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Fig. S1. APOL3 is an IFN-g-stimulated gene that exerts antibacterial effects within activated 
cells. (A) HeLa cells stimulated as indicated for 18 h and whole cell lysates probed by immunoblot. 
Concentrations used: IFN-a/b/g (500 U/ml), TNFa (100 ng/ml), IL-1b (10 ng/ml), LPS (10 
µg/ml). MX2 (MX Dynamin like GTPase 2), COX2 (Cyclooxygenase-2) and IFITM3 (Interferon 
Induced Transmembrane Protein 3) were blotted as positive controls. (B) HeLa cells of the 
indicated genotype complemented with APOL3 (or empty control) encoded within a pMSCV 
retroviral construct were treated with IFN-g for 18 h before being infected with Stm and 
intracellular growth measured after 6 h (relative to 1 h) by gentamicin protection assay. Whole cell 
lysates were probed by immunoblot. NTC represents a non-targeting control sgRNA, with multiple 
single cell clones [(1), (2)] selected for analysis. (C) Bacterial uptake measured by recovery of 
intracellular Stm from wildtype or DAPOL3 HeLa cells after 1 h (top) and time course of 
intracellular Stm growth by gentamicin protection assay in unprimed wildtype or DAPOL3 HeLa 
cells (below). (D to F), Effect of forced ectopic expression of pMSCV-APOL3 on Stm replication 
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in wildtype HeLa cells (+/-) IFN-g at the single-cell FACS at 6 h (E) and population (gentamicin 
protection assay) levels (F). Resulting APOL3 protein levels by immunoblot are shown in (D). 
Blots and FACS plots are representative of 3 or 4 independent experiments. Infected and non-
infected cells are depicted in blue and gray respectively. Data are mean ± s.e.m from 3 independent 
experiments [(B), (C) and (F)] with significance determined by two-tailed t-test [(C) and (F)] or 
one-way ANOVA (B): ** P< 0.01, *** P< 0.001, ns, not significant. f, non-specific band. 
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Fig. S2.  An essential role for APOL3 in antibacterial defense of primary cells. (A) 
Micrographs of IFN-g activated (50 U/ml) human primary intestinal epithelial cells treated with 
APOL3-targeting or non-targeting control siRNA and infected with StmmScarlet for 20 h. Below is 
quantification of APOL3 mRNA by qPCR (left) and the number of HR (10-35 µm) or SR (1-10 
µm) Stm foci counted (per well of a 96 well plate) over time. Data are mean ± s.d (n = 3) and are 
representative of 2 independent experiments. Growth curves were analyzed by simple linear 
regression with P value (***P < 0.001) comparing relative slope. (B) Stm replication measured by 
gentamicin protection assay in primary human umbilical vein endothelial cells (HUVEC) +/- IFN-
g (50 U/ml) treated with APOL3 or control (Ctrl) siRNA. Diminished siRNA-induced APOL3 
protein levels by immunoblot is below. (C) Micrographs of unprimed human primary intestinal 
myofibroblasts cells treated with APOL3-targeting or non-targeting control siRNA and infected 
with StmmScarlet for 10 h. Right is quantification of the number of HR Stm foci (per well of a 96 well 
plate) over time. Data are mean ± s.e.m from 3 independent experiments [(B) and (C)]. * P < 0.05 
by one-way ANOVA.  f, non-specific band. Arrow indicates APOL3 on immunoblot. Scale bars 
75 µm. 
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Fig. S3. Family wide analysis of the human APOL gene cluster. (A) Genome organization of 
the human APOL family clustered on chromosome 22 (Chr. 22) and qRT-PCR analysis (below) 
depicting fold induction of each APOL transcript after treatment with IFN-g (500 U/ml) for 18 h 
in HeLa cells of the indicated genotype. (B) CRISPR-Cas9 deletion of each human APOL family 
member and its corresponding effect on IFN-g-dependent restriction of intracellular Stm 
proliferation for 6 h (relative to WT). (C) Immunofluorescence analysis of pMSCV-HA-APOL 
family members (green) after infection with StmRFP for 2 h. APOL1b lacks the signal sequence of 
wildtype APOL1 and is thus intracellular. Images are representative of 3 independent experiments. 
(D) ClustalW alignment and phylogeny of the human APOL protein family. Locations of the
APOL1 signal peptide and the hydrophobic LAP patch are indicated. Micrographs are
representative of 3 independent experiments. nd = not detected. Data are mean ± s.e.m from 3 (A)
or 4 (B) independent experiments. *** P < 0.001 by ANOVA. Scale bar 5 µm.
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Fig. S4. APOL3 targets multiple cytosol-invasive bacteria by detecting host membrane 
damage. (A) Deconvolved widefield images of APOL3HA during infection with Salmonella 
enterica serovar Typhimurium (1.5 h), Listeria monocytogenes (1.5 h), Shigella flexneri (1.5 h), 
Burkholderia thailandensis (3 h), and Salmonella enterica serovar Typhi (2 h). Bacteria are 
identified by DAPI (DNA). n = 50 bacteria counted per condition. Data are mean ± s.e.m from 3 
independent experiments. (B) Deconvolved widefield images of HeLa cells expressing 
APOL3mnGFP and Lamp1mCherry pulsed with vehicle or the lysosomotropic agent L-leucyl-L-leucine 
methyl ester LLOme for 15 min (top). Below is time lapse images of a live APOL3mnGFP expressing 
HeLa cell after addition of LLOme (min). Scale bars 5 µm. 
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Fig. S5. Inner membrane disrupting activity of APOL3 inside IFN-g-activated cells. (A) 
Deconvolved widefield images of StmDcpxR:FRT expressing cytosolic mCherry and minDmnGFP in 
DAPOL3 HeLa cells expressing HA-APOL3 2.5 h post infection. Aggregated or membrane-bound 
minDmnGFP were enumerated (n = 50 per condition) in the presence of IFN-g. (B) Growth of 
wildtype or StmDcpxR:FRT in HeLa cells of the indicated genotype (+/-) IFN-g (500 U/ml). (C) Time 
lapse widefield images of Stmmcherry after infecting HeLa cells expressing APOL3mnGFP in the 
presence of IFN-g (500 U/ml). Targeted and cleared bacteria are indicated by arrows. (D) 
Deconvolved widefield image of an unprimed DAPOL3 hyper-replicating (HR) cell expressing 
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APOL3mnGFP at 4 h p.i. Stm detected with anti-LPS antibody. Right is quantification of APOL3 
positive Stm and APOL3 protein levels in whole-cell lysates by immunoblot 2 and 4 h post 
infection. (E) 3D SIM projections of Stm LPS (O-antigen specific antibody) and APOL3mnGFP 2 h 
after infecting IFN-g activated HeLa cells. Insets depict cytosol-exposed Stm (APOL3 targeted) 
that exhibit irregular O-antigen staining compared to vacuolar (untargeted). Data from [(A), (C), 
(D) and (E)] are representative of >3 independent experiments and enumerations in [(B) and (D)]
are mean  ± s.e.m from 3 independent experiments.Timelapse images in (B) were extracted from 
movie S6. Significance Fischer’s exact test (A), unpaired t-test (B) or one-way ANOVA (D). *** 
P < 0.001. f, non-specific band. Scale bar 5 µm.
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Fig. S6. Rapid Stm binding and membrane dysfunction triggered by APOL3. (A) Purification 
and re-folding recombinant APOL3. Coomassie blue staining after His-tag removal and re-folding 
from E. coli inclusion bodies by dialysis versus acetic acid (left). Re-folding was assessed by 
circular dichroism (right). (B) FACS histograms of Stm released with detergent from different 
compartments of DAPOL3 HeLa cells incubated with 568-labelled rAPOL3 for 30 min reveal 
equal amounts of bacterially bound APOL3. These bound fractions were incubated for an 
additional 3 h before plating for bacterial viability (right). (C) Binding and killing activity of 
rAPOL3 against logarithmic or stationary phase Stm. Bacterial viability determined 3 h after 
rAPOL3 exposure with increasing dosage. rAPOL3 binding assessed by bacterial pull-down and 
immunoblotting for APOL3. (D) Viability of Stm released into the cytsosol with LLOMe and 
extracted from primary human intestinal myofibroblasts (+/-) IFN-g (50 U/ml) and treated with 
rAPOL3 for 2 h. (E) Validating minDmnGFP aggregation in cytosol-released Stm extracted with 
detergent from DAPOL3 IFN-g primed cells. Bacteria were exposed to CCCP (positive control) or 
568-labelled rAPOL3 (5 µM) and imaged via wide-field microscopy. Micrographs at 10 min p.i.
(top) or immediately after rAPOL3 addition (below). Data from [(A) to (C)] are representative of
2 independent experiments with enumerations in (C) mean ± s.d, n= 3, or depicted as mean  ±
s.e.m from 3 independent experiments (D), or representative images and quantification [mean ±
s.d from 3 technical replicates (n = 100 bacteria)] from one experiment out of three (E). P values
by one-way ANOVA, *** P < 0.001. Scale bar, 2 µm.
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Fig. S7.  In silico analysis of APOL3 bactericidal activity. (A) Predicted APOL3 membrane 
topology using Phyre2. (B) Hydrophobic moment (µH = amphipathicity) of APOL3 determined 
by HeliQuest with the canonical extracellular apolipoprotein APOE1 shown for comparison. (C) 
Helical wheel diagrams of predicted APOL3 amphipathic a-helices and engineered mutant (DAH). 
Swapped hydrophilic and hydrophobic amino acids (red) within each helix are shown along with 
the corresponding physiochemical properties for the DAH mutant (mut). (D) Cytotoxicity of 
APOL3 WT or DAH mutant (C) when overexpressed in E. coli via 75 µM IPTG overnight 
induction. Results are representative of 3 independent experiments. Subcellular location of toxicity 
shown by inducing His-APOL3 for 2 h and harvesting cytosolic (C) or membrane (M) fractions 
for immunoblot. (E to G) The hydrophobic moment (E), the hydrophobicity including each Tm 
region (F), and the observed secondary structure of re-folded recombinant protein as determined 
by circular dichroism (G) are shown for both wildtype and DAH APOL3. CD spectra is 
representative of 2 independent experiments. 
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Fig. S8.  Bactericidal activity of APOL3 fragments. (A) Coomassie-stained protein gels 
following purification of full-length (1-333) or the indicated rAPOL3 fragments after His-tag 
digestion and removal. (B) Viability of the indicated bacterial strain (log-phase) treated with 
rAPOL3 fragments (10 µM) for 3 h. Viability was determined by colony counting and normalized 
to dialysate treatment (mock). (C) Domains of human APOL3 based on sequence alignment with 
human APOL1 that contains a putative N-terminal pore-forming (ion channel) domain; membrane 
addressing domain (MAD); and C-terminal SRA domain by virtue of being targeted by the 
Trypanosoma brucei rhodesiense serum resistance-associated protein 27. (D) Replication of Stm 
at 6 h following genetic complementation of IFN-g-activated (500 U/ml) DAPOL3 HeLa cells with 
retrovirally expressed APOL3 domains. (E and F) Immunofluorescence of HA-APOL3 domains 
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in untreated cells, after sterile membrane damage (LLOMe), or after infection with StmRFP (2 h). 
Fragment 5 was not expressed at detectable levels. Quantification of Stm targeting (n = 100 
bacteria) is depicted in (F). Significance by one-way ANOVA: ** P < 0.01, *** P < 0.001. Results 
are ± s.e.m from 3 independent experiments. Scale bar 5 µm. 
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Fig. S9. APOL3 induces membrane lysis and dysfunction. (A) Viability of StmDwzy 3 h after 
treatment with dialysate, rAPOL3 or rAPOL1 (10 µM) at pH 5.5 in 0.15 M potassium gluconate. 
(B) Negative-stain EM of E. coliDhldE exposed to His-APOL3 (or dialysate) for 5 min and detected
with 5 nm Ni2+-gold beads (arrows). (C to E) Time course of bacterial inner membrane (IM)
permeability by Sytox TM orange uptake (C), membrane potential at 2 h post-treatment (D) or
intracellular ATP (E) of EDTA-pulsed Stm treated with wildtype or DAH rAPOL3. (F) E. coliDhldE
exposed to rAPOL3 (0.5 µM) and membrane fluidity measured with the fluorescent dye laurdan.
High laurdan generalized polarization (GP) correlates with low membrane fluidity. Benzyl alcohol
(BA) is a membrane fluidizer. (G) Transmission electron microscopy (TEM) of EDTA-pulsed Stm
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30 min after addition of rAPOL3. Arrows indicate OM ruffling (black) or cytoplasmic leakage 
(red). (H) Outer membrane (OM) permeability of Stm measured by NPN uptake and IM 
permeability measured by PI uptake. Stm were treated with permeabilizing agents for 15 min then 
rAPOL3 or dialysate for 15 min and PI and NPN fluorescence measured. PI uptake normalized to 
25 µg/ml polymyxin B (100%); NPN uptake normalized to 5 mM EDTA and 10 µg/ml lysozyme 
(100%). Data are mean ± s.e.m from 3 independent experiments [(D) and (E)], as means ± s.d from 
3 replicates representative of 3 independent experiments (F) or single experiments representative 
of 2 to 3 biological replicates [(A), (B), (C) (G), (H)]. *** P < 0.01 by one-way ANOVA. Scale 
bars 500 nm (B), 200 nm (G). 
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Fig. S10. Integration of APOL3 within canonical bacterial restriction pathways. (A) 
Immunofluorescence and 3D SIM projections of HA-APOL3 with either GBP1, p62 (SQSTM1) 
or Galectin-8 at 2 h post infection (p.i). LPS-stained bacteria were not included in the merged 
image for clarity. Staining for endogenous Galectin-8 and p62 without IFN-g; endogenous GBP1 
with IFN-g. (B) Targeting of APOL3mnGFP to StmRFP in CRISPR-Cas9 HeLa cell lines lacking 
specific innate immune or autophagy pathways at 2 h p.i.  Lines were deficient in GBP1 and GBP2; 
Galectin-3 or Galectin-8; TANK binding kinase-1 (TBK1); TNF receptor-associated factor 6 
(TRAF6); Penta-KO lacking five autophagy cargo receptors (TAX1 binding protein 1 
[TAX1BP1]; nuclear dot protein 52 kDa [NDP52/ CALCOCO2]; next to BRCA1 gene 1 protein 
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[NBR1], sequestrome 1 [SQSTM1/p62], and optineurin [OPTN]); HexaKO lacking six Atg8 
family members (LC3A, LC3B, LC3C, GABARAP, GABARAPL1, and GABARAPL2). (C) Stm 
targeting by GBP1, Gal8, and p62 in wildtype or DAPOL3 HeLa cells at 2 h p.i. (D) Creation of 
doxycycline-inducible (Tet responsive element, TRE) HeLa cells expressing APOL3, GBP1 or 
both in tandem separated by the self-cleavable P2A peptide. Whole cell lysates were proved by 
immunoblot 18 h after inducing with doxycycline (100 ng/ml). Data are mean ± s.e.m from 2 or 3 
independent experiments (n = 100 bacteria counted for each condition) [(A) to (C)] and 
representative images are shown. f, non-specific band. Scale bar 5 µm 
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Fig. S11 Characterization of liposome permeabilization by rAPOL3. (A and B) Calcein loaded 
DOPC-based liposomes (0.5 mM) containing 20% of the indicated lipid were treated with rAPOL3 
(500 nM). Liposome binding is indicated by SDS-PAGE and Coomassie blue staining of the 
supernatant (S) and pellet (P) following ultracentrifugation of liposome-APOL3 mixtures (A) and 
leakage was measured by increase in calcein fluorescence over time with 0.1% Triton-X100 added 
to achieve maximum leakage (B). (C) Calcein release from liposomes containing 25% cholesterol 
(chol) after addition of 200 nM rAPOL3. (D) Heatmap depiction of StmDwzy (single O-antigen unit) 
viability after treatment with 5 µM rAPOL3 (2 h) at 37°C across a gradient of salt (Potassium 
Gluconate) and pH. (E and F) Calcein release from liposomes treated with 500 nM of the indicated 
rAPOL3 mutant (E) or 200 nM of rAPOL3 fragment (F). (G) Different size fluorescent dyes were 
encapsulated in DOPC/DOPG liposomes and terminal dye release measured after treatment with 
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the indicated amount of rAPOL3 for 20 min. (H) Solubilization of DMPG liposomes (measured 
by a drop in absorbance at 400 nm) upon addition of rAPOL3 and incubated at the indicated 
temperature. Representative images of liposome mixtures by negative stain electron microscopy 
are shown after 30 min. Data from [(A) to (F]) are representative of 3 or 4 independent 
experiments. Data from [(G) and (H)] are mean ± s.d from 3 technical replicates representative of 
2 independent experiments.  
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Fig. S12.  Single-particle cryo-EM analysis of APOL3 lipoprotein nanodiscs.  (A) 
Representative Cryo-EM micrograph of DMPC/DMPG liposomes 30 minutes after addition of 
rAPOL3. Side view of the APOL3 lipoprotein particle is highlighted. (B) 2D classification of 
particles selected for re-constructions depicted below. (C) 2D classification from negative stain-
EM images of DMPC/DMPG liposomes 30 minutes after addition of rAPOL3. Percentage of each 
class indicated. Below are isosurface depictions of the top and side views of the 3D re-construction 
representing the most dominant particle. (D) Isosurface comparison of the dominant particle class 
re-constructed by negative stain-EM (dark blue) and Cryo-EM (light blue). 
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Fig. S13. APOL3 triggers pronounced membrane defects. (A) Negative stain EM micrographs 
of liposomes (DOPC:DOPG 80:20) before or immediately after addition of the indicated amount 
of rAPOL3. Inset images indicate APOL3-triggered membrane blebbing and lipid extraction. (B) 
Single plane confocal images of the observed membrane alteration after addition of 568-labelled 
rAPOL3 (300 nM) to Cy5-labelled giant unilamellar vesicles (GUVs). GUVs were composed of 
80% DOPC and 20% DOPG and were incubated in soluble Dylight 488 to monitor permeability. 
(C) GUVs treated with 568-labelled WT or DAH rAPOL3 for 10 min prior to imaging. Shown are
representative single plane confocal images and quantification (mean ± s.e.m from 3 independent
experiments). (D) Circular dichroism spectra and estimated a-helical content of rAPOL3 variants
in the presence or absence of PC/PG liposomes. Spectra are representative of 2 independent
experiments. Scale bars 10 µm (B).
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Fig. S14. Hypothetical model for membrane solubilization by APOL3. (A) Phyre2 predicted 
structure of APOL3 visualized with YRB lighting. Glu and Asp are red, and Arg and Lys are blue. 
All carbons not bound to nitrogen and oxygen are yellow. (B) Model for APOL3 lipid extraction 
based on predicted structure. AH2/3 insert the indicated 4 Phenylalanine residues to trigger 
positive curvature, permitting insertion of TM1 and 2 and formation of the APOL3 lipoprotein 
particle concomitant with membrane permeabilization. 
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Table S2 sgRNA sequences used in this study 

Gene sgRNA pool 

APOL3(1) 5-CGCAGTCACGAATCTCTTCC-3
5-AGTGCTTTGACTCGTATACA-3

APOL3(2) 5-AATAACCAGACACGTTCTCC-3
5-GACTCTCTCCCGGAAGTATT-3

APOL1 
5-GTGCAACAAAACGTTCCAAG-3
5-ACTCCTGCTGACTGATAATG-3
5-GATCCTCAAAGTAAGCCCCT-3
5-GCCAAGCTCACCAGATGCAG-3

APOL2 
5-ACGAGCCCAAGCCCGCAACT-3
5-GGGGCATACGCTCCTAACTG-3
5-GCAGATTCTCTCTGCTCACT-3
5-AGCGAGCCTACCTGGGTTCA-3

APOL4 
5-AGGCTGCGTCATCGCCAATG-3
5-TTGGACGCCCTTTGATTGCT-3
5-TGCTGACTAGCGATGAAGCC-3
5-TGCGTGTGGCTGAATTGCCC-3

APOL6 
5-GACCAAAAATGCTCGCGTGC-3
5-TTTGCACCTGCACGCGGCTC-3
5-ACAGAGGCTGATGGACAACC-3
5-CCTCACTTTCTCTCTCCGCC-3

GBP1 5-TTTAGTGTGAGACTGCACCG-3
5-GTGCCCCACCCCAAGAAGCC-3

GBP2 5-CCTAGTTCTGCTCGACACTG-3

STAT1 
5-TCCCATTACAGGCTCAGTCG-3
5-ATTGATCATCCAGCTGTGAC-3
5-TTCCCTATAGGATGTCTCAG-3
5-GCAGCTTGACTCAAAATTCC-3

Non-
Targeting 

5-ACGGAGGCTAAGCGTCGCAA-3
5-CGCTTCCGCGGCCCGTTCAA-3

LGALS3 5-CAGCTCCATGATGCGTTATC-3
5-CAGACCCAGATAACGCATCA-3

LGALS8 5-ATGTTCCTAGTGACGCAGAC-3
5-CGTATCACAATCAAAGTTCC-3

TBK1 5-TGGCTTTTATCTGATATTTT-3

TRAF6 5-TGTAGAGTTTGACCCACCCC-3
5-GCTGGAGAGGTTCCCCGTGC-3



Movie S1 
Bacterial targeting by APOL3. HeLa cell expressing APOL3mnGFP infected with StmRFP. Imaging 
was initiated 45 min post infection. Images are widefield maximum intensity projections from 5 
µm stacks and were bleach corrected using Fiji. 

Movie S2 
APOL3 mobilization by sterile endosomal damage. HeLa cell expressing APOL3mnGFP imaged 
immediately after triggering endosomal damage with 1 mM LLOMe. Images are widefield 
maximum intensity projections from 5 µm stacks and were bleach corrected using Fiji. 

Movie S3 
Stm IM damage triggered by APOL3 in situ. IFN-g treated HeLa cell expressing APOL3RFP and 
infected with Stm-minDmnGFP initiated 45 min post infection. Image is a widefield maximum 
intensity projection from 5 µm stacks and was bleach corrected using Fiji. Constitutive minDmnGFP 
expression (used here) results in elongated Stm. 

Movie S4 
Stm IM damage triggered by APOL3 in situ. A second example of an IFN-g treated HeLa cell 
expressing APOL3RFP and infected with Stm-minDmnGFP initiated 45 min post infection. Image is 
a widefield maximum intensity projection from 5 µm stacks and was bleach corrected using Fiji. 
Constitutive minDmnGFP expression (used here) results in elongated Stm. 

Movie S5 
Bacterial penetration of APOL3 in IFN-g activated cells. 360°C rotation of a 3D surface 
rendering (Fig. 2f) generated from structured illumination microscopy (SIM) of immunolabeled 
HA-APOL3 and LPS 150 min post infection in IFN-g activated cells.  

Movie S6 
Clearance of APOL3 targeted bacteria from IFN-g activated cells. IFN-g treated HeLa cell 
expressing APOL3mnGFP and infected with StmRFP. Images are widefield maximum intensity 
projections from 5 µm stacks and were bleach corrected using Fiji. APOL3 coated bacteria 
(denoted by arrows in first frame) fade from view whereas untargeted bacteria persist. 

Movie S7 
Stm IM damage triggered by APOL3 in vitro. Stm expressing minDmnGFP were extracted from 
LLOMe-treated IFN-g activated DAPOL3 cells and treated as mock control. Bacteria were 
immobilized on agarose pads and wide-field imaging initiated after ~2 min. Images were taken 
every 12 seconds. scale bar 2 µm. 

Movie S8 
Stm IM damage triggered by APOL3 in vitro. Stm expressing minDmnGFP were extracted from 
LLOMe-treated IFN-g activated DAPOL3 cells and treated with CCCP – a known disrupter of IM 
membrane potential. Bacteria were immobilized on agarose pads and wide-field imaging initiated 
after ~2 min. Images were taken every 12 seconds. scale bar 2 µm. 
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Movie S9 
Stm IM damage triggered by APOL3 in vitro. Stm expressing minDmnGFP were extracted from 
LLOMe-treated IFN-g activated DAPOL3 cells and treated with 5 µM rAPOL3. Bacteria were 
immobilized on agarose pads and wide-field imaging initiated after ~2 min. Images were taken 
every 12 seconds. scale bar 2 µm. 

Movie S10 
Permeation of GUVs by APOL3.  Single plane from confocal microscopy of GUV’s composed 
of DOPC/DOPG (80:20) incubated in DylightTM 488 free acid (indicator of permeability) were 
treated with 568-labelled rAPOL3 and imaged live. See movie S11 for 568-rAPOL3 channel alone. 
Arrow indicates rAPOL3-triggered membrane blebbing occurring concomitantly with GUV 
permeabilization. 

Movie S11 
Permeation of GUVs by APOL3.  Single plane from confocal microscopy (GUVs described in 
movie S10) showing the 568-rAPOL3 channel alone. 

Table S1
Genome-wide CRISPR/Cas9 screen and RNAseq results. Shown are gene-level MAGeCK P 
values depicting enrichment in HR versus SR FACS sorted Stm-infected HeLa cells in the presence 
or absence of IFN-γ.  RNAseq analysis depicting the fold induction (relative to untreated) of each 
gene in the presence of IFN-γ and Stm is also shown.
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