Structural Proof of a [C–F–C]⁺ Fluoronium Cation Kurt F. Hoffmann, Anja Wiesner, Carsten Müller, Simon Steinhauer, Muhammad Kazim, Cody Ross Pitts, Thomas Lectka^{2*}, Sebastian Riedel^{1*} Correspondence to: ¹ s.riedel@fu-berlin.de; ² lectka@jhu.edu Supplementary Information:

Supplementary Fig. 1. Molecular structure of $[1][Sb_2F_{11}] \cdot (SO_2ClF)_3$. Thermal ellipsoids set at 50 % probability.

10 Supplementary Table 1. Summary of crystal data and refinement results

	[1][Sb ₂ F ₁₁]·(SO ₂ CIF) ₃
CCDC number	CCDC-2049161
empirical formula	$C_{14}H_{14}CI_3F_{20}O_9S_3Sb_3$
formula weight	1274.03
temperature [K]	100.0
crystal system	monoclinic
space group	P21/C
a [pm]	9.4660(4)
<i>b</i> [pm]	25.0063(11)
<i>c</i> [pm]	14.8266(7)
α [°]	90
β [°]	92.532(2)
γ [°]	90
volume [ų]	3506.2(3)
Z	4
$ ho_{ ext{calcd}} \left[ext{ g} \cdot ext{cm}^{-3} ight]$	2.414
μ[mm ⁻¹]	2.850
dimension [mm]	0.435 × 0.185 × 0.164
color	yellow
reflection collected	101280
independent reflections	8747 [<i>R</i> _{int} = 0.0981]
data/restraints/parameters	8747/29/498
goodness-of-fit on <i>P</i> ²	1.040
final R indexes $[l > 2\sigma(l)]$	$R_1 = 0.0328$ $wR_2 = 0.0549$
final <i>R</i> indexes [all data]	$R_1 = 0.0562$ $wR_2 = 0.0579$

11

12 Supplementary Table 2. Bond lengths of [1][Sb₂F₁₁]·(SO₂ClF)_{3.}

Atom	Atom	Length/A	Atom	Atom	Length/A	Atom	Atom	Length/A
Sb1	F2	1.8611(16)	Sb2	F12A	2.11(3)	O2	C13	1.495(3)
Sb1	F6	1.8613(17)	S1S	CI1S	1.9727(12)	O3	C13	1.164(4)
Sb1	F5	1.8564(18)	S1S	F1S	1.527(2)	C14	C7	1.497(4)
Sb1	F4	1.8625(17)	S1S	O2S	1.405(3)	C7	C6	1.556(4)
Sb1	O1	2.0971(18)	S1S	01S	1.400(2)	C7	C12	1.561(4)
Sb1	F3	1.8628(18)	S2S	CI2S	1.9713(11)	C7	C8	1.546(4)
Sb3	F17	1.8489(18)	S2S	F2S	1.538(2)	C11	C10	1.546(4)
Sb3	F12	2.027(10)	S2S	O4S	1.401(2)	C11	C1	1.516(4)
Sb3	F16	1.8548(18)	S2S	O3S	1.398(3)	C11	C12	1.549(4)
Sb3	F13	1.854(2)	S3S	CI3S	1.9565(17)	C10	C9	1.560(4)
Sb3	F14	1.850(2)	S3S	O5S	1.387(3)	C6	C2	1.517(4)
Sb3	F15	1.8535(19)	S3S	F3S	1.709(9)	C6	C5	1.548(4)
Sb3	F12A	1.91(4)	S3S	O6S	1.323(7)	C1	C8	1.524(4)
Sb2	F10	1.8589(17)	S3S	F3AS	1.526(7)	C12	C13	1.506(4)
Sb2	F11	1.8558(19)	S3S	O6AS	1.360(7)	C12	C3	1.553(4)
Sb2	F12	2.033(6)	F1	C1	1.566(3)	C8	C9	1.546(4)
Sb2	F9	1.851(2)	F1	C2	1.587(3)	C4	C3	1.548(4)
Sb2	F7	1.8469(19)	O1	C14	1.243(3)	C4	C5	1.568(4)
Sb2	F8	1.8554(18)	02	C14	1.306(3)	C2	C3	1.511(4)

14 Supplementary Table 3. Bond angles of $[1][Sb_2F_{11}] \cdot (SO_2ClF)_{3.}$

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
F2	Sb1	F6	94.66(8)	F7	Sb2	F12	178.0(4)	C1	F1	C2	115.64(17)
F2	Sb1	F4	93.88(8)	F7	Sb2	F9	94.03(10)	C14	01	Sb1	129.82(18)
F2	Sb1	01	176.97(8)	F7	Sb2	F8	95.15(9)	Sb3	F12	Sb2	155.9(7)
F2	Sb1	F3	91.80(8)	F7	Sb2	F12A	165(5)	C14	02	C13	110.7(2)
F6	Sb1	F4	171.46(7)	F8	Sb2	F10	169.22(9)	01	C14	02	122.5(2)
F6	Sb1	01	86.01(7)	F8	Sb2	F11	88.30(9)	01	C14	C7	123.8(3)
F6	Sb1	F3	89.63(9)	F8	Sb2	F12	85.95(17)	02	C14	C7	113.7(2)
F5	Sh1	F2	92 88(8)	F8	Sh2	F12A	84 6(19)	C14	C7	C6	1137(2)
F5	Sb1	F6	89.48(9)	F1S	S1S	CI1S	98.88(11)	C14	C7	C12	103.6(2)
F5	Sh1	F4	90.01(8)	025	S1S	CI1S	109 41(12)	C14	C7	C8	116 8(2)
F5	Sh1	01	84 16(8)	025	S1S	F1S	106.94(15)	C6	C7	C12	104 1(2)
F5	Sh1	E3	175 29(8)	015	S1S	CI1S	108.97(13)	C8	C7	C6	112 4(2)
F4	Sh1	01	85 46(7)	015	S1S	F1S	107 82(16)	C8	C7	C12	104 6(2)
F4	Sh1	F3	90 18(9)	015	S1S	025	122 26(17)	C10	C11	C12	110 7(2)
F3	Sh1	01	91 16(8)	F2S	S2S	CI2S	98 17(9)	C1	C11	C10	97 8(2)
F17	Sh3	F12	84 9(5)	045	S2S	CI2S	108 52(11)	C1	C11	C12	99 5(2)
F17	Sh3	F16	90 58(9)	045	S2S	F2S	107 11(14)	C11	C10	C9	$104\ 2(2)$
F17	Sh3	F13	92 90(9)	035	S2S	CI2S	110 33(12)	C2	C6	C7	99 0(2)
F17	Sh3	F14	172 59(11)	035	S2S	F2S	107 18(15)	C2	C6	C5	97 1(2)
F17	Sh3	F15	89 84(10)	035	S2S	045	122 68(16)	C5	C6	C7	111 2(2)
F17	Sh3	F12A	99(3)	055	S3S	CI3S	109 55(14)	C11	C1	F1	109 5(2)
F16	Sh3	F12	84 13(18)	055	535	F3S	93 3(4)	C11	C1	C8	99 2(2)
F16	Sh3	F12A	95(4)	055	535	F3AS	114 6(4)	C8	C1	F1	108 1(2)
F13	Sh3	F12	177 0(5)	F3S	535	CI3S	97 9(3)	C11	C12	C7	103 5(2)
F13	Sh3	F16	93 85(10)	065	535	CI3S	116 6(4)	C11	C12	C3	112 6(2)
F13	Sh3	F12A	165(5)	065	S3S	055	128 6(4)	C13	C12	C7	105.3(2)
F14	Sh3	F12	87 7(5)	065	535	F3S	101 4(5)	C13	C12	C11	115 2(2)
F14	Sh3	F16	89.06(10)	E3AS	S3S	CI3S	101.0(3)	C13	C12	C3	114 5(2)
F14	Sh3	F13	94 51(11)	06AS	S3S	CI3S	99.3(4)	C3	C12	C7	104 1(2)
F14	Sh3	F15	89 35(11)	OGAS	535	055	121 8(5)	C7	C8	C9	1107(2)
F14	Sh3	F12A	74(3)	06AS	S3S	E3AS	107 7(5)	C1	C8	C7	99 1(2)
F15	Sh3	F12	86 81(19)	045	S2S	CI2S	108.52(11)	C1	C8	C9	97.5(2)
F15	Sh3	F16	170 85(10)	045	S2S	F2S	107 11(14)	C3	C4	C5	103.9(2)
F15	Sb3	F13	95,26(10)	035	S2S	CI2S	110.33(12)	C8	C9	C10	104.0(2)
F15	Sb3	F12A	76(4)	035	S2S	F2S	107.18(15)	02	C13	C12	106.7(2)
F10	Sh2	F12	83 45(18)	035	S2S	045	122 68(16)	03	C13	02	1180(2)
F10	Sh2	F12A	85(2)	055	S3S	CI3S	109 55(14)	03	C13	C12	135 3(3)
F11	Sb2	F10	89,23(9)	055	S3S	F3S	93.3(4)	C6	C2	F1	108.4(2)
F11	Sh2	F12	87.3(5)	055	S3S	F3AS	114 6(4)	C3	C2	F1	1084(2)
F11	Sb2	F12A	70(5)	F3S	S3S	CI3S	97.9(3)	C3	C2	C6	99.9(2)
F9	Sb2	F10	90.18(9)	065	S3S	CI3S	116.6(4)	C4	C3	C12	111.3(2)
F9	Sb2	F11	171.47(10)	O6S	S3S	05S	128.6(4)	C2	C3	C12	99.5(2)
F9	Sb2	F12	84.2(5)	065	S3S	F3S	101.4(5)	C2	C3	C4	97.1(2)
F9	Sb2	F8	90.71(10)	F3AS	S3S	CI3S	101.0(3)	Č6	C5	Č4	104.2(2)
F9	Sb2	F12A	101(5)	OGAS	535	CI3S	99.3(4)	Sb3	F12A	Sb2	162(6)
F7	Sb2	F10	95.51(9)	O6AS	S3S	058	121.8(5)	0.00	1 1 201	0.2	
F7	Sb2	F11	94,49(10)	06AS	S3S	F3AS	107.7(5)				
<u> </u>	0.02		0.1.10(10)	00,0	000	10110					

- 26 Supplementary Table 4. Calculated vibrational frequencies and C-X-C bond angles of different dimethyl
- 27 halonium ions $[Me_2X]^+$ (X = F, Cl, Br, I), double-norbornyl type halonium ions $[DNTX]^+$ (C_{2v} symmetry) and HC-
- substituted $[R_2DNTX]^+$ halonium ions (R = F, Me, CF₃) at def2-TZVPP/B3LYP level of theory. Frequencies are 28
- 29 given in cm⁻¹. Relative intensities are given in brackets.

	$v_{s}(cage)$		(C-X-C)	$v_{as}(cage)$) ν_{as}	; (C-X-C)	
7		r Y	Ţ	Y	$\mathbf{k} \neq$	∕	
			v_{s} (cage)	ν _s (C-X-C)	Vas (cage)	Vas (C-X-C)	<(C-X-C)
H X +	_н]+	[DNTF] ⁺	724 (6)	488 (6)	588 (29)	304 (34)	115°
		[DNTCI] ⁺	711 (11)	386 (4)	657 (22)	313 (3)	98°
		[DNTBr]⁺	710 (15)	368 (4)	651 (19)	253 (2)	92°
		[DNTI]⁺	709 (18)	365 (3)	649 (14)	234 (1)	86°
			<i>∨</i> s (C-X-C)	δ (C-X-C)	Vas (C-X-C)		<(C-X-C)
		[Me ₂ F] ⁺	659 (12)	264 (1)	677 (100)		121°
[_x⊕	ן+	[Me ₂ Cl] ⁺	561 (41)	228 (1)	604 (100)		105°
Me		$[Me_2Br]^+$	500 (55)	187 (4)	517 (100)		101°
		$[Me_2l]^+$	470 (41)	160 (3)	484 (52)		98°
			Vs (cage)	ν _s (C-X-C)	Vas (cage)	Vas (C-X-C)	<(C-X-C)
_		[F ₂ DNTF] ^{+ a)}	850/800	552/474	688	-168	115°
	R F2DN	[F ₂ DNTCI] ⁺	831/780	519/415	685	237	97°
		[(CH ₃) ₂ DNTF] ⁺	708/679	546/467	638/552	176 ^{b)}	119°
1 Lip		[(CH ₃) ₂ DNTCl] ⁺	709/667	518/402	660/563	363 ^{c)}	102°
0		[(CF ₃) ₂ DNTF] ⁺	847/803	509	691/537	375	118°
<u> </u>		[(CF ₃) ₂ DNTCl] ⁺	868/792	405	715/546 ^{d)}	376	101°

^{a)}: Transition state connecting two carbo-cationic structure ^{b)}: coupled with modes at 434, 341 and 161 cm⁻¹ 30

31

^{c)}: coupled with mode at 278 cm⁻¹ 32

^{d)}: coupled with modes at 764 and 742 cm⁻¹ 33

Supplementary Fig. 2. Calculated structures of $[F_2DNTF]^+$ (B3LYP/def2-TZVPP). Left: Ground state with carbo-cationic structure. Right: Transition state with C_{2v} symmetry.

38

Supplementary Fig. 3. Experimental and calculated (B3LYP/def2-TZVPP) IR spectra of precursor 2.

42

43 **Supplementary Table 5.** Selected experimental and calculated (B3LYP/def2-TZVPP) vibrations of precursor **2**.

44	
45	

Frequence	cies [cm ⁻¹]	Assignments
experimental	calculated	
1855 (m)	1903 (m)	<i>v</i> _s (C=O)
1775 (vs)	1838 (vs)	v _{as} (C=O)
900 (vs)	930 (s)	<i>v</i> _{as} (C-O-C)

vs=very strong, s=strong, m=medium

47 Supplementary Fig. 4. Electron localization function in the C–X–C plane ("xz-plane") and the plane containing
48 the halogen's lone pairs, perpendicular to the former one (yz-plane). Both planes are merged at the molecule's
49 main axis (dashed red line). ELF is defined from 0.0 (white) to 1.0 (red); contours are drawn in intervals of 0.1.

51 Supplementary Table 6. Atomic charges of fluoronium in C_{2v} symmetry.

Atom(s)	AIM	NBO	Mulliken	ChelpG	Merz-Kollmann	Voronoi	Löwdin
1 F	-0.521	-0.260	-0.136	-0.132	-0.094	0.058	0.382
20	-0.031	-0.490	-0.163	-0.441	-0.480	-0.100	0.399
3/13 C	-0.009	-0.119	-0.063	0.038	-0.120	-0.031	-0.067
4/9/14/25 C	0.041	-0.256	-0.046	-0.219	-0.237	-0.042	0.029
5/10/15/26 H	0.072	0.254	0.139	0.128	0.174	0.091	0.005
6/16/19/27 C	0.000	-0.388	-0.223	-0.036	-0.101	-0.042	0.100
7/18/21/28 H	0.056	0.238	0.140	0.067	0.106	0.082	0.001
8/17/20/29 H	0.050	0.233	0.147	0.075	0.108	0.066	0.002
11/23 C	0.245	0.285	0.150	0.284	0.258	0.116	0.083
12/24 H	0.141	0.236	0.177	0.135	0.160	0.117	0.012
22/30 C	1.556	0.788	0.286	0.734	0.839	0.225	-0.453
31/32 O	-1.101	-0.479	-0.216	-0.444	-0.448	-0.217	0.259

- -