1 Supplementary Material for Kaelin, McGowan, and Barsh

Supplementary Fig. 1. Topological maps of dorsal neck skin from Stage 16. Ta^M/Ta^M and Ta^b/Ta^b embryos (thin epidermis, yellow; thick epidermis, black; no data, grey). Each map represents six serial sections from an embryo of the indicated genotype; thick and thin areas in each section were marked independently and then aligned to generate a two-dimensional representation of the topology. Cartoons (left) show adult pigmentation pattern on the dorsal neck (red box indicates anatomic location of map).

10 basal-like epithelia (Supplementary Table 3)

11 Supplementary Figure 2. Patterns of gene expression in different cell types at stage 16a. (a) Cell

12 populations defined by *k*-means clustering (at *k*=10) represent spatially distinct UMAP clusters (except

13 for the basal keratinocyte subpopulations, whose defining characteristics are described in the text). (b)

14 To characterize the different epithelial cell populations, the top 20 upregulated genes in each population

15 were selected, and the log₂-fold change in expression relative to the mean expression across all cells

16 was used to cluster the union of these genes (n=97) and cell populations using the pheatmap (v1.012)

17 R package and Ward's method. Non-epithelial cell populations are included in all analyses but are

- 18 considered as a single group, indicated in grey. This approach identifies three major population groups:
- 19 basal-like epithelia (red, blue, green), non-basal epithelia (yellow, purple), and non-epithelial cells
- 20 (grey), and corresponding sets of genes that define those groups. (c) Expression patterns in the
- 21 different populations for individual genes in six different gene families. Differentially expressed genes
- were filtered for inclusion in heat maps by significance (FDR *q*-value < 0.05) and expression level
- 23 (normalized mean expression > 0.25 transcripts/cell).

25 Supplementary Fig. 3. Dkk4 expression in embryonic cat skin. (a) Dkk4 expression (green) in 26 sections of embryonic cat skin (DAPI, blue). 1-3 Dkk4-positive cells are found in sections of developing 27 hair buds at stage 17 (right panel, inset). Observations were made independently on three or more 28 $Ta^{M/-}$ embryos from each developmental stage with similar results. (b) Length of *Dkk4*-positive regions 29 from sections of embryonic skin at different developmental time points (crown-rump length is a 30 surrogate for stage of embryonic development, Supplementary Table 1; length of 6-16 Dkk4-positive 31 regions measured from at least three sections at each developmental time point, red bar denotes 32 mean). (c) Dkk4 expression (purple) in stage 15a and stage 16a embryos (top panels; sense control 33 probe does not stain embryo). In situ hybridizations were carried out independently on four $Ta^{M/-1}$ 34 embryos at each stage. Sections of skin (bottom panels) from embryos shown in top panels are stained 35 with nuclear fast red. Scale bars: a, 50 μ M; b inset, 25 μ M; c top panels, 1mm; c bottom panels 25 μ M.

>2-fold increased expression

in Dkk4+ basal cells

С

а

Gene	Fold-increase at stage:			Trans	Transcripts per cell:		
	15a	15b	16a	15a	15b	16a	q-value
Dkk4	504	436	17.7	22.3	99.2	35.6	6.8 e-42
Wif1	18.2	72.8	27.6	0.05	0.34	2.22	4.3 e-43
Dkk3	0.67	3.96	1.80	0.54	1.14	0.85	4.8 e-3
Atp6v1c2	9.42	31.6	8.34	0.31	1.51	1.32	1.4 e-21
Lgr6	3.13	5.93	3.89	0.79	0.83	0.84	1.2 e-8
Lrp4	3.22	3.15	3.92	2.41	3.03	2.56	8.2 e-10
Fzd10	3.63	2.58	3.29	2.58	4.12	1.86	2.2 e-7
Lef1	3.31	2.03	2.21	3.09	4.82	2.83	0.0062
Wnt10b	1.80	1.51	3.27	9.06	9.88	3.11	1.8 e-7
Wnt5a	2.18	1.53	2.89	1.32	0.91	0.59	6.4 e-5
Ctnnb1	1.75	2.93	2.92	13.3	20.4	10.9	2.9 e-6

36

37 Supplementary Figure 4. Relationship between differentially expressed genes during fetal skin 38 development highlights components of Wnt signaling. The gene list used for the analysis depicted 39 here is more sensitive and less stringent than that depicted in Fig. 3 (Methods). Overlap of gene 40 expression profiles for genes with >2-fold increased (a) or decreased (b) expression in Dkk4-positive 41 basal keratinocytes at stages 15a (blue), 15b (red), and 16a (green). (c) Gene expression metrics for 42 What signaling genes with elevated expression in Dkk4-positive basal keratinocytes; q-values indicate 43 the significance of differential expression between basal keratinocyte subpopulations at stage 16a 44 (negative binomial exact test). Complete expression data is provided in Supplementary Data 1. Genes 45 are colored according to their predicted role in either short-range activation (blue) or long-range 46 inhibition (red) of Wnt signaling in thick and thin epidermis, respectively, as presented in a model for 47 color pattern establishment in Fig. 3d.

50 **associated with** *Ticked.* (a) A protein alignment of cat Dkk paralogs, with conserved residues colored

red, and arrows highlighting the position of one of the cat *Dkk4* mutations (p.Cys63Tyr) and the position

52 of the potentially deleterious residue in tiger (p.Gly173Glu). **(b)** Vertebrate Dkk4 alignment with the 53 residue that harbors the other cat *Dkk4* mutation (p.Ala18Val) colored red. **(c)** Signal peptide cleavage

53 residue that harbors the other cat *Dkk4* mutation (p.Ala18Val) colored red. (c) Signal peptide cleavage

54 site efficiencies predicted by SignalP5.0 for p.Ala18 (blue) and p.Val18 (red) variants.

Cheetah	MAVVFLLGLSWFCAPLSALVLDFNNIKSSANVHRAQKGSQCLSDKDCSSRKFCLKPQDER	60
Cougar	MAVVFLLGLSWFCAPLSALVLDFNNIKSSADVHGAQKGSQCLSDKDCSSRKFCLKPQDER	60
Tiger	MAVVVLLGLSWLCAPLSALVLDFNNIKSSADVQGARKGSQCLSDKDCSSRKFCLKPQDER	60
Fishing cat	MAVVVLLGLSWFCAPLSALVLDFNNIKSSADVHGARKGSQCLSDKDCSSRKFCLKPQDER	60
Jaguar	MAVVVLLGLSWFCAPLSALVLDFNNIKSSADVHGARKGSQCLSDKDCSSRFFCLKPQDER	60
Lion	MAVVVLLGLSWFCAPLSALVLDFNNIKSSADVHGARKGSQCLSDKDCSSRKFCLKPQDER	60
Snow leopard	MAVVVLLGLSWFCAPLSALVLDFNNIKSSADVHGARKGSQCLSDKDCSSRKFCLKPQDER	60
Asian leopard cat	MAVVVLLGLSWFCAPLSALVLDFNNIKSSADVHGARKGSQCLSDKDCSSRKFCLKPQDER	60
Clouded leopard	MAVVVLLGLSWFCAPLSALVLDFNNIKSSADVHGARKGSQCLSDKDCSSRKFCLKPQDER	60
Pallas cat	MAVVVLLGLSWFCAPLSALVLDFNNIKSSADVHGARKGSQCLSDKDCSSRKFCLKPQDER	60
Spanish lynx	MAVVVLLGLSWFCAPLSALVLDFNNIKSSADVHGARKGSQCLSDKDCSSRKFCLKPQDER	60
Pampas cat	MAVVVLLGLSWFCAPLSALVLDFNNIKSSADVHGARKGSQCLSDKDCSSRKFCLKPQDER	60
Canadian lynx	MAVVVLLGLSWFCAPLSALVLDFNNIKSSADVHGARKGSQCLSDKDCSSRKFCLKPODER	60
Domestic cat	MAVVVLLGLSWFCAPLSALVLDFNNIKSSADVHGARKGSQCLSDKDCSSRKFCLKPQDER	60
Sand cat	MAVVVLLGLSWFCAPLSALVLDFNNIKSSADVHGARKGSQCLSDKDCSSRKFCLKPQDER	60
Jungle cat Black-footed cat	MAVVVLLGLSWFCAPLSALVLDFNNIKSSADVHGARKGSQCLSDKDCSSRKFCLKPQDER MAVVVLLGLSWFCAPLSALVLDFNNIKSSADVHGARKGSQCLSDKDCSSRKFCLKPQDER **** ******	60 60
Cheetah	PLCATCRGLRRRCQRNAMCCPGILCMNDVCTAMEDATPILERQMDDQDDIETKGTTEHPI	120
pumaDkk4	PFCATCRGLRRRCQRNAMCCPGILCMNDVCTMMEDATPILERQMDDQDDIETKGTTEHPI	120
tigerDkk4	PFCATCRGLRBRCQBNAMCCPGILCMNDVCTMMEDATPILERQMDDQDDIETKGTTEHPI	120
fishing_catDkk4	PFCATCRGLRRRCQRNAMCCPGTLCMNDVCTTMEDATPILERQMDDQDDIETKGTTEHPI	120
jaguarDkk4	PFCATCRGLQRRCQRNAMCCPGTLCMNDVCTTMEDATPILERQMDDQDDIETKGTTEHPI	120
lionDkk4	PFCATCRGLRRRCQRNAMCCPGTLCMNDVCTTMEDATP1LERQMDDQDD1ETKGTTEHP1	120
snow_leopardDkk4	PFCATCRGLRRRCQRNAMCCPGTLCMNDVCTTMEDATP1LERQMDDQDD1ETKGTTEHP1	120
leopardDkk4	PFCATCRGLRRRCQRNAMCCPGTLCMNDVCTTMEDATP1LERQMDDQDD1ETKGTTEHP1	120
alcDkk4	PFCATCRGLRRRCQRNAMCCPGTLCMNDVCTTMEDATPILERQMDDQDDIETKGTTEHPI	120
cloudedDkk4	PFCATCRGLRRRCQRNAMCCPGTLCMNDVCTTMEDATPILERQMDDQDDIETKGTTEHPI	120
SpanishLynxDkk4 pampasDkk4	PFCATCROBARACQANAMCCFGILCMNDVCTIMEDATFILERQMDDQDIFIKGITEHFI PFCATCRGLRRRCQNAMCCFGILCMNDVCTIMEDATFILERQMDDQDIFIKGITEHFI PFCATCRGLRRRCQRNAMCCPGILCMNDVCTIMEDATFILERQMDDQDDIFIKGITEHFI	120 120 120
CanadianLynxDkk4	PFCATCRGLRRRCQRNAMCCPGTLCMNDVCTTMEDATPILERQMDDQDDIETKGTTEHPI	120
catDkk4	PFCATCRGLRRRCQRNAMCCPGTLCINDVCTTMEDATPILERQMDDQDDIETKGTTEHPI	120
sand catDkk4	PFCATCRGLRRRCORNAMCCPGTLCINDVCTTMEDATPILERQMDDQDDIETKGTTEHPI	120
chausDkk4 nigripesDkk4	PFCATCRGLRRRCQRNAMCCPGTLCINDVCTTMEDATPILERQMDDQDDIETKGTTEHPI PFCATCRGLRRRCQRNAMCCPGTLCINDVCTTMEDATPILERQMDDQDDIETKGTTEHPI *:*******	120 120
cheetahDkk4 pumaDkk4 tigerDkk4 fisbing_catDkk4	QENKPKRKPNIKKPQDGKGQEGERCLRTLDCGAGLCCARHFWTKICKPVLLEGQVCSRRG QENKPKRKPNIKKPQDGKGQEGERCLRTLDCGAGLCCARHFWTKICKPVLLEGQVCSRRG QENKPKRKPNIKKPQGKGQEGERCLRTLDCGAGLCCARHFWTKICKPVLLEQVCSRG DEWKPKPNIKKPOGKGCFGCFGCTLRTLDCGAGLCCARHFWTKICKPVLLEQVCSRG	180 180 180
jaguarDkk4	QENKFKREPNIKKPQGGKGQEGERCLRTLDCGAGLCCARHFWTKICKFVLLEGQVCSRRG	180
lionDkk4	QENKFKREPNIKKPQGGKGQEGERCLRTLDCGAGLCCARHFWTKICKFVLLEGQVCSRRG	180
snow_leopardDkk4 leopardDkk4 alcDkk4 cloudedDkk4	QENKFKRKPNIKKPQGGKGQEGERCLRTLDCGAGLCCARHFWTKICKFVLLEGQVCSRRG QENKFKRKPNIKKPQGGKGQEGERCLRTLDCGAGLCCARHFWTKICKFVLLEGQVCSRRG QENKFKRKPNIKKPQGGKGQEGERCLRTLDCGAGLCCARHFWTKICKFVLLEGQVCSRRG	180 180 180 180
pallas_catDkk4	QENKFKRKPNIKKPQGGKGQEGERCLRTLDCGAGLCCARHFWTKICKPVLLEGQVCSRRG	180
SpanishLynxDkk4	QENKFKRKPNIKKPQGGKGQEGERCLRTLDCGAGLCCARHFWTKICKFVLLEGQVCSRRG	180
pampasDkk4	DENKFKRKPNIKKPQGGKGGEGERCLRTLDCGAGLCCARHFWTKICKFVLLEGQVCSRRG	180
CanadianLynxDkk4 catDkk4	QENKPKRKPNIKKPQGGKGQEGERCLRTLDCGAGLCCARHFWTKICKPVLLEGQVCSRRG QENKPKRKPNIKKPQGKGQEGERCLRTLDCGAGLCCARHFWTKICKPVLLEGQVCSRRG DRWKPKPNIKKPQCKCOFCPCITICCCACCCARHFWTKICKPVLLEGQVCSRG	180 180
chausDkk4	QENKRKRYDIKKPQGGKGQEGERCLRTLDCGAGLCCARHFWTKICKPVLLEGQVCSRRG	180
nigripesDkk4	QENKPKRKPNIKKPQGGKGQEGERCLRTLDCGAGLCCARHFWTKICKPVLLEGQVCSRRG	180
cheetahDkk4 pumaDkk4	HKDTAQAPEIFQRCDCGPGLICRNQVTGNQQHTRLRVCQKI 221 HKDTAQAPEIFQRCDCGPGLICRNQVTSNQQHTRLRVCQKI 221	
tigerDkk4 fishing_catDkk4 jaguarDkk4	HKDTAQAPEIFQRCDCGFGLICRNQVTGNQQHTRLRVCQKI 221 HKDTAQAPEIFQRCDCGPGLICRNQVTGNQQHTRLRVCQKI 221 HKDTAQAPEIFQRCDCGFGLICRNQVTGNQQHTRLRVCQKI 221	
lionDkk4 snow_leopardDkk4 leopardDkk4	HKDTAQAPEIFQRCDCGPGLICRNQVTGNQQHTRLRVCQKNLN 223 HKDTAQAPEIFQRCDCGPGLICRNQVTGNQQHTRLRVCQKI 221 HKDTAQAPEIFDRCDCGPGLICRNQVTGNQOHTRLRVCQKI 221	
alcDkk4 cloudedDkk4	HKDTAQAPEIFQRCDCGPGLICRQVTGNQOHTRLRVCQKI 221 HKDTAQAPEIFQRCDCGPGLICRQVTGNQOHTRLRVCQKI 221	
pallas_catDkk4 SpanishLynxDkk4 pampasDkk4	HKDTAQAFEIFQRCDCCFGLICRNQVTCNQQHTKLRVCQKI 221 HKDTAQAFEIFQRCDCCFGLICRNQVTCNQQHTKLRVCQKI 221 HKDTAQAFEIFQRCDCCFGLICRNQVTCNQQHTKLRVCQKI 221	
CanadianLynxDkk4 catDkk4 sand_catDkk4	HKDTAQAPEIFQRCDCGPGLICRNQVTSNQQHTRLRVCQKI 221 HKDTAQAPEIFQRCDCGPGLICRNQVTSNQQHTRLRVCQKI 221 HKDTAQAPEIFDRCDCGPGLICRNQVTSNQQHTPLRVCQKI 221	
chausDkk4 nigripesDkk4	HKDTAQAPEIFQRCDCGPGLICRNQVTGNQQHTRLRVCQKI 221 HKDTAQAPEIFQRCDCGPGLICRNQVTGNQQHTRLRVCQKI 221 ***********************************	

68 Supplementary Fig. 7. Protein alignment of predicted Dkk4 protein sequence from 29 felid

69 species. A summary of derived variants and predicted deleteriousness is given in Supplementary

70 Table 9.

Histologic Molecular features features
(cat) ^b (cat) ^b
nonolayer of
pidermal cells
Dkk4-positive
domains in epidermis
hick" epidermal Dkk4-positive
omains "thick" domains
Krt10-positive cells in "thick"
domains
air follicle buds Dkk4-positive
nd pegs cells in hair buds
pidermis Krt10 uniformly
niform expressed in
nickness epidermis
igmented hair
ulbs

Supplementary Table 1. Stages of embryonic and fetal development in the domestic cat.

^a Based on Knospe et al. ¹ ^b Based on data reported here ^c Based on Kaufman et al. ²

73 74

	"Thick" epidermal domain (cat ^a)	Hair follicle placode (mouse, catª)	Developing epidermis (mouse, cat ^a)
Tissue organization	3-5 layers of uniformly spaced, basaloid cells	Single layer of crowded, basal cells below second layer of basal-like cells, intermediate cell layer and periderm ³ *	Single layer of uniformly spaced basal cells below intermediate cell layer and periderm ⁴ ; intermediate cell layer differentiates into spinous, granular, cornified layers; periderm sheds ⁴
Cellular morphology	Round, basaloid cells uniformly spaced	Vertically polarized, basal cells undergo compaction ^{3,5} ; round, basaloid and intermediate cells	Round, basal and intermediate cells uniformly spaced ⁴ ; differentiated epidermal cells flatten
Domain width	50-500 μM (~20-200 cells); Ta ^b /Ta ^b > Ta ^M /-	~50 μM (~5-20 cells) 3	
Domain depth	No invagination into dermis	Invaginates into dermis ³ *	
Proliferation	Basal and supra-basal cells proliferate (31% Ki67-positive)	Small fraction proliferating cells (~8%, thickening due to cell migration) ⁵ ; basal cells proliferate; supra-basal cells proliferate during invagination ^{5,6}	Basal and few supra-basal cells located just above the basal cell layer proliferate ^{4,7}
Keratin expression pattern	Krt5-positive basal and supra- basal cells; Krt10-positive cells lie above 3-5 layers of Krt5- positive cells	Krt5-positive basal and basaloid cells; Krt10-positive intermediate cell layer; Krt8/18-positive periderm ⁴	Krt5-positive basal cells ⁴ ; Krt1/10-positive supra-basal cells ^{4,7} ; Krt8/18-positive periderm ⁴
Dermal cell arrangement	Dermal cells evenly distributed	Dermal cells cluster below placode ³	Dermal cells evenly distributed

Supplementary Table 2. Histologic and molecular features of thick epidermal domains in cat as compared to
 developing hair follicle placodes and "normal" epidermal stratification.

81 ^aData in cat from this study.

82

84 Supplementary Table 3. Gene markers used for identification of UMAP clusters.

Cell population	Key genes	Reference
Macrophage/dendritic cells	Cd163, C1qa, Cd14	8,9
Neural Crest	Fabp7, Sox10, Foxd3	10
Stratified epithelium/periderm	Krtdap, Rhov, Defb1	11
Basal keratinocytes	Krt5, Tp63, Kremen2	12
Dermal fibroblasts	Lum, Twist1, Twist2	12
Myoblasts	Myf5, Myod1, Msc	13,14
Endothelium	Pecam1, Cdh5, Tie1	15
Vascular endothelium	Cd34, Esam, Fam198b	16
Lymphatic endothelium	Ccl21, Mmrn1, Igf1	17

87 Supplementary Table 4. scRNAseq summary statistics.

	Embryonic stage		
	15a	15b	16a
ID	C16	C14	C64
10x Genomics Chemistry	v3	v3	v2
Total reads	455,308,860	450,083,295	404,331,199
% mapped to genome	87.9	87.3	87.9
% mapped to transcriptome	58.9	60.1	63.5
Estimated cell count	5,493	4,454	4,617
Mean reads per cell	82,889	101,051	87,574
Median genes per cell	4,119	4,180	2,570
Median UMI per cell	18,244	17,966	9,419
Total genes detected	25,514	25,222	24,164
Estimated cell number	5,493	4,454	4,617
Keratinocyte cell number	1,791	2,425	2,515
Keratinocyte cell fraction	0.33	0.54	0.54

90 Supplementary Table 5. Dkk4 coding variants detected in 57 cats^a.

		Amino acid	Allele freg	Abyssinian allele freg	
felCat9 coordinate	cDNA variant ^b	variant ^b	(n=57)°	(n=4)°	CADD phred
chrB1:42620835	c41t	A18V	0.10	0.13	22.9
chrB1:42621481	g188a	C63Y	0.05	0.75	21.4
chrB1:42621505	g212a	R71K	0.14	0.75	5.8
chrB1:42621551	a258g	186M	0.01	0	0.3 ^d
chrB1:42622162	a395g	K132R	0.12	0	14.2
chrB1:42623424	t602c	I201T	0.66	0.13	16.0 ^e
chrB1:42623444	a622g	S208G	0.01	0	0.2
chrB1:42623455	a633c	Q211H	0.01	0	0.2 ^d

^a All variants predicted to alter amino acids in Dkk4 are shown. In 57 cat genome sequences from the 99 Lives collection,

91 92 93 94 there are an additional 3 variants in Dkk4 that are synonymous, and with CADD scores of Q<10. No variants predicted to alter amino acids were identified in Abyssinians for the 3 other genes that are differentially expressed and overlap with the Ticked linkage interval, Plat, Polb, and Vdac3.

95 ^b Ancestral allele is shown as the reference allele.

96 ^c Allele frequencies for the derived allele.

97 ^d Reference base between cat and human differs.

98 e Adjacent nucleotide position differs between cat and human, affecting the reference alternate codon, making CADD score 99 interpretation unreliable.

101 Supplementary Table 6. *Dkk4* alleles categorized according to breed and phenotype^a.

	Dkk4 genotype						
Breed and phenotype	+/+	+/18V	+/63Y	18V/18V	18V/63Y	63Y/63Y	Total
Abyssinian (Ticked)	0	0	1	0	2	34	37
Singapura (Ticked)	0	1	1	4	16	4	26
Burmese (Ticked)	1	1	0	11	0	0	13
Mau (non-Ticked)	8	0	0	0	0	0	8
Ocicat (non-Ticked)	13	0	0	0	0	0	13
Bengal (non-Ticked)	10 ^b	0	0	0	0	0	10 ^b
OSH and OLH Ticked	0	23	0	2	0	0	25
OSH and OLH non-							
Ticked	21	0	0	0	0	0	21
Non-breed cats Ticked ^c	0	4	0	0	0	0	4
Non-breed cats non-							
Ticked ^c	182	0	0	0	0	0	182

^a The p.Ala18Val and p.Cys63Tyr variants are indicated as 18V and 63Y, respectively. The table includes data from 18 breed

103 cats in the 99Lives dataset (4 Abyssinian, 3 Egyptian Mau, 1 Ocicat, 5 Bengal, 5 Burmese), for which photographs were not available, and for which phonotype was inferred based on breed identity; all other data is based on samples that we

ascertained and collected. Of the Oriental Shorthair (OSH) and Oriental Longhair (OLH), 15 had an indeterminate phenotype

for which we could not infer *Ticked* genotype, and one was excluded due to an inconsistency in Mendelian transmission.

^b Data shown are from targeted genotyping or high-coverage WGS. In additional data from low-coverage (0.1x – 0.5x) WGS on 526 Bengal cats, neither *Dkk4* variant was observed.

109 ^c Variation in other coat color genes that masks tabby pattern (as in a Siamese or non-agouti cat) can make it difficult to

assess Ticked, and 6 non-breed cats were excluded from this table because their tabby pattern (or lack thereof) could not be determined.

			Amino		
Position ^a	Ref	Alt	acid	Species	CADD
42377041	А	G	p.A2V	Tigrina	3.393
42377033	С	А	p.V5F	Puma, Jaguarundi, Cheetah	0.736
42376989	С	G	p.D58E	Fishing cat	14.5
42377012	G	А	p.F12L	Tiger	10.88
42376955	С	Т	p.D31N	Cheetah	14.02
42376947	А	G	p.H32Q	Tiger	0.68
42376946	С	Т	p.G33R	Cheetah	10.84
42376939	С	Т	p.R35Q	Puma, Jaguarundi, Cheetah	9.835
42375756	G	Т	p.F62L	Cheetah	11.17
42375733	С	Т	p.R70Q	Jaguar	1.566
42375694	G	А	p.T83I	Cheetah	8.476
42374918	G	Т	p.M86I	Domestic cat, Sand cat, Black-footed cat, Jungle cat	4.527
42374902	Т	С	p.T92A	Puma, Jaguarundi, Cheetah, Bay cat, Asian gold., Marbled cat	0.571
42374889	G	С	p.A96G	Jaguarundi	4.66
42374887	Т	С	p.T97A	Serval	0.771
42374845	G	Т	p.Е111К	Flat-headed cat	0.108
42374769	С	Т	p.G136D	Puma, Jaguarundi, Cheetah	3.221
42374318	G	С	p.A153S	Flat-headed cat	10.67
42374257	С	Т	p.G173E	Tiger	26.9
42374174	G	Т	p.I201V	Geoffroys cat, Tigrina	2.552
42374153	Т	С	p.G208S	Domestic cat, Sand cat, Puma	0.21
42374114	Т	С	p.I221V	Bay cat	0.435
42374114	Т	TT	p.I221fsX4	Lion	19.07

112 Supplementary Table 7. *Dkk4* variants and predicted impact (CADD) in the Felidae.

^a Genomic coordinates from chromosome B1, felCat9 assembly

115 Supplementary Table 8. Oligonucleotide primers for genotyping *Taqpep* and *Dkk4* variation.

Variant	Primer
<i>Taqpep</i> p.Trp841X	GCCTTCGGAAGTGATGAAGA
	ACTTCAGATTCCGCCACAAC
<i>Dkk4</i> p.Ala18Val	GAGCTGAGAAGGTCAAGGTGA
	GTGGGTACTTGTGCCATTCC
Dkk4 p.Cys63Try	CCACTGTGATTTGGCTTCCT
	CAGTCCCACAGGGGTTTATG

Supplementary Table 9. Basal keratinocyte subpopulation cell number at different *Dkk4* expression thresholds. 119

Stage	Subpopulation	Expression Threshold					
		2-fold	4-fold	8-fold	16-fold		
15a	Dkk4-	1641	1569	1670	1682		
15a	Dkk4+	77	59	48	36		
15b	Dkk4-	824	865	916	980		
15b	Dkk4+	758	717	666	602		
16a	Dkk4-	846	931	1018	1193		
16a	Dkk4+	1216	1131	1044	869		

- Knospe, C. Periods and Stages of the Prenatal Development of the Domestic Cat. Anatomia, Histologia, Embryologia: Journal of Veterinary Medicine Series C 31, 37-51 (2002).
- 124 2. Kaufman, M. H. The Atlas of Mouse Development (Academic Press, 1992).

125 3. Paus, R. et al. A comprehensive guide for the recognition and classification of distinct stages of 126 hair follicle morphogenesis. *J Invest Dermatol* **113**, 523-532 (1999).

- 4. Koster, M. I. & Roop, D. R. Mechanisms regulating epithelial stratification. *Annu Rev Cell Dev Biol*23, 93-113 (2007).
- Ahtiainen, L. et al. Directional cell migration, but not proliferation, drives hair placode
 morphogenesis. *Dev Cell* 28, 588-602 (2014).
- Schmidt-Ullrich, R. et al. NF-kappaB transmits Eda A1/EdaR signalling to activate Shh and cyclin
 D1 expression, and controls post-initiation hair placode down growth. *Development* 133, 1045 1057 (2006).
- Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. *Nature* 437, 275-280 (2005).
- Murray, P. J. & Wynn, T. A. Protective and pathogenic functions of macrophage subsets. *Nat Rev Immunol* **11**, 723-737 (2011).
- Shih, B. B. et al. Derivation of marker gene signatures from human skin and their use in the
 interpretation of the transcriptional changes associated with dermatological disorders. *J Pathol*241, 600-613 (2017).
- Simões-Costa, M., Stone, M. & Bronner, M. E. Axud1 Integrates Wnt Signaling and
 Transcriptional Inputs to Drive Neural Crest Formation. *Dev Cell* 34, 544-554 (2015).
- 143 11. Joost, S. et al. Single-Cell Transcriptomics Reveals that Differentiation and Spatial Signatures
 144 Shape Epidermal and Hair Follicle Heterogeneity. *Cell Syst* 3, 221-237.e9 (2016).
- 145 12. Sennett, R. et al. An Integrated Transcriptome Atlas of Embryonic Hair Follicle Progenitors, Their
 146 Niche, and the Developing Skin. *Dev Cell* 34, 577-591 (2015).
- 147 13. Chal, J. & Pourquié, O. Making muscle: skeletal myogenesis in vivo and in vitro. *Development*148 144, 2104-2122 (2017).
- 14. Fanzani, A. et al. Hypertrophy and atrophy inversely regulate Caveolin-3 expression in myoblasts.
 Biochem Biophys Res Commun 357, 314-318 (2007).
- 151 15. Korhonen, E. A. et al. Tie1 controls angiopoietin function in vascular remodeling and inflammation. *J Clin Invest* **126**, 3495-3510 (2016).
- 153 16. Fina, L. et al. Expression of the CD34 gene in vascular endothelial cells. *Blood* **75**, 2417-2426
 (1990).
- Feng, W., Chen, L., Nguyen, P. K., Wu, S. M. & Li, G. Single Cell Analysis of Endothelial Cells
 Identified Organ-Specific Molecular Signatures and Heart-Specific Cell Populations and Molecular
 Features. Front Cardiovasc Med 6, 165 (2019).
- 158