Supporting Information

The DNA Damage-Sensing NER Repair Factor XPC-Rad23B Does Not Recognize Bulky DNA Lesions with a Missing Nucleotide Opposite the Lesion.

Katie M. Feher, Alexander Kolbanovskiy, Alexander Durandin, Yoonjung Shim², Jung-Hyun Min², Yuan Cho Lee, Vladimir Shafirovich, Hong Mu¹, Suse Broyde¹, and Nicholas E. Geacintov

Fig. S1. Densitometry tracings of selected [XPC] = 25 nM lanes from the autoradiographs shown in Fig. 2.

- (A) Unmodified 50-mer [G:C] duplexes: (1) well. (2) $(XPC)_2$ -[G:C] DNA complexes. (3) (XPC) -[G:C], single XPC-DNA complexes.(XPC)-DNA. (4) Signals due to dissociated (XPC)-[G:C] and (XPC) $_2$ -[G:C] complexes. (5) Free DNA.
- (B) XPC binding to Unmodified (XPC) = $[G^*:\text{Del}]$ duplexes. No directly visible (XPC)₂- $[G^*:\text{Del}]$ in contrast to pane; (A), and the fraction of unstable complexes is also lower than in panel (A).

Curve fitting calculations.

The exact analytical solution of expression characterizing competitive binding of two different DNA molecules (unmodified competitor G:C duplexes and BPDE modified DNA duplex $(G^*:C)$ in our case) (Eq. **S1-S5**), was derived by Wang.

According to the laws of mass conservation:

 $[G:C]_0 = [G:C] + [P \cdot (GC)]$ (S1)

 $[G^*:C]_0 = [G^*:C] + [P \cdot (G^*C)]$ (S2)

 $[P]$ ⁰ = $[P]$ + $[P \cdot (G:C)]$ + $[P \cdot (G*C)]$ (S3)

where **[G:C], [G*:C]** and **[P]** are the concentrations of free unmodified, free modified DNA duplexes, and free protein concentrations, respectively.

Substitution and rearrangement of (**4,5,** main paper) and (**S1, S2**) into **(S3)** gives the following cubic equation in [P]:

$$
[P]3 + a [P]2 + b [P] + c = 0
$$
 (S4)

where

a = [G:C]₀ + [G*:C]₀ +
$$
K_D
$$
(G:C) + K_D (G:C) - [P]₀ (S5)
b = K_D (G:C₁₀ - [P]₀) + K_D (G:C)([G*:C]₀ - [P]₀) + K_D (G:C) K_D (G:C)
c =- K_D (G:C) K_D G*:C [P]₀ (S7)

By using proper substitution for eliminating the quadratic term, and general techniques of solving cubic equations, the only physically relevant root of equation **(S4)** can be written as

$$
P = 2/3\sqrt{a^2 - 3b}\cos\theta - a/3
$$
 (S8)

where

$$
\theta = \frac{\cos^{-1}(-2a^3 + 9ab - 27c)}{2(a^2 - 3b)^{3/2}}
$$
 (s9)

and the fraction of the B[*a*]P-modified oligonucleotide-XPC complexes is:

$y = P/(K_D + (G^* : C) + P)$ (S10)

The XPC binding constants for B[*a*]P-G*:C duplexes were experimentally determined utilizing a 25-fold greater concentration of unmodified G:C duplexes (see Fig.3 of the main paper).

Analytical expressions for the binding of dimeric $(XPC)_2-G^*$:C to DNA were analyzed by the (generic) mathematical methods described in [2,3]. The analytical expression for such equilibria is derived via the solution of cubic equations for the free protein concentration, that is similar to equations (**S4-S9**) for the competitive XPC-G*:C binding case because the same two protein molecules are involved in both cases, but the values of the coefficients (**S5-S7)** of the cubic equation (**S4)** are different.

Nonlinear curve fitting of the XPC binding to unmodified oligonucleotides gives the values of $K_D(G:C)$, which in turn, were used for the nonlinear fitting of the competition binding data using equations (**S5-S10**), and the determination of $K_D(G^*:C)$ that provides the best calculated fit to the experimental data points.

1. Z.X. Wang, An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule. *FEBS Lett*. (1995)360, 111-4.

2. Scott T. Lefurgy and Thomas S. Leyh, Analytical expressions for the homotropic binding of ligand to protein dimers and trimers. *Anal Biochem*. 2012, 421(2): 433–438.

3. Eric T. Mack, Raquel Perez-Castillejos, Zhigang Suo, and George M. Whitesides, Exact Analysis of Ligand-Induced Dimerization of Monomeric Receptors. *Anal. Chem*, 2008,80, 5550- 5555.