6000 

as 150 bp paired-end reads. Following data processing, differential gene expression analysis between the anti-

PD-1 only, vaccine only, and vaccine + anti-PD-1 combination treatment groups compared to the PBS control 

was performed using EdgeR software. (A) Volcano plots showing the distribution of differentially expressed 

genes (DEGs) between different experimental groups. Each point represents an individual gene, with 

significant DEGs shown in red. Dashed lines indicate the threshold set for significant differential expression of 

log2FC > 1 and Padj < 0.05. (B) Number of DEGs identified in tumors in each of the experimental group 

comparisons (red upregulated, blue downregulated). (C) A heatmap showing log-CPM gene expression values 

of all expressed genes in the dataset for each sample. Expression across each gene (rows) has been scaled by 

calculation of a Z-score, indicated by the heatmap color key. Unsupervised hierarchical clustering was 

performed at both the gene (y-axis) and sample (x-axis) level and is shown in dendrogram format. (D) T cell-

inflamed and IFN-g gene expression signature scores for each sample. Data are shown as mean ± SEM. 

Statistically significant differences between group gene signature scores were determined by an ordinary one-

way ANOVA with Tukey’s post hoc test. **, p ≤ 0.01, ***, p ≤ 0.001. (E) GSVA was performed for each of the 

indicated gene sets and the results are visualized on a heatmap.  
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Figure S6: Assessment of pro-inflammatory mediator expression in the 15V4T3 tumor microenvironment. 

15V4T3 tumors were excised from tumor-bearing mice vaccinated with ChAdOx1/MVA P1A and treated with 

anti-PD-1 as detailed in Fig. 4. (A) Tumor RNA was isolated to analyze gene expression of pro-inflammatory 

mediators. Expression of Ifng, Cxcl9, Cxcl10, Ccl3, Ccl5, and Xcl1 mRNA in the tumor was quantified by RT-

qPCR. Target gene mRNA expression level was normalized relative to Hprt1 and is shown as 2-ΔCt. Data are 

presented as mean ± SEM and each symbol represents an individual mouse, with n=10 mice per group. 

Statistically significant differences between groups were determined by a one- way ANOVA followed by 

Tukey’s post hoc test. *, p ≤ 0.05, **, p ≤ 0.01, *** p≤ 0.001 ****, p ≤ 0.0001. (B) A cross-section cutting of 

tumor tissue was formalin-fixed and paraffin embedded (FFPE). Tissue sections (4 μm) were prepared from 

FFPE samples and stained with antibodies against CD8, CCL5 and CXCL9. Representative images of staining are 

shown of tumors from PBS control mice and each of the indicated treatment groups. Scale bars: 50 μm (inset) 

and 250 μm (overview). 
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Figure S7: Heatmap of top 100 differentially expressed genes between stem-like and effector clusters 

identified by scRNA-seq of P1A35-43-specific CD8+ T-cells. 15V4T3 tumor-bearing DBA/2 mice were vaccinated 

with ChAdOx1-Ii-P1A/MVA P1A ± anti-PD-1 treatment (n=10 per group), tumors and spleens collected on day 

25 and P1A35-43-specific CD8+ T cells isolated via H-2Ld P1A35-43 tetramer staining and FACS as described in Fig. 

5A. The transcriptional profile of P1A35-43-specific CD8+ T cells was determined via scRNA-seq using a 10X 

Genomics pipeline. Gene expression profiles of single cells separated into eight clusters by k-nearest neighbor 

clustering analysis using Seurat. The top 100 DEGs between the stem-like clusters and effector clusters are 

shown.  
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Table S2: P1A35-43-specific CD8+ T-cell gene signatures identified by scRNA-seq 

SpleenCombi_vs_ 

spleenVac_UP 

 

SpleenVac_vs_ 

spleenCombi_UP 

 

TumorCombi_vs_ 

tumorVac_UP 

 

TumorVac_vs_ 

tumorCombi_UP 

 
Jund Uba52 Gm2000 Gzmk Vim Areg Vps37b 

Taf10 Set Ets1 S100a6 Emp3 Gm10709 Ifi27l2a 

Chic2 Rps18 Nme1 Ccl4 Cdc42 H2-Q6 Rps8 

Gnas Arl2bp Rps27rt Ccl5 S100a4 Ccl4 Hsp90aa1 

Alyref Rpl9-ps6 Usf2 S100a10 Ywhaz Gm8730 Cd7 

Pcbp1 Emc10 Stk24 Klrc1 Arpc3 Gm9843 Slc3a2 

Tprgl Grb2 Rps2 Ms4a4b Gimap7 Rps18 Rpl10 

Ppp1cc Rpl36-ps3 Gm10073 Nkg7 Actg1 Cox17 Pdcd1 

Arf6 Hnrnpab Gm5786 Ctla2a Ifi27l2a Uba52 Hsp90ab1 

Rac1 E2f4 Capns1 S100a11 Tmem50a Ccl3 Hspd1 

Btg1 Srsf2 Rpl36a Ier3 Cfl1 S100a4 Hnrnpa3 

Pitpna mt-Nd4 Ccni Cd48 Thy1 Hcst Serpinb9 

Dcun1d5 Glrx5 Rpl6l Lgals1 Cyba Rpl27-ps3 Serpinb6b 

Ypel3 Ptms Gm28727 Lsp1 Lck Rpl6l Actb 

Ube2s Gm9493 Nme2 Sh2d1a Hmgb2 Rps28 Hnrnpa1 

Tmem243 Mkrn1 Rps26-ps1 Klrd1 Arpc1b H2-Q1 Stat3 

Tgfb1 Ccr7 2300009A05Rik Ly6a Cd3e  Mdh1 

Hnrnpl Ubald2 Gm8730 Calm2 AW112010  Eif4a1 

Gnai2 Grk6 Rps20 Crip1 Actb  Sult2b1 

Bag1 Mpnd Gm9844 Lgals3 Tmsb4x  Stk17b 

Cdc34 Aars Rps19 Tigit Cd52  Ifngr1 

Ctbp1 Gnb1 Rpsa Arl6ip5 Rac2  Gnb2l1 

Klf2 H2-Ke6 Rpl35 Cd82 B2m   

Ybx1 Lamp1 Rpl12 Anxa2 Hcst   

Gm10076 Pdcd4 Gm11808 Laptm5 Pfn1   

Rab2a 1110008F13Rik Rps21 Prr13 Sh3bgrl3   

March2 Rps28 Gm8186 Tagln2    

2310036O22Rik Srm Rps27 Sub1    

Mtch1 Gm10709 Rpl39 Ctsd    

Snf8 Lef1 Rps24 Sp100    

Bri3 Tmem108 Gm10260 Prdx1    

Arl4c Rps29 Rpl3 S100a13    

Abhd17a Erdr1 Rps7 Clic1    

Chmp4b Efhd2 Rpl38 Zyx    

H2afy Rpl13-ps3 Rpl10a Pycard    

Nsmce4a Pcbd2  Gabarapl2    

Rap1b Pnrc1  Myl6    
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Table S3: Gene sets corresponding to CD8+ T-cell dysfunctional and progenitor gene signatures from other published studies 

CD39-

CD69- 

MEL_EXHA

UST_ 

Tirosh 

CD8_B_Fel

dman 

Exhaust_1_Fe

ldman 

Exhaust_2_Fe

ldman 

Exhaust_3_Fe

ldman 

Mem_Eff_4_F

eldman 

Early.Act_5_F

eldman 

Mem_Eff_6_F

eldman 

LCMV_PROG.EX

_Miller 

B16_PROG.EX

_Miller 

Stem_like_Ba

harom 

TOX_SI

G 

(Scott) 

CD39+C

D69+ 

CD8_G_Fel

dman 

LCMV_TERMN.E

X_Miller 

B16_TERMIN.EX

_Miller 

KLF2 FCRL3 CD38 SPC25 GEM CCL3 LMNA ELL2 PLAC8 ID3 CCR6 Ctla4 IGKC ENTPD1 IL7R 1810011H11RIK GZMD 

AQP3 CD27 CCL3 CDCA5 LAYN EPSTI1 NR4A3 PFKFB3 S1PR1 CCR7 TCF7 Dapl1 AVIL CD69 GPR183 ACOXL GZMG 

CLIC3 PRKCH STMN1 ESCO2 VCAM1 CD38 GPR183 DTHD1 SORL1 CD83 AFF3 Socs3 TOX RRM2 LMNA CD244 GZMF 

LINC008

61 

B2M MYO7A CDC45 RDH10 FASLG CDKN1A SMAP2 SELL BACE2 CXCR5 Tox KLRB1C TYMS NR4A3 RASD2 GZME 

CD8B ITM2A GOLIM4 ZWINT FAM3C IFI44L CCR7 FKBP5 TCF7 ITGA7 DAPL1 Gpr183 MEGF1

1 

CD8B TCF7 FCER1G DSC2 

FAM65

B 

TIGIT VCAM1 SHCBP1 KIR2DL4 GIMAP6 S1PR1 AIM1 CCR7 TNFSF11 ID3 Nr4a2 SCD1 KIAA010

1 

MGAT4A OSGIN1 RASD2 

FGFBP2 ID3 WARS DLGAP5 TNFRSF18 TRAFD1 KDM6B TMEM39A IL7R IL1R2 SLAMF6 Xcl1 RP23-

284K1.

6 

CCL3 CD55 CCL6 CCL9 

RASA3 GBP2 HAVCR2 RAD51 MTSS1 LGALS9 ELL2 NR4A3 MGAT4A SOSTDC1 OTX1 Rgs16 PIF1 TUBA1B AIM1 CD200R2 LTF 

C10orf5

4 

PDCD1 LGALS9 KIF18B CADM1 CXCR6 TIPARP PER1 FAM65B DAPL1 CD22 Rpl12 TNFRSF

8 

MKI67 PER1 GM10389 CCR1 
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FGL2 SLC13A3 

RP11-
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MAPK11 HEMGN Limd2 PRC1 DLGAP5 
 

PPP2R2C SLC16A10 
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NDUFB7 POLD2 GALM HMOX2 DNAJB6 

          

  
DBI LMNB1 STAT5A LSM2 TMBIM1 

          

  
IFI6 BLM CARD16 GZMH PFKFB3 

          

  
TSTA3 PRIM1 AMD1 ISG15 FAM65B 

          

  
SSNA1 MT1E RGCC CHFR MED29 

          

  
ADORA2A CDCA4 GOLGA4 TRPV2 B4GALT1 

          

  
FDPS RRM1 SDCBP ZNHIT1 NXF1 

          

  
CYC1 RBBP8 HNRNPLL HLA-DPA1 BIRC2 

          

  
PSMD4 NCAPD3 NR4A1 UBA7 ARHGAP26 

          

  
FAM96A TFDP1 BIRC3 ADAM8 SYAP1 

          

  
OAS2 UNG FBXW11 GOLIM4 DNTTIP2 

          

  
ERCC1 ATAD2 TANK SERPINB1 ETF1 

          

  
PDHB ACAT2 ASXL2 ATF6B BTG1 
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CD27 HADH EIF5 SHISA5 PBXIP1 

          

  
SNRPA PAFAH1B3 FKBP1A ITGB7 MKNK2 

          

  
UBE2L3 YEATS4 GSPT1 TMBIM4 DEDD2 

          

  
MDH1 RPA3 JMJD6 TRAF3IP3 AKIRIN1 

          

  
SDHC TIMM10 PRDM1 GPR171 

           

  
PSMG2 MCM5 LAPTM4A TRAF5 

           

  
C11orf48 FANCD2 IL21R ARHGEF3 

           

  
PSMA2 RAD51C ARPP19 PSMB8 

           

  
C7orf73 ICMT FABP5 IL2RB 

           

  
MRPS16 HIST1H1D SAR1B APOBEC3G 

           

  
MCM7 LSM5 LYST CALCOCO2 

           

  
SNX20 SSRP1 EZH2 MPHOSPH9 

           

  
AK2 HIST1H4C HERPUD1 DTHD1 

           

  
RBBP7 DPYSL2 TRAF5 LY6E 

           

  
TIGIT TTF2 ANXA5 PPCS 

           

  
TMPO EEF1E1 ZNF331 CAPN1 

           

  
CTSB NUP37 UBE2B GBP2 

           

  
PARP1 EBNA1BP2 HBP1 PYHIN1 

           

  
USB1 CCDC167 SYTL3 FKBP1A 

           

  
MRPS7 MSH2 GTF3C1 NUDT22 

           

  
NHP2 FH FAS CTSD 

           

  
ATP5I DDX11 SPPL2A TRIM14 

           

  
PSMC1 MRPL12 ATXN1 SLC25A45 

           

  
VDAC1 PRDX4 GGA2 KLRD1 

           

  
CARD16 DNAJC9 C5orf15 UCP2 
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RNF181 ANAPC15 TSPYL2 UNC13D 

           

  
PGAM1 ITGB3BP PMF1 PSMB9 

           

  
NT5C MAGOHB RBPJ GSDMD 

           

  
IRF2 MMS22L POLR3E IRF9 

           

  
NUDT22 ACTL6A RAPGEF1 MPG 

           

  
NDUFA9 BOLA3 NOP58 MYO1F 

           

  
SRI USP1 EED SLFN12L 

           

  
GBP4 NABP2 CHST12 FERMT3 

           

  
NDUFS8 MCM6 GTF2B MUS81 

           

  
PSMC2 RUVBL2 TMX4 APOL6 

           

  
FPGS VRK1 CCND2 C17orf62 

           

  
PLSCR1 NCAPH2 PAPOLA FCRL3 

           

  
POLR2G HELLS FAM53B ICAM3 

           

  
COX8A KIF22 CCT4 SP140 

           

  
SLX1B WHSC1 TRIM59 

            

  
TRAPPC1 MYL6B FXR1 

            

  
ABI3 PDCD5 PPIL4 

            

  
CBX5 SHMT2 LAG3 

            

  
PSMD14 HIST1H1C DNAJB6 

            

  
UBE2L6 RANBP1 SMAP2 

            

  IFNG SCCPDH RP11-345J4.5             

  
DECR1 HAUS1 GPBP1 

            

  
ITGB1BP1 MRPS23 SERTAD1 

            

  
AKR1B1 UBR7 PAG1 

            

  
PSMA5 POLR2H TRIM26 

            

    
TCP1 

            

    
AZIN1 
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