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SUPPLEMENTARY NOTE 1: CLASSICAL VS. QUANTUM RESPONSE

In this Supplementary Note 1, we briefly describe the concept of quantized linear response in a quantum setting,
as a comparison with the classifical quantized response we define. Consider the quantum setting described by a
Hamiltonian Ĥ(t) = Ĥ0 + ε(t)Ĥ ′, where Ĥ0 is the equilibrium Hamiltonian, Ĥ ′ the perturbed operator and ε(t) a

time-dependent factor that controls the perturbation strength. The linear response of a chosen operator φ̂ (which has

zero expectation when ε(t) = 0) is its expectation φ̂(t) after ε(t) is switched on. In frequency space, we write

〈φ̂〉(ω) = D(ω)ε(ω), (1)

where

D(ω) = −i
∫ ∞

0

〈[φ̂(t), Ĥ ′(0)]〉 dt

= −iZ−1

∫ ∞
0

Tr
(
e−H0/(kBT )[φ̂(t), Ĥ ′(0)]

)
dt

=
1

Z

∑
nm

〈n|φ̂|m〉〈m|Ĥ ′|n〉(e−En/(kBT ) − e−Em/(kBT ))

ω + iδ − (Em − En)

(2)

where Z = Tr
(
e−Ĥ0/(kBT )

)
, kB is the Boltzmann constant and T is the temperature, and the trace is taken over

all eigenstates |n〉 satisfying Ĥ0|n〉 = En|n〉. Very importantly, it has been assumed that the system is in a ground
state where the eigenstates |n〉 are occupied according to the Boltzmann probability distribution ∝ eEn/(kBT ). By
expressing the trace as a momentum-space integral which shall correspond to a topological invariant, a topologically
quantized response coefficient can be obtained, for instance, with the DC limit of D(ω)/iω in the case of Hall response.

By contrast, Supplementary Eq. 2 (the Kubo formula) is inapplicable in classical settings, where the systems do
not settle into a ground state. As discussed in the main text, an external coherent drive ε(t) = ε(ω)exp(−iωt) (in
the frequency domain) and its resultant classical response field φ(t) = φ(ω)exp(−iωt) can be related by the Green’s
function matrix G,

φ(ω) = G(ω, γ)ε(ω), G(ω, γ) =
1

ω + iγ −H
, (3)

analogous to Supplementary Eq. 2 which is exclusively for quantum settings.

SUPPLEMENTARY NOTE 2: CASES WITH COUPLINGS ACROSS DIFFERENT RANGES

In the main text, we have already witnessed an intriguing example where both nearest-neighboring and next-
nearest-neighbor couplings present in the system. In that case, with respect to different reference energy points,
the spectral winding can have different nonzero values and this is also manifested as different quantized responses.
Benchmarking this with our decoupled subchain picture, this indicates that there is competition in different regimes,
and the underlying topological robustness associated with either single-chain physics or two coupled subchain physics
still yields, remarkably, quantized responses. The next question is then, if we add more and more complexity to
a non-Hermitian lattice system with many coexisting hopping length scales, can we still observe quantization and



2

0
10
20
30

0 20 40

0

1

0
2
4
6

0 20 40

0

1

0

10

20

0 20 40
0

1

2

-5

0

0 20 40
-40

-20

0

-4 -2 0 2 4
-2

-1

0

1

2

(b)

(c)

(d) (e)

(a) (b1)
1
2

0.6
0.7

0.7
0.8

0.6

0.7

(b2)

(b3)

(c1)

(c2)

(c3)

(d1)

(d2)

(d3)

(e1)

(e2)

(e3)

FIG. S1. (a) PBC (blue loop) and OBC (black dots) spectra of a system with many coexisting hopping length scales, and the
PBC-OBC spectral evolution between them (blue-purple curves), tuned by the parameter β. Four reference energy values Er
are chosen to inspect the possible quantization of the gradient of the logarithm of directional amplification with respect to β,
each with a different winding number ν(Er), as indicated by the four colored marks. (b)-(e) show the summed reverse energy
spacing Iβ(Er) =

∑
n |1/(En(β) − Er)|, logarithm of the amplification ratio for the block of G associated with the winding

number ν(Er), as well as ν←,m and ν→,m, as functions of β. In (e) we have ν(Er) = 0, hence we only illustrate amplification
ratios G←,1×1 and G→,1×1, which are both less than unity, indicating no amplification for a signal moving either toward the
left or the right. Parameters are t2 = 2, t−2 = 1, t3 = 0, t−3 = 1, and t±m = 0 for all other values of m, with N = 300 lattice
sites.

hence a clear correspondence between spectral winding and the signal amplification. Our answer is yes based on more
computational tests.

Consider then a lattice model with nonzero terms {t−r, t−r+1, ..., tl−1, tl}, and none of them is dominating over the
rest. We can still view this system as one comprised of m subchains, with m 6 Max[r, l]. We can investigate if the
same response functions ν←,m or ν→,m can reflect the spectral winding behaviors. To proceed specifically, consider
the following Hamiltonian as an example,

H =

N∑
x=1

l∑
j=−r

tj ĉ
†
j ĉx+j , (4)

with r = l = 3, and the boundary coupling tuned via tj → e−βtj when it connects sites at different ends of this 1D
chain. The rather complicated spectral winding behavior is shown in Fig. S1(a), indicating winding numbers -1, 1,
2, and 0. As shown in Fig. S1(b)-(d), the obtained ν←,m or ν→,m for m = 1 or m = 2 still shows relatively clear
plateaus for cases with nonzero ν(Er), with the transitions of these plateaus in excellent agreement with the critical β
values for which the spectral winding numbers make jumps. In panel (c3), the quantization in ν←,1 is clearly seen. A
careful reader might notice that in panel (b3) and (d3), the plateaus of the obtained response function ν→,1 are so not
clearly quantized. To double check if this is merely a finite-size effect, we have increased the size of the model system
and then much better quantized plateaus are indeed observed, as presented in Fig. S2. As to the case of ν(Er) = 0
labeled by the yellow star in Fig. S1(a), no amplification is obtained for a signal moving toward either the left- or the
right-hand side, as indicated by the always-negative ln |G←,1×1| and ln |G→,1×1| in Fig. S1(e).

SUPPLEMENTARY NOTE 3: QUANTIZED RESPONSE AGAINST DISORDER

As the spectral winding topology of the non-Hermitian Hamiltonian does not depend on the system’s symmetries,
we expect the quantized plateaus to be robust against disorder without any symmetry restriction. In Fig. S3 we
illustrate the effect of certain disorder for the model of Supplementary Eq. 4 with t1 = 1, t−1 = 0.5, t2 = 2, and
tm = 0 for every other m, i.e. the example model of Figs. 1 and 2 in the main text. Adding to this model, we consider
some extra disorder terms given by

Hdisorder =

N∑
x=1

2∑
j=−2

Wj(x)ĉ†xĉx+j , (5)

with Wj(x) a random value between W and −W . It is seen that a nonzero W may change the sharpness of the jump
of ν→,2, as the spectral evolution may not pass a chosen reference energy Er exactly in a finite-size numeric; and
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FIG. S2. (a) ν→,1 and (b) ν←,2 as functions of β/N for the two cases in Fig. S1(b) and (d) respectively, with different numbers
of lattice N = 300, 400, and 600. As our previous analytical results suggest that the transition value βc is proportional to N ,
here the variable β is rescaled by a factor of 1/N , so as to map the transition points for systems with different sizes to the same
parameter. The plateaus are seen to be flatter (hence better quantization) for larger systems. Other parameters are t1 = 1 and
t−1 = 0.5.
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FIG. S3. Disorder effect on the quantized response of the example model of Figs. 1 and 2 in the main text, with the strength
of the the disorder given by (a) W = 0, (b) W = 0.2, and (c) W = 0.5. The unperturbed model Hamiltonian is given by
Supplementary Eq. ?? with t1 = 1, t−1 = 0.5, t2 = 2, tm = 0 for every other m, and N = 100 lattice sites. Results are obtained
with a single choice of the disorder Wj(x) for each panel.

shift the transition value of β, as the shape of the complex spectrum is modified by the disorder. Nevertheless, the
quantized plateaus of ν→,2 are clearly seen even with a relatively strong disorder with W = 0.5 The transitions of
ν→,2 also match the peaks (or local maximums) of Iβ(Er) =

∑
n |1/(En(β)− Er)| very well (see Supplementary Eq.

?? in the main text), which indicates the overlapping between the spectrum and the reference energy.

SUPPLEMENTARY NOTE 4: QUANTIZED RESPONSE IN A MULTIBAND SYSTEM

In this section, we extend our discussion to multi-band systems, where there can be more than one spectral loop
in the complex energy plane. Since the system is periodic at level of the unit cells, we shall expect topologically
quantized response when the Green’s function block is chosen appropriately. Suppose we rewrite the Hamiltonian in a
basis where the two bands are decoupled, i.e. He−SSH → H1

⊕
H2 with 1, 2 the band indices. Since a given reference
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energy may now be simultaneously enclosed by different bands with different windings, say Er is enclosed by band-1
but not by band-2, we shall obtain different quantized responses for different blocks, i.e. a nonzero response only for
the block corresponding to H1, but not that of H2. On the other hand, in the more experimentally relevant sublattice
basis, each sublattice is formed by components from both bands (as each band is formed by both sublattices). Hence
we may consider a block of the Green’s function given by the elements from one sublattice only, which already contains
the winding information of both bands and also takes into account the unit-cell structure of the system.

We demonstrate that this approach gives correct winding number measurements through an illustrative multi-band
model, with example computations performed in various parameter regimes (Figs. S4 and S5). Our model is the
extended non-Hermitian Su-Schrieffer-Heeger (SSH) [1] with long-range couplings, as described by the Hamiltonian

He−SSH =

N∑
x

[
(t1 + δ1)â†xb̂x + (t1 − δ1)b̂†xâx + (t2b̂

†
xâx+1 + h.c.)

+(t3 + δ3)â†xb̂x+2 + (t3 − δ3)b̂†x+2âx

]
(6)

with a and b the two sublattices. The longer-range coupling t3 ± δ3 is to induce large spectral winding number in the
complex energy plane, such as to illustrate the validity of our approach for relatively complicated multi-band models
with couplings across different distances. The associated momentum-space Hamiltonian is given by

He−SSH(k) =

(
0 t1 + δ1 + t2e

−ik + (t3 + δ3)e2ik

t1 − δ1 + t2e
ik + (t3 − δ3)e−2ik 0

)
. (7)

In Figs. S4 and S5, we illustrate our approach for several cases with different band structures and spectral winding
numbers, and quantized response of m is seen when we consider the m×m block for only one sublattice, with m the
spectral winding number at the chosen reference energy. For example, Ga←,3×3 is given by

Ga←,3×3 =

 G1(L−5) G1(L−3) G1(L−1)

G3(L−5) G3(L−3) G3(L−1)

G5(L−5) G5(L−3) G5(L−1)

 , (8)

with L = 2N and the basis of the matrix is arranged as (a1, b1, a2, b2, ..., aN , bN ). In Fig. S5, we illustrate two
further examples in different parameter regimes with the two bands being connected and separated respectively. In
either case, the maximal spectral winding number is νmax(Er) = 3 if we scan over all possible reference energy Er.
Nevertheless, here we choose the reference energy to have ν(Er) = 2, and the plateaus obtained via using a 2 × 2
block of the Green’s function matrix indeed yields the correct winding number.
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FIG. S4. Quantized response yielding the winding number at Er for an extended non-Hermitian SSH model with 2 bands and
long-range couplings. Blue and gray dots in (a1), (b1), and (c1) are the PBC and OBC spectra respectively, where the red star
gives the reference energy Er. (a) The two PBC bands are separated, each enclosing a nonzero area with a spectral winding
number ν = 1. (b) The two PBC bands connects into a single loop with a spectral winding number ν = 1. The quantized
response is calculated for the off-diagonal element for a-sublattice only in (a) and (b), with Ga1N = Ga←,1×1. (c) The two PBC
bands are separated, with a spectral winding number ranging from 1 to 3 for different reference energy Er enclosed by the
spectrum. Here we consider a case with ν = 3, and the quantized response is calculated for the 3 × 3 off-diagonal block, also
for a-sublattice only, as according to Supplementary Eq. 8. Parameters are (a) t1 = 1, δ1 = 0.5, t2 = 2, t3 = δ3 = 0, N = 100,
and Er = −2 + 0.2i; (b) t1 = 1, δ1 = 1.5, t2 = 2, t3 = δ3 = 0, N = 100, and Er = −1 + 0.5i; (c) t1 = δ1 = 0.5, t2 = 2, t3 = 1,
δ3 = 1.5, N = 150, and Er = −1.6 + 0.6i.
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FIG. S5. More examples of classical quantized response yielding the winding number at Er for an extended non-Hermitian
SSH model with 2 bands and long-range couplings. Blue and gray dots in (a1) and (b1) are the PBC and OBC spectra
respectively, where the red star gives the reference energy Er. The two PBC bands are connected into one loop in (a), and
separated in (b). In both cases, the maximum spectral winding is 3, and that of the chosen Er is ν(Er) = 2. Parameters are
(a) t1 = δ1 = 0.5, t2 = 2, t3 = 1, δ3 = 1.5, N = 150, and Er = −1.7 + 1.2i. (b) t1 = δ1 = 0.2, t2 = 2, t3 = 1, δ3 = 0.5, N = 150,
and Er = −2 + 0.4i.

SUPPLEMENTARY NOTE 5: ILLUSTRATIVE DETAILS OF CIRCUIT FOR PROBING THE
RESPONSE OF THE HATANO-NELSON MODEL

To be concrete, we provide explicit details for the realization of the simplest case of the circuit representing the
Hatano-Nelson model with topological winding ν = 1. It consists of a chain of nodes connected by unbalanced
couplings which simultaneously give rise to non-Hermiticity and non-reciprocity. It is well-established that such
couplings can be realized with INICs (negative impedance converters with current inversion) [2, 3], which contains
operation amplifiers that break the reciprocity. To realize the tuning of the spectral reference point Ω and end-to-
end couplings e−β(ω), we also include tunable inductors and additional RLC elements as according to Ref. [4]. Its
Laplacian, together with these tunable elements, takes the form

J =

[
e−β(ω)

(
eα|N〉〈0|+ e−α|0〉〈N |

)
+

N−1∑
x=0,±

e±α|x〉〈x± 1|

−
N∑
x=0

(
2 coshα− ω2

0/ω
2 + Ω(ω)

)
|x〉〈x|

]
×iωC (9)

where α = tanh−1 C1

C2
, C =

√
C2

2 − C2
1 , ω−2

0 = lgrC and Ω = −CΩ+iRΩ/ω
C . C1 and C2 are capacitors involved in

internode couplings as according to Ref. [4], and RΩ, lgr, CΩ are RLC elements that connect each node to the ground.
By varying the choice of CΩ and RΩ, Ω and hence different points of the complex eigenvalue plane can be sampled.
In this circuit, the ν = 1 and ν = 0 regions are separated by the curve Ω = 2 cosh(α + ik) − 2 coshα − ω2

0/ω
2. The

effective flux β(ω) can be adjusted by tuning the AC frequency ω, and is given by β(ω) = ln[1−ω2l(C2−C1)], where
l is an inductor involved in the internode couplings which controls the sensitivity of the tuning. Clearly, by including
additional couplings between more distant nodes [5–12], this circuit construction can be extended to models with
additional further couplings, such as that shown in the main text with t1 = 1, t−1 = 0.5, t2 = 2, t−2 = 0.
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