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A novel temperature response model
The Briere model [1] for the temperature dependence of a trait g is given by
equation

g(T ) =

{
cT (T − Tmin)(Tmax − T )

1
m Tmin < T < Tmax

0 otherwise
(1)

where Tmin and Tmax are the minimum and maximum temperatures at which
the response is nonzero and c is an arbitrary constant that modifies the height
of the curve. The parameter m allows for changing the skew of the curve. In
most applications, it is frequently fixed at m = 2 while the other parameters are
fit to the data. The Briere model with m = 2 is often referred to as the Briere
1 model in the literature, while the model with m as a parameter is referred to
as the Briere 2 model.

In this work, we introduce the modified Briere model, a novel temperature
response model to better describe the temperature responses of E. coli growth
in the presence of antibiotics. Our goals are to develop a flexible model that
can generate a wider range of shapes of temperature response curves, and has
biologically meaningful parameters. We start with the equation

g(T ) =

{
c(T − Tmin)

a(Tmax − T )b Tmin < T < Tmax

0 otherwise
(2)

where Tmin and Tmax are the minimum and maximum growth temperatures,
respectively. The parameters a, b, c > 0 are positive constants that collectively
determine the height and the shape of the curve. In this intial parametrization,
these are arbitrary mathematical constants, but we replace them with more
intuitive parameters below.

Compared to the original model, the modified Briere model is modified in
two ways. First, the parameters a, b make it possible to generate a much wider
range of curve shapes, including left-skewed, symmetric and right-skewed curves
that change with varying steepness. This greater variety in shapes is necessary
in order to fit our dataset of temperature responses in the presence of antibi-
otics. Second, the factor of T in the original model was removed. This factor
(along with m 6= 1) makes the Briere model non-symmetrical/skewed as needed
for temperature response curves, but it also introduces an implicit assump-
tion that the response is always zero at 0◦C. This makes the original Briere
model unsuitable for organisms for which it is plausible that Tmin < 0◦C since
the response will cross to negative values. As an alternative that is also non-
symmetrical/skewed without this assumption, we can introduce an asymmetric
number of factors of (T − Tmin) and (Tmax − T ) through the exponents a, b.
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Derivation of Topt for the modified Briere model

One of the main quantities of interest when looking at temperature responses is
Topt, the optimal temperature for growth. We have that, for Tmin < T < Tmax,

log g(T ) = log c+ a log(T − Tmin) + b log(Tmax − T )
d

dT
log g(T ) =

a

T − Tmin
− b

Tmax − T

which implies

Topt =
aTmax + bTmin

a+ b
.

Thus, in the modified Briere model the optimum temperature is a convex com-
bination of the maximum and minimum temperatures, which we can write as

Topt = αTmax + (1− α)Tmin

where
α =

a

a+ b
.

From the result above, we can see that the optimal temperature Topt in the
modified Briere model can be anywhere between Tmin and Tmax, depending on
the value of α ∈ [0, 1]. A value of α = 0.5 corresponds to a symmetric curve
where Topt is exactly in the middle. As such, α is an intuitive and directly
interpretable parameter that specifies the location of the temperature optimum
relative to the minimum and maximum temperatures.

In contrast, for the original Briere model, the optimal temperature is a more
complex expression

Topt =
2mTmax + (m+ 1)Tmin +

√
4m2T 2

max + (m+ 1)T 2
min − 4m2TminTmax

4m+ 2

In the most commonly used case, where m = 2 is fixed,

Topt =
4Tmax + 3Tmin +

√
16T 2

max + 3T 2
min − 16TminTmax

10

is a fixed function of the minimum and maximum growth temperatures. That
is, the optimum temperature is completely determined (fixed) for fixed values of
Tmin and Tmax for the Briere 1 model. Varying the parameter m in the Briere 2
model allows for the optimum to vary relative to Tmin and Tmax, but at the cost
of greatly changing the range of reasonable values for the parameter c (often by
orders of magnitude), making parameter inference through Bayesian methods
difficult.

Reparametrization of the modified Briere model
We next reparametrize the modified Briere model into a more intuitive form to
aid the interpretability of its parameters. This is helpful both for understanding
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the model and for choosing meaningful prior distributions for parameter estima-
tion (see below). In particular, the model as written above has three arbitrary
constants a, b, c ≥ 0 with no clear physical/biological meaning. In this section,
we replace these parameters with a different, more intuitive set of parameters.

Substitution and some algebra shows that the maximum growth

gmax = g(Topt) = c

(
a

a+ b

)a(
b

a+ b

)b
(Tmax − Tmin)

a+b

Therefore, for T ∈ (Tmin, Tmax) we can rewrite the model as

g(T ) = gmax

(
T − Tmin

a

)a(
Tmax − T

b

)b(
a+ b

Tmax − Tmin

)a+b
(where we replace c with gmax, the maximum value of growth attained by the
temperature curve).

Next, we replace the parameters a, b with α = a
a+b and s = a + b. This

yields the final form of the modified Briere model:

g(T ) =

gmax

[(
T−Tmin

α

)α (Tmax−T
1−α

)(1−α) (
1

Tmax−Tmin

)]s
Tmin < T < Tmax

0 otherwise
(3)

The interpretation of α (location of optimum temperature relative to minimum
and maximum temperatures) and gmax comes from the discussion above. To
find an interpretation for s, note that

d

dT
log g(T ) = s [α log(T − Tmin) + (1− α) log(Tmax − T )− log (Tmax − Tmin)]

d

dT
g(T ) = sg(T ) [α log(T − Tmin) + (1− α) log(Tmax − T )− log (Tmax − Tmin)]

Since s is a constant that multiplies the derivative, it determines the smoothness
of the function g(T ) (i.e. how rapidly the derivative changes). Because of this,
changing s while keeping the rest of the parameters fixed will result in curves
with the same Tmin, Tmax and Topt. Small values of s correspond to smoother
curves where growth decreases gradually from the maximum value at Topt, while
large values correspond to “skinnier” curves that decrease sharply (reducing the
temperature breadth corresponding to half-maximum growth while leaving the
range for non-zero growth intact).

With this parametrization, the modified Briere model is flexible: it can gen-
erate temperature response curves where Tmin, Tmax, Topt and the half-maximum
range vary independently. Since the parameters {Tmin, Tmax, gmax, α, s} are all
biologically meaningful, biological knowledge about the parameters can be used
to improve parameter inference through the use of informative prior distribu-
tions in Bayesian approaches.
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Statistical model and justification of prior distributions
We parametrized the extended Briere model in terms of P = {gmax, Tmin, Tmax, α, s}
as detailed above. To do parameter inference, we took a Bayesian approach. We
first extend the deterministic extended Briere model to an explicit statistical
model. Denote the ith measured optical density value (which is proportional
to the number of bacteria) as yi, and the corresponding temperature as Ti. We
model the data as a nonlinear regression, given by

yi|P, σTi
, Ti ∼ Gamma (µ = g(Ti), σ = σTi

)

(where a Gamma distribution was chosen since growth is strictly positive). Note
that the Gamma distribution is parametrized in terms of the mean and standard
deviation. The mean of the distribution g(Ti) corresponds to the deterministic
extended Briere model. A different set of parameters was fit for each condition
(antibiotic or antibiotic combination).

The observed standard deviation was clearly different at different temper-
atures. However, there was no clear trend as a function of Ti or yi that was
consistent across the different growth conditions. We took a hierarchical ap-
proach to model the standard deviation.

σTi |β ∼ halfCauchy(β)
β ∼ halfCauchy(0.3)

The halfCauchy family is commonly used in hierarchical models for variance
parameters, as recommended by [2]. According to these recommendations, the
scale parameter for the halfCauchy was chosen to be a plausible, but high, value
for a standard deviation. The purpose for this weakly informative prior is to
not have much effect in the parameter inference in the region of plausible values
of the standard deviations (values around 0.3 or smaller), but for it to rule out
implausible values that are much higher (which can cause problems when using
uniform priors). The optical density data ranges roughly from 0 to 1, so this is
a conservative upper bound.

Next, we justify the priors chosen for the parameters of the extended Briere
model. We chose to use the following weakly informative priors for the temper-
atures Tminand Tmax:

Tmin ∼ Normal(µ = 12.5◦C, σ = 12.5◦C)

Tmax ∼ Normal(µ = 47◦C, σ = 7.5◦C)

While the priors are informative and not flat, these choices are quite conserva-
tive in a biological sense. They correspond to a prior belief that the minimum
temperature for growth of E. coli (under the experimental conditions) is 95%
likely to be in the interval [−12.5◦C, 37.5◦C] and that the maximum tempera-
ture for growth is 95% likely to be in the interval [32◦C, 62◦C]. From previous
experiments, it is known that the optimal temperature for E. coli growth is
around 37◦C and that no growth is observed past approximately 46 to 50◦C [3].
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The means and standard deviations for the normal priors were chosen to be
consistent with these previous experiments.

We chose flat priors for gmax and α that give equal prior weight to all possible
parameter values. The limits on α are mathematical, since it is constrained to
be 0 ≤ α ≤ 1. The upper bound chosen for the optical density gmax is informed
by the results of previous similar growth experiments using the same equipment,
which are known to virtually always give values below 1.

α ∼ Uniform(0, 1)

gmax ∼ Uniform(0, 1)

Lastly, the prior distribution for s was chosen to be weakly informative,
placing weak constraints in s = a+ b to be small by penalizing very large values
of s.

s ∼ halfCauchy(20)

In the previous section, we showed that small values of s will result in smoother
curves since it is a scaling factor for the derivative of g(T ). This prior can
be thought as a form of regularization, with the goal of preventing overfitting.
It corresponds to a prior belief that smoother curves should be preferred if
possible (where the growth changes smoothly, rather than abruptly, with tem-
perature). This gives smaller prior probability to curves where there are very
abrupt changes in growth with small changes in temperature. Here, we took
s = 20 to be a plausible, but high value of the parameter (in the original Briere
model, s = 1.5).

Relationship between temperature response curves under
antibiotics and drug-temperature interactions based on Bliss
independence
In a previous study [4], we clustered antibiotics and non-optimal temperatures
that have similar interactions (synergy or antagonism) with other stressors in
terms of their effects on E. coli growth. The Bliss independence model for
multiple stressors posits that, for a pair of non-interacting stressors x and y, if
wx and wy are the corresponding growth proportions (compared to unstressed
growth), the growth proportion in the presence of both stressors simultaneously
will be wxy = wxwy. Interactions between stressors can be defined based on
deviations from the Bliss independence null model. Pairs of stressors for which
wxy > wxwy are said to be antagonistic, pairs of stressors for which wxy < wxwy
are said to be synergistic and pairs of stressors for which wxy ≈ wxwy are said
to be additive (or non-interacting).

Interactions between temperature and other stressors (such as antibiotics)
can be visualized by comparing the temperature response curve in the presence
of the antibiotic with the temperature response curve that would be expected
under Bliss independence. If g0(T ) and ga(T ) are the temperature response
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curves in the absence and in the presence of a stresor a (which is assumed to
be an antibiotic, although the same derivation would apply to other stressors),
and ga(Topt) the Bliss independence model posits that

ga(T )

gmax
=

(
g0(T )

gmax

)(
ga(Topt)

gmax

)
Therefore, the Bliss independence model predicts a temperature response curve
when antibiotic a is present (assuming there are no drug-temperature interac-
tions):

g̃a(T ) =
g0(T )ga(Topt)

gmax

We draw a distinction here between the predicted curve by Bliss independence
(which we denote by g̃a(T )) and the empirical temperature response curve under
antibiotic a (which we denote as ga(T )).

Deviations between these temperature response curves correspond to inter-
actions (synergy or antagonism) in the Bliss independence framework. In partic-
ular, temperatures for which ga(T ) < g̃a(T ) are synergistic with the antibiotic
and temperatures for which ga(T ) > g̃a(T ) are antagonistic (Supplemental Fig-
ure 7). Due to these results, the shared-damage hypothesis presented here can
be given a rough interpretation in terms of Bliss interactions: stressors that
damage similar cellular components will tend to have synergistic interactions
to each other. Note that g̃a(T ) merely scales the original temperature response
curve by a factor of ga(Topt)

gmax
, so the Bliss independence model predicts that the

optimal temperature does not change. As such, shifts in the optimal tempera-
ture in the presence of a stressor imply that deviations from Bliss independence
exist. Due to the geometry of temperature response curves, when this is the
case the interaction type (synergy or antagonism) must change at either side of
the original optimal temperature (i.e. in the absence of the stressor).

Statistics for drivers of temperature curves
Let Xij = 1 if drug i was the driver when in combination with drug j and
Xij = 0 otherwise. For mathematical convenience, define Xii = 0.

We do a permutation test where we randomly reassign the observed data for
each drug combination to a different drug combination (without replacement).
This corresponds to the null hypothesis that all drugs are exchangeable (i.e. the
probability of a drug being a driver is the same for all drugs). We construct
100000 permutations of the labels. We test two different statistics:

A) Global statistic For each sample, order the drugs from most to least
times it was observed as a driver. Index the N = 12 drugs in this order by
m = 1, . . . , N . We compare the observed statistic of the difference in the number
of drivers
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D =

N/2∑
m=1

 N∑
j=1

Xmj

− N∑
m=N/2+1

 N∑
j=1

Xmj


in the data with the 95% empirical quantile of the null distribution obtained
when randomly permuting the drug labels i, j. If the observed D in the sample
is greater than this value, we can reject the null hypothesis that all drugs are
equally likely to be drivers.

b) Testing if specific drugs are drivers We calculate the maximum num-
ber of times that a drug is a driver in each permutation

M = max
i

 N∑
j=1

Xij


and compare the distribution obtained with the observed values in the data.
Antibiotic i is a driver more often than expected under the null model if the
observed value of

∑N
j=1Xij exceeds the 95% quantile for the distribution of M

under the permutations.
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