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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The main result of the paper is a theoretical proposal for measuring the spectral winding number in 

classical setups (electric circuits for example). The authors propose to measure the winding number 

by measuring the two-point Green's function at the open boundaries. They conjecture that the 

exponent of the Green's function is proportional to the winding number. So far the proposal is 

restricted to one-band in 1D. 

The authors connect the Green function with spectral winding number, which makes the change of 

spectral winding observable in electric circuit experiments. Specifically, the derivative of the logarithm 

of Green function with respect to parameter $\beta$ versus $\beta$ has quantized plateaus under 

thermodynamic limit, and the first quantized plateau corresponds to the winding number with respect 

to the reference energy $E_r$. Here $\beta$ is a parameter that controls the boundary condition from 

periodic to open boundary. 

The spectral winding number is a new topological invariant unique to non-hermitian systems. In 1D, 

this is the winding of the phase of the eigenvalue over the BZ, with reference to a pre-chosen energy, 

and this number being number has been shown in previous works related to the skin effect. It would 

be nice if one finds a more quantitative "bulk-edge correspondence" for this topological invariant, 

which I believe is the goal of this paper. Unfortunately, after reading it, I find the derivation of the 

paper too restricted for its claim. Therefore, I cannot recommend recommendation unless the 

following questions be addressed. 

1. The authors propose the quantized response to measure the spectral winding in one-band cases. 

For completeness, I think that the authors should extend this statement into multi-band cases. In 

multi-band cases, the spectral winding for a given reference energy is well-defined and the parameter 

$\beta$ can also tune the boundary condition from periodic to open. Based on this, how to define the 

quantized response to capture the spectral topology? More concretely, what the form of Eq.(10) will 

become in multi-band cases? Can the authors give certain numerical results to support it? 

2. The key step to obtain the quantized response is that the (determinant of) Green’s function is 

proportional to the exponential of $m\beta$. I note that it has been proved for the cases with only 

nearest neighbor coupling and only mth-nearest neighbor coupling in method section. However, to 

obtain the final result Eq.(27), “t1>>t_{-1}” is assumed, where the system approaches to an 

exceptional point. In general cases with only nearest neighbor coupling, the magnitudes of t1 and t_{-

1} are comparable, can the same conclusion Eq.(29) be strictly obtained at this time? 

3. For general one-band cases with more complicated hopping parameters, the authors take a “sub-

chain” argument, which is strictly established for the cases with only mth-nearest neighbor coupling in 

method section, and further obtain Eq.(10). However, in general cases, the first (m-1)th hopping 

parameters are not zero and even dominated, we expect that the authors can give a more rigorous 

and clear proof instead of only the “sub-chain” argument. 

4. If the system has disorders, the translational symmetry is destroyed, and the spectral winding in 

momentum space will be not well-defined. In these cases, can the quantized plateaus still be observed? 

5. In addition, I suggest that the content in the section “Classical vs. Quantum response”, especially 

the formulas, can be partially moved to the Supplementary Materials for the consideration that they 

are not very closely related to the focus of the main text, and these formulas can also be found in 



most textbooks. 

Reviewer #2 (Remarks to the Author): 

This manuscript presents a theoretical study on the quantized responses associated with the spectral 

winding number of 1D non-Hermitian Hamiltonians in a classical setting in the sense that it is based 

on the Green’s function of the system. In the model Hamiltonian, the coupling between the first and 

last sites is tuned by a scaling factor beta such that the boundary condition continuously changes from 

periodic (PBC) to open (OBC). During this process, the winding number reduces to zero as the 

complex eigenenergy deforms from loops in PBC to lines in OBC that do not have interiors. The 

authors further show that the logarithm of the Green’s function describing directional signal 

amplification shows plateaus with slopes related to the winding number, and exhibits jumps as the 

winding number decreases during the PBC to OBC transition. The authors argue that the quantized 

response of the logarithm of the Green’s function is a measurable quantity and show an example of 

measuring the quantized impedance in an electrical circuit setting. 

Overall, I think that the proposal of using the Green’s function to measure the winding number is new 

and interesting, and the presented results appear sound. I believe this work provides new insights and 

makes an important contribution to the field of non-Hermitian physics. However, the manuscript is 

focused on the detailed physics of an already well-studied model system. I am not convinced that it is 

significant enough to warrant publication in Nature Communications. 

I also have a few comments regarding the details of the manuscript. 

1. As far as I understand, the winding number should be a well-defined invariant for a 1D non-

Hermitian Hamiltonian with respect to an arbitrary reference energy E_r. It seems that the system in 

the manuscript can have different winding numbers as the reference energy E_r is chosen differently. 

Physically how does one choose the reference energy? Do the results in Figs. 2 and 3 still hold if one 

chooses the reference E_r differently to start with? 

2. In the Method section, the assumption of calculating G_1N using the integral form in Eq. 26 is that 

β/N is vanishingly small. Yet in the main text, with N = 100, the β parameter is varied from 0 to 90, 

which is beyond this assumption. Does the result of G_1N calculated numerically by Eq. 25 deviate 

from Eq. 26 across the wide range of β? 

3. On page 3, the authors claim a quantized classical response distinct from existing topological Hall 

response exclusively in quantum systems. However, this statement completely ignores the abundant 

examples of various Hall responses realized in photonic and sonic systems which are also classical. 

4. The inverse temperature and the scaling factor of boundary couplings are both denoted by β, which 

causes confusion. 

5. The explanation regarding winding number of -1 for the topological trivial case on page 5 seems not 

provided in the Supplemental Material.



 

 

 

First of all, we would like to thank you and the reviewers for taking your time in considering 

our manuscript. We are pleased that both reviewers found our work interesting, and unanimously 

recognized the novelty of our work in the very active field of non-Hermitian physics. Reviewer #1 

acknowledge that “it would be nice if one finds a more quantitative ‘bulk-edge correspondence’ for 

this topological invariant”, His/her reservation is only that our derivation is too restricted to a 

special type of model, which we have greatly improved upon with the suggestions from the 

reviewer. Reviewer #2 agrees our work “is new and interesting” and “provides new insights and 

makes an important contribution to the field of non-Hermitian physics”. 

 By following the detailed comments from both referees closely, we have substantially 

improved on our manuscript by greatly enlarging the scope of our results. We are confident that we 

have now fully addressed all their concerns, such that our work now meets the standards of Nature 

Communications. In this revised manuscript, we have broadened the scope of our results and 

derivations to also include: 

1) A treatment of generic multi-band scenarios 

2) A treatment of models with generic longer-range hoppings, beyond the “sub-chain” 

argument 

3) A demonstration that disorder does not change the main results 

4) More involved treatment of the topological invariance of our classical response 

These enhancements are performed closely according to the suggestions from both referees, and 

definitely push the scope of our results to far beyond the detailed physics of particular well-studied 

model systems. 

 

Detailed below are our responses to the comments of the reviewers, together with a description of 

the associated changes in the manuscript. 

---------------------------------------------------------------------- 

Response to Reviewer #1 

---------------------------------------------------------------------- 

The main result of the paper is a theoretical proposal for measuring the spectral winding number in 

classical setups (electric circuits for example). The authors propose to measure the winding number 

by measuring the two-point Green's function at the open boundaries. They conjecture that the 

exponent of the Green's function is proportional to the winding number. So far the proposal is 

restricted to one-band in 1D. 



 

 

 

The authors connect the Green function with spectral winding number, which makes the change of 

spectral winding observable in electric circuit experiments. Specifically, the derivative of the 

logarithm of Green function with respect to parameter $\beta$ versus $\beta$ has quantized 

plateaus under thermodynamic limit, and the first quantized plateau corresponds to the winding 

number with respect to the reference energy $E_r$. Here $\beta$ is a parameter that controls the 

boundary condition from periodic to open boundary. 

 

The spectral winding number is a new topological invariant unique to non-hermitian systems. In 

1D, this is the winding of the phase of the eigenvalue over the BZ, with reference to a pre-chosen 

energy, and this number being number has been shown in previous works related to the skin effect. 

It would be nice if one finds a more quantitative "bulk-edge correspondence" for this topological 

invariant, which I believe is the goal of this paper. Unfortunately, after reading it, I find the 

derivation of the paper too restricted for its claim. Therefore, I cannot recommend recommendation 

unless the following questions be addressed. 

 

We are pleased that Reviewer #1 acknowledges the importance of our finding, namely a more 

quantitative “bulk-edge correspondence” of the spectral winding number unique to non-Hermitian 

systems. Now that we have significantly generalized our derivations and results, as closely 

according to the suggestions of the reviewer, we are confident that our work is no longer “too 

restrictive” for claiming this topological correspondence. We are grateful to him/her for the 

following suggestions for improvement, which help us broadening the scope of our finding.  

 

1. The authors propose the quantized response to measure the spectral winding in one-band cases. 

For completeness, I think that the authors should extend this statement into multi-band cases. In 

multi-band cases, the spectral winding for a given reference energy is well-defined and the 

parameter $\beta$ can also tune the boundary condition from periodic to open. Based on this, how 

to define the quantized response to capture the spectral topology? More concretely, what the form 

of Eq.(10) will become in multi-band cases? Can the authors give certain numerical results to 

support it? 

We are grateful to our reviewer for raising this insightful question. It is indeed interesting to extend 

our finding to multi-band cases, as now different bands may have different spectral winding. 

Another subtly is the following: in this extended case how shall we take into account the unit-cell 

structure when we choose the size of the block of the Green’s function matrix.  

To this end, we propose to measure the winding based on a m*m block of the Green’s function 

matrix with only a single sublattice included, with m equaling the total spectral winding number for 

a chosen reference energy, generalizing Eq 10. This is because by choosing a single sublattice with 

non-zero support of the steady state, it already contains sufficient information from one unit cell to 

another unit cell.  



 

 

We have numerically verified this conclusion with an extended non-Hermitian Su-Schrieffer-

Heeger model, with several intriguing cases in which the total spectral winding number for both 

bands take 1, 2, and 3. In some cases the two bands even connect into one big loop, thus each band 

corresponding to a fractional winding number. Yet our scheme is seen to work well. We have 

discussed these results in the new Supplemental Note 4, which is also summarized in the main text.  

As such, we have successfully shown how to generalize our approach to multi-band settings, and 

computationally verified it under a variety of scenarios.   The newly added results definitely make 

our main claim more general and more fascinating, for which we are grateful to our referee for 

having stretched our efforts on this part.  

 

2. The key step to obtain the quantized response is that the (determinant of) Green’s function is 

proportional to the exponential of $m\beta$. I note that it has been proved for the cases with only 

nearest neighbor coupling and only mth-nearest neighbor coupling in method section. However, to 

obtain the final result Eq.(27), “ t1>>t_{-1}”  is assumed, where the system approaches to an 

exceptional point. In general cases with only nearest neighbor coupling, the magnitudes of t1 and 

t_{-1} are comparable, can the same conclusion Eq.(29) be strictly obtained at this time? 

We thank our reviewer for his/her careful reading of our manuscript and brought up this valuable 

question. Previously, the assumption “t_1>>t_{-1}” was made for simplicity of presentation, and 

our results and derivations definitely hold true for for generic t_1 > t_{-1}” with no other constrain 

on relative magnitude.  

In the revised version, we have made this explicit by rewriting the derivation without the 

assumption “t_1>>t_{-1}”, with comments on the new validity conditions. This derivation only 

requires a much weaker condition on t_1 and t_{-1}}, which is also associated with the parameter 

beta, and can be far away from the exceptional point (i.e. t_{-1}=0). The revised discussion is 

marked in blue in the Methods section. 

3. For general one-band cases with more complicated hopping parameters, the authors take a “sub-

chain” argument, which is strictly established for the cases with only mth-nearest neighbor coupling 

in method section, and further obtain Eq.(10). However, in general cases, the first (m-1)th hopping 

parameters are not zero and even dominated, we expect that the authors can give a more rigorous 

and clear proof instead of only the “sub-chain” argument. 

Being able to account for cases beyond the simple m-th nearest neighbor coupling is a vital aspect 

of our discovered quantized response. It is fair to say that precisely because the quantized response 

can cover more complicated cases (even covering the multi-band cases we discussed earlier in this 

reply), we are making a fascinating advance in investigating physics.   We also perfectly understand 

our referee’s wish to see a “rigorous” proof, and below we share with our referee what is the key 

physics lessons learned that could point to a future mathematical proof, which is still out of reach at 



 

 

this point.  In our view, physical understanding and actual demonstration can be even more 

interesting than a technical proof as we attempt to break a new ground.  

We start with a case with the m-th nearest neighbor hopping only. In this case, the whole system 

can be regarded as m decoupled chains with identical nearest neighbor hopping.  That these chains 

are independent is reflected by the fact that the m*m Green’s function block is an entirely diagonal 

matrix.  If the reference energy hits the spectral loop for one chain, so do all other chains.  As 

shown rigorously in the Methods, once the reference energy is outside the spectral loop, there will 

be either no amplification or saturated amplification.  So the quantized winding “m” or “0” in this 

case counts the number of modes that can be amplified, with each mode having an exponential 

dependence on beta.     

Now if we turn on coupling of different hopping ranges (all smaller than or equal to m), the system 

becomes m sub-chains coupled to each other.  So how to correctly count the number of independent 

modes that can be amplified, still with their amplification factor exponentially dependent on beta?   

The obvious and physics-motivated way is to diagonalize the m*m sub-block of the Green’s 

function to extract effectively independent modes that is still amplified with the amplification factor 

e^\beta. In particular, this key information can be captured by the determinant of the m*m block, 

which is nothing but the product of all the eigenvalues of the sub-block matrix of the Green’s 

function.  

We can now consider two scenarios to see what happens if we move the system across a phase 

transition.  Consider the first scenario where we tune beta.   As shown rigorously in the Methods, if 

the spectral loop encloses the reference energy, the amplification factor of a simple chain with only 

nearest neighbor hopping will scale as exp^{beta}.   Once the beta-dependent spectral loop shrinks, 

crosses, and eventually does not enclose a given reference energy, then the amplification will be 

saturated and hence no longer dependent on beta.  This process will be experienced by one of the m 

effectively independent sub-chains when a phase transition occurs.  The rest (m-1) independent 

modes of the m*m Green ’s block will remain amplified, with their amplification factor still 

exponentially dependent on beta.  Therefore the log of the determinant of this m*m Green’s block 

will be quantized at m-1.  As we further tune beta, we should be able to gradually experience 

quantized jumps towards to lower and lower integer values, simply because the number of 

independent sub-chains that can still amplify signal this way will decrease one by one.  This is also 

verified by our computational findings again and again.         

In the second scenario, we do not tune beta but only varying other system parameters, such as the 

reference energy or hopping constants.  Applying the above decoupled mode picture again, one 

knows that one of the independent modes will first cease to amplify when a phase transition occurs, 

hence it is topologically equivalent to a chain with zero winding.  In this case, as we also show 

explicitly in the main text using the simplest chain, the eigenvalue of this trivial mode can have 

beta-dependence like exp^{-C\beta}. (This point is also related to our reply to our second referee’s 

last comment).   In this case, to witness the actual winding number, which is (m-1) after the first 

phase transition, one should consider instead the determinant of the (m-1)*(m-1) sub-block of the 

Green’s function.   This understanding is also fully accounted for when we show how to choose the 

right sub-block of the Green’s function to map out a phase diagram completely (see Fig 3). 



 

 

 

Figure Caption:  Properties of matrix elements and the defining equation for the Green’s function.  

We are sure that our referee may also appreciate a working mechanism based more on technical 

equations. Let us inspect the defining equation of the Green’s function itself  (see Figure above).  

First assuming that the system is essentially that of m subchains of which we have analytical results.  

From the equation of G(E_r-H)=1 (elaborated in detail in the revised Methods section), the m*m  

sub-block of the Green’s function matrix G we used to observe quantized response must have an 

overall coefficient e^\beta, to cancel the coefficient of the matrix elements (E_r-H) that all have a 

coefficient e^{-beta} in its corresponding m*m sub-block (see Figure above).  As such, the 

determinant of m*m off-diagonal block of G will always have a coefficient of e^{m\beta}, provided 

that G is well defined in the first place. Let us now gradually turn on other hopping parameters.  

This picture is expected to hold until the reference energy hits the spectral loop, where G is ill-

defined.   Therefore, the log of the determinant of the m*m off-diagonal block of G, which is 

measurable in a signal amplification setting, is quantized at m until a phase transition occurs. 

Further, this quantization at m is robust due to topology, hence generating a plateau. Self-

consistently, upon crossing the phase transition point, the topological winding number jumps, e.g., 

from m to m-1, the system is then topologically equivalent to that of (m-1) simple sub-chains and 

one should reapply the above analysis with (m-1) sub-chains,   obtaining a quantization plateau at 

m-1.  This also makes it clear that quantized response is protected by spectral winding topology.  

In making a stronger case for our method, we have also decided to add these physics discussions to 

the Methods section under “Cases with couplings across multiple ranges”, which comes after 

introducing about the sub-chain picture. 

 

4. If the system has disorders, the translational symmetry is destroyed, and the spectral winding in 

momentum space will be not well-defined. In these cases, can the quantized plateaus still be 

observed? 

This is a very important question as the robustness of the quantized response against disorder is a 

key aspect for topological quantization. Fortunately, our quantized plateaus turn out to be indeed 

robust against disorder. Furthermore, as the spectral winding topology of the non-Hermitian 



 

 

Hamiltonian does not depend on the system’s symmetries, we expect the quantized plateaus to be 

robust against disorder without any symmetry restriction. 

In our revision, we have considered reasonably large disorder of the hopping parameters, and found 

that the quantized plateaus can still be clearly seen. Even with relatively large disorder of maximal 

magnitude W=0.5 (Eq S5), the plateaus are still very distinct, just somewhat rounded (Fig. S3). We 

have added a new section in the Supplemental Materials (Note 2) to show these affirmative results,  

5. In addition, I suggest that the content in the section “Classical vs. Quantum response”, especially 

the formulas, can be partially moved to the Supplementary Materials for the consideration that they 

are not very closely related to the focus of the main text, and these formulas can also be found in 

most textbooks. 

We have now accordingly reorganized the relevant content as our reviewer had suggested.  Many 

thanks to our referee.  

 

---------------------------------------------------------------------- 

Response to Reviewer #2 

---------------------------------------------------------------------- 

Reviewer #2 (Remarks to the Author): 

 

This manuscript presents a theoretical study on the quantized responses associated with the 

spectral winding number of 1D non-Hermitian Hamiltonians in a classical setting in the sense that 

it is based on the Green’s function of the system. In the model Hamiltonian, the coupling between 

the first and last sites is tuned by a scaling factor beta such that the boundary condition 

continuously changes from periodic (PBC) to open (OBC). During this process, the winding 

number reduces to zero as the complex eigenenergy deforms from loops in PBC to lines in OBC 

that do not have interiors. The authors further show that the logarithm of the Green’s function 

describing directional signal amplification shows plateaus with slopes related to the winding 

number, and exhibits jumps as the winding number decreases during the PBC to OBC transition. 

The authors argue that the quantized response of the logarithm of the Green ’s function is a 

measurable quantity and show an example of measuring the quantized impedance in an electrical 

circuit setting. 

 

Overall, I think that the proposal of using the Green’s function to measure the winding number is 

new and interesting, and the presented results appear sound. I believe this work provides new 

insights and makes an important contribution to the field of non-Hermitian physics. However, the 



 

 

manuscript is focused on the detailed physics of an already well-studied model system. I am not 

convinced that it is significant enough to warrant publication in Nature Communications. 

 

We thank our reviewer for his/her positive comment that “this work provides new insights and 

makes an important contribution to the field of non-Hermitian physics.” The main reservation of 

our reviewer is that he/she thinks our work is focused on the detailed physics of an already well-

studied model system.  

We understand where our referee’s concern come from, given that our discussions start from a well-

studied single-band model for illustration and for clear physics insights.  However, as also stated in 

response to our reviewer 1, we have now significantly generalized and explained the results to a 

wide variety of much more generic models (multi-band cases, systems with multi-range hopping, 

with the same quantization physics).  It is also a significant finding by itself that classical 

measurements of some signals can display quantized plateaus.  We would also like to highlight that 

the spectral winding topology describes a new type of topology unique in non-Hermitian systems, 

which has not be unveiled until recent years [1-3], and our results on how such spectral winding can 

be measured through quantized response are certainly timely and motivating.  

While there are similarities between the non-Hermitian spectral winding number and the winding 

number describing conventional 1D topological insulators, they actually describe very different 

physical properties. In conventional 1D topological insulators, the winding number is defined for 

the winding of the spin texture throughout the Brillouin zone, and hence requires at least a 2-band 

Hamiltonian. On the other hand, the spectral winding number is defined as the winding of the 

complex eigenenergies, and can be nontrivial even for single-band systems (e.g. the starting 

examples in our manuscript). As a consequence, the physical phenomena related to these two types 

of topology are also fundamentally different. For example, in conventional topological insulators, 

the number of topological edge states under OBC has a one-to-one correspondence to the 

topological invariant. Yet in non-Hermitian systems, a nonzero spectral winding number only 

predicts the existence of the so-call skin edge modes under OBC [4]. 

To date, experimental observations of the non-Hermitian spectral topology have already become 

one of the most frontier directions. Various experimental setups have been used to realize the so-

call non-Hermitian bulk-boundary correspondence through the non-Hermitian skin effect [5-8], 

which however only reflects the existence of a nonzero spectral winding number, but not its exact 

value. It is not until this year that an observation of arbitrary spectral winding numbers is achieved 

[9]. Nevertheless, such an observation is based on the reconstruction of the spectrum of the system, 

after which the spectral winding number is read out manually. By contrast, our proposal here is 

based on the quantization of certain quantity in a process of signal amplification, which is an analog 

of the Hall conductance measurement of conventional Hermitian topological insulators. In short, 

our work provides the first one-to-one correspondence between the spectral winding number with a 

quantized quantity, which is experimentally measurable through a process of directional signal 

amplification [10]. Our scheme also unveils a topological quantized response valid not only for 

quantum systems, but also for classical systems, which shall greatly broaden the field of topological 



 

 

properties in physical systems. Thus we believe our work is indeed beyond “the detailed physics of 

an already well-studied model system”, and meets the high standard of Nature Communications.  

 

[1] H. Shen, B. Zhen, and L. Fu, “Topological Band Theory for Non-Hermitian Hamiltonians”, 

Phys. Rev. Lett. 120, 146402 (2018). 

[2] N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato, “Topological origin of non-hermitian skin 

effects,” Phys. Rev. Lett. 124, 086801 (2020). 

[3] Kai Zhang, Zhesen Yang, and Chen Fang, “Correspondence between winding numbers and skin 

modes in non-Hermitian systems,” Phys. Rev. Lett. 125, 126402 (2020). 

[4] S. Yao and Z. Wang, “Edge states and topological invariants of non-Hermitian systems”, Phys. 

Rev. Lett., 121, 086803 (2018). 

[5] M. Brandenbourger, et al.,  “Non-reciprocal robotic metamaterials.” Nat. Commun. 10, 4608 

(2019). 

[6] L. Xiao, et al., “Non-Hermitian bulk-boundary correspondence in quantum dynamics”, Nat. 

Phys. 16, 761–766 (2020). 

[7] A. Ghatak, et al., “Observation of non-Hermitian topology and its bulk-edge correspondence” 

PNAS 117,  29561-29568 (2020). 

[8] T. Helbig, et al., “Generalized bulk-boundary correspondence in non-Hermitian topolectrical 

circuits”, Nat. Phys. 16, 747–750 (2020). 

[9] K. Wang, A. Dutt, K. Y. Yang,, C. C. Wojcik, J. Vučković, and S. Fan,  “Generating arbitrary 

topological windings of a non-Hermitian band”, Science 371, 1240-1245 (2021). 

[10] C. C. Wanjura, et al., “Topological framework for directional amplification in driven-

dissipative cavity arrays,” Nat. Commun. 11, 3149 (2020). 

 

I also have a few comments regarding the details of the manuscript. 

1. As far as I understand, the winding number should be a well-defined invariant for a 1D non-

Hermitian Hamiltonian with respect to an arbitrary reference energy E_r. It seems that the system 

in the manuscript can have different winding numbers as the reference energy E_r is chosen 

differently. Physically how does one choose the reference energy? Do the results in Figs. 2 and 3 

still hold if one chooses the reference E_r differently to start with? 

 

The answer to this question is yes. Indeed, the reference energy is a tunable parameter of an 

experimental measurement of the spectral winding topology. Physically, it takes an analogous role 

as the chemical potential/Fermi energy offset, except that for classical systems, we are much more 



 

 

free to choose this offset. As described in the subsection “Measurement of quantized response in 

electrical Circuits”, this E_r, in the context of circuits, can be implemented by suitable adjusting a 

grounding circuit to the circuit to be measured. In other classical systems i.e. photonic or 

mechanical systems, we can also attach appropriate on-site resonators or mass-loading mechanisms 

to simulate E_r.  

In Supplemental Note 2, we have illustrated in Fig S1 results that expand upon those of Fig. 2, to a 

more complicated parameter regime, where the winding number ranges from -1 to 2. Evidently, the 

quantization plateaus are exactly as predicted by our approach, for different E_r. In addition, Fig. 

3(a) has already been plotted by scanning the value of E_r in a large parameter regime, as we have 

defined E_r=\omega+i\gamma. The quantization for a few illustrative E_r are also displayed in Fig. 

3(b).  

To make our discussions clearer, we have added a short description in the main text to clarify this. 

 

2. In the Method section, the assumption of calculating G_1N using the integral form in Eq. 26 is 

that β/N is vanishingly small. Yet in the main text, with N = 100, the β parameter is varied from 0 to 

90, which is beyond this assumption. Does the result of G_1N calculated numerically by Eq. 25 

deviate from Eq. 26 across the wide range of β? 

 

We thank the reviewer for raising this detailed but important question. In the Method section, we 

have considered two different parameter regimes with vanishing β /N (for β << β _c) and β 

proportional to N (for β>β_c) respectively. In this two regimes, different routes need to be 

considered to rewrite the summation of Eqs. (30,31)  into integrals, which lead to completely 

different results valid in their respective regimes. Therefore an analytic solution for the intermediate 

regime with β~β_c is hard to obtain, and we have approached this regime through numerical 

simulations. The result of G_1N is calculated numerically by directly solving the equation G(E_r-

H)=I with “I” being the identity matrix, and Eqs. (25,26) are to understand the physics behind the 

quantification in some simple limits. 

As numerically shown in all our figures, the quantization of the response for all cases agree exactly 

with our theoretical predictions. 

3. On page 3, the authors claim a quantized classical response distinct from existing topological 

Hall response exclusively in quantum systems. However, this statement completely ignores the 

abundant examples of various Hall responses realized in photonic and sonic systems which are also 

classical. 

This is an important comment which is relevant to understanding the novelty of our work. Indeed, 

analogs of topological insulators have been realized in various photonic and sonic setups. Our 



 

 

reviewer is certainly right in that there are classical topological modes in such classical systems, 

and they are already demonstrated in abundantly many experiments. 

However, in classical systems, each topologically mode (which is protected by a band topological 

invariant) is free to be excited arbitrarily strongly. In other words, a robust edge mode can be 

excited weakly or strongly depending on the energy put into it. As such, although the number of 

classical topological modes is quantized, the physical “Hall response” is not, since the Kubo 

formula only applies to quantum systems with well-defined occupied eigenstates.  Specifically, to 

the best of our knowledge, in such experiments on classical topological systems, the topological 

properties are characterized through measuring the topological boundary modes at certain 

frequencies, which are analogs to the single-particle topological boundary states at certain 

eigenenergies in an electronic material. As a comparison, the quantized Hall response is defined for 

the occupied states, and does not apply to photonic and sonic lattices, which are essentially 

classical. 

In this work, one main novelty is that we discover a new approach and definition of a classically 

measureable response that is truly topologically quantized. The idea is that the spectral winding 

topology – which is distinct from band topology – does not require well-defined occupied energy 

eigenvalues. In fact, this freedom from the requirement of occupied states also makes it much more 

general, being applicable to classical systems like photonic, circuit and sonic systems, in addition to 

quantum lattices 

In the revised manuscript, we have made this point more concrete by acknowledging several 

experiments in sonic and photonic systems and their associated topological signatures, and 

contrasting them with the new classical quantized quantity proposed in our work. 

4. The inverse temperature and the scaling factor of boundary couplings are both denoted by β, 

which causes confusion. 

We are sorry for having used confusing notations, and have now expressed the inverse temperature 

explicitly as 1/k_B T in the related discussion (which has been moved to the Supplemental 

Materials as the first reviewer suggests). 

5. The explanation regarding winding number of -1 for the topological trivial case on page 5 seems 

not provided in the Supplemental Material. 

We apologize for this potentially confusing point. One subtle caveat in our approach is that negative 

quantized values from our approach actually indicates the absence of amplification, and hence 

trivial winding topology. We are grateful that the referee pointed this out, and our revised 

manuscript has now clarified this subtlety in detail. This caveat in no way changes the conclusion 

that positive topological windings corresponds to positive quantized responses. 

Specifically, following our referee’s suggestion, we have now added a short explanation of the 

negative value in the topological trivial case in the Method section. That is, under PBC there shall 

be a finite signal amplifying/decaying rate between sites N and 1, as they are two neighbor sites in a 

transitional-invariant system. Yet our calculation shows that the amplifying/decaying rate shall 

approach zero when the system is tuned away from PBC, hence the derivative of its variation shall 



 

 

be negative. More checking shows that there is no guarantee that this derivative must be -1.  In any 

case, this is not really important overall, because we only established that signal amplification, if it 

does occur, is linked to a quantized spectral winding number.  We also explained in the main text 

that whatever negative value one has, it only indicates the absence of the amplification and hence a 

trivial winding topology. 

 

 

 

 

 

 

 

 

 



REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

Report: 

I have read the revision of “Quantized classical response from spectral winding topology” by Linhu Li 

and collaborators and their response. The authors have rearranged and improved the paper 

substantially. Overall, I think that all my questions and concerns have been solved perfectly. 

Specifically, the authors give more strict proof about the Eq.(7) for nearest-coupling cases. And they 

explain the sub-chain physical picture more clearly, which convinces me that the authors have 

established an exact correspondence between spectral winding and quantized response defined in 

Eq.(8) for a general single-band model. To more complete, the authors have also examined the 

robustness of the quantized response against the disorder of various strengths and extended the 

conclusion derived from single-band case to more bands by numerical calculations in the 

Supplementary Materials. 

Based on this, I recommend this nice paper for publication in Nature Communication. 

Reviewer #2 (Remarks to the Author): 

In the revised manuscript, the authors have addressed my comments adequately. The scope of the 

manuscript is also expanded, and I am convinced of the novelty of the revised manuscript. Therefore, 

I support that the manuscript accepted in Nature Communications. A recent work closely related to 

the current manuscript has been published in PRL 126, 216407 (2021), and I suggest that the authors 

acknowledge this work.



Reviewer #1 (Remarks to the Author): 

Report: 

I have read the revision of “Quantized classical response from spectral winding topology” by 

Linhu Li and collaborators and their response. The authors have rearranged and improved the 

paper substantially. Overall, I think that all my questions and concerns have been solved perfectly. 

Specifically, the authors give more strict proof about the Eq.(7) for nearest-coupling cases. And 

they explain the sub-chain physical picture more clearly, which convinces me that the authors 

have established an exact correspondence between spectral winding and quantized response 

defined in Eq.(8) for a general single-band model. To more complete, the authors have also 

examined the robustness of the quantized response against the disorder of various strengths and 

extended the conclusion derived from single-band case to more bands by numerical calculations 

in the Supplementary Materials. 

Based on this, I recommend this nice paper for publication in Nature Communication. 

We are glad that referee 1 is now completely satisfied with our work. 

Reviewer #2 (Remarks to the Author): 

In the revised manuscript, the authors have addressed my comments adequately. The scope of 

the manuscript is also expanded, and I am convinced of the novelty of the revised manuscript. 

Therefore, I support that the manuscript accepted in Nature Communications. A recent work 

closely related to the current manuscript has been published in PRL 126, 216407 (2021), and I 

suggest that the authors acknowledge this work.

We are glad that referee 2 is also completely satisfied with our work, and have cited their published 

paper accordingly. 
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