
Supporting Information for

In Vitro Thrombogenicity Test System with Cyclic Olefin Copolymer Substrate for Endothelial Layer Formation

Skadi Lau¹, Yue Liu¹, Anna Maier¹, Steffen Braune¹, Manfred Gossen¹, Axel T. Neffe¹, Andreas Lendlein^{1,2,*}

- 1: Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
- 2: Institute of Chemistry, University of Potsdam, Potsdam, Germany

Figure S1: 700 MHz ¹H NMR spectrum of the COC-based substrate in toluene-d8 at 68 °C. * indicates solvent peaks.

^{*}Corresponding author: andreas.lendlein@hereon.de

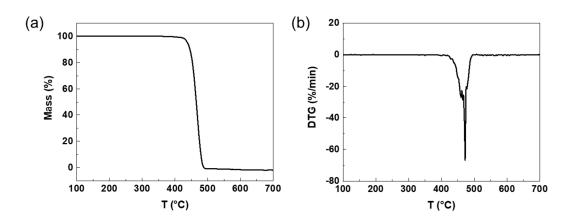
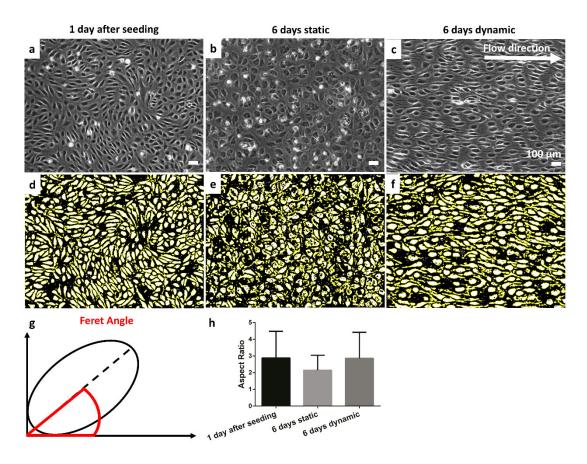



Figure S2: (a) TGA and (b) DTG curve of the COC-based substrate.

Figure S3: Quantification of endothelial cell (EC) alignment under static and dynamic culture conditions. EC were cultured for 1 day under static conditions (a) prior to the cultivation under quasi-static conditions (0.01 dyn \cdot cm⁻², b) or laminar flow for six days (10 dyn \cdot cm⁻², c). EC alignment was measured by the ImageJ software (d-f) and subsequent quantification of the Feret Angle (g). Feret Angle of statically cultured EC was greater than of EC cultivated under flow (h).